
Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Minimal solutions in Fuzzy Relation Equations.
Application to Fuzzy Logic Programming

Jesús Medina Moreno

Departamento 
de Matemáticas

Department of Mathematics
University of Cádiz, Spain
jesus.medina@uca.es

A Coruña, February 24th 2015



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Outline

Introduction

Adjoint triples

Multi-adjoint logic programming

Computing the weights of the rules of M.A.L. programs

Solving the abduction problem

Conclusions and future work



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Introduction I

• Multi-adjoint logic programming [Medina et al(2001)] is a
general logical framework whose semantic structure is the
multi-adjoint lattice

• Adjoint triples [Cornejo et al(2013), Medina et al(2004)] are a
generalization of the t-norms and their residuated
implications, which satisfy their main properties.

• They are used as the basic operators to make the calculus in
several frameworks, which provides them more flexible.

• MALP, fuzzy concept lattices, fuzzy rough sets, fuzzy relation
equations, etc.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Introduction II

• Fuzzy relation equations, introduced by E. Sanchez, are
associated with the composition of fuzzy relations.

• FRE have been used to investigate theoretical and
applicational aspects of fuzzy set theory, e.g., approximate
reasoning, decision making, fuzzy control, etc.

• The multi-adjoint relation equations [D́ıaz and Medina(2013)]
were presented as a generalization of the fuzzy relation
equations.

• Two important problems in fuzzy logic programming is to find
out the confidence factors of the rules in a program and
abductive reasoning.

• This lecture describes and solves these problems in terms of
multi-adjoint relation equation theory.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Adjoint triples

Assuming non-commutativity on the conjunctor, directly provides
two different residuated (adjoint) implications

Definition

Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be mappings, then
(&,↙,↖) is an adjoint triple with respect to P1,P2,P3 if:

• Adjoint property:

x ≤1 z ↙ y iff x & y ≤3 z iff y ≤2 z ↖ x

where x ∈ P1, y ∈ P2 and z ∈ P3.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Main properties of adjoint triples

• We have three different general sorts, which also provides a
more flexible language for a potential user. Furthermore, few
conditions are required.

• The adjoint triples play an important role in several important
environments: fuzzy logic, fuzzy relation equations, fuzzy
concept lattices, etc.

• More properties must be assumed in order to assure the
mechanism for the calculus needed to resolve problems.

M. Cornejo, J. Medina, and E. Raḿırez A comparative study of
adjoint triples. Fuzzy Sets and Systems, 211:1–14,
2013.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

T-norm and its residuated implication

Product adjoint triple

&P : [0, 1]× [0, 1]→ [0, 1] defined as:

&P(x , y) = x · y

Residuated implications: ↙P=↖P [0, 1]× [0, 1]→ [0, 1] are
defined as:

z ↙P y = min{1, z/y}



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Granular adjoint triples

Granular product adjoint triple

Considering regular partitions of [0, 1] into several pieces:
[0, 1]5 = {0, 0.2, 0.4, 0.6, 0.8, 1}. &∗P : [0, 1]5 × [0, 1]3 → [0, 1]4
defined as:

&
∗
P(x , y) =

d4 · x · y
⌉

4

where d e is the ceil function (d3.6e = 4, d7.1e = 8, d2e = 2,. . . ).
The residuated implications: ↙∗P : [0, 1]4 × [0, 1]3 → [0, 1]5 and
↖∗P : [0, 1]4 × [0, 1]5 → [0, 1]3 are defined as:

z ↙∗P y =
b5 ·min{1, z/y}c

5
z ↖∗P x =

b3 ·min{1, z/x}c
3

where b c is the floor function.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Non-commutative adjoint triple

&: [0, 1]× [0, 1]→ [0, 1] defined as:

&(x , y) = x2y

The residuated implications:
↙ : [0, 1]× [0, 1]→ [0, 1] and ↖ : [0, 1]× [0, 1]→ [0, 1] are defined
as:

z ↙ y = min{1,
√

z/y}
z ↖ x = min{1, z/x}



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Fuzzy logic

• There exists a big interest in the development of logics for
dealing with information which might be either vague or
uncertain.

• Several different approaches to the so-called inexact or fuzzy
or approximate reasoning have been proposed, such that
fuzzy, annotated, probabilistic and similarity-based logic
programming.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Logic programming

Standard Logic Programming Rule [Kowalski and van Emden]:

paper accepted ← good work , good referees

Quantitative Deduction Rule [van Emden]:

paper accepted
0.9←− good work & good referees

Fuzzy Logic Programming [Vojtáš and Pauĺık]:

paper accepted
0.9←−product min(good work , good referees)



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Logic programming

Probabilistic Deductive Databases [Lakshmanan and Sadri]:(
paper accepted

〈[0.7,0.95],[0.03,0.2]〉
←−−−−−−−−−−−−−−−− good work , good referees; ind , pc

)

Hybrid Probabilistic Logic Programs [Dekhtyar and Subrahmanian]:

(paper accepted ∨pc go conference) : [0.85, 0.98]←−
(good work ∧ind good referees) : [0.7, 0.9] & have money : [0.9, 1.0]



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Multi-Adjoint Logic Programming

Multi-adjoint logic programming was introduced by J. Medina, M.
Ojeda-Aciego and P. Vojtáš (2001) as a generalization of the
previous frameworks. Among its distinctive features we emphasize:

• It is possible to use a number of different type of connectives
in the rules of the programs.

• The requirements on the lattice of truth-values and on the
connectives are weaker than those on other approaches.

• Sufficient conditions for continuity of the consequence
operator are known.

• Completeness theorem for the computational model.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Language

A language L is considered, which contains propositional variables,
constants, and a set of logical connectives (adjoint triples and a
number of aggregators).

The language L is interpreted on a (biresiduated) multi-adjoint
lattice, (L1, L2, L3,&1,↙1,↖1, . . . ,&n,↙n,↖n), where
(L1,�1),(L2,�2), (L3,�3) are complete lattices and (&i ,↙i ,↖i )
is a collection of adjoint triples.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Multi-adjoint logic program

A rule is a formula A↙i B or A↖i B,
where A is a propositional symbol (the head)
and B (the body) is a formula built from propositional symbols
B1, . . . ,Bn, and conjunctions, disjunctions and aggregations of L.

A multi-adjoint logic program is a set of pairs 〈R, α〉,
where R is a rule and α is a value, which may express the
confidence which the user of the system has in the truth of the
rule R.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

The set of variables (propositional symbols)

Π = {rm, nb, oh, hfc, lo, lw}

The multi-adjoint lattice

([0, 1]100, [0, 1]8, [0, 1]20,&
∗
G,↙∗G,↖∗G,&∗P,↙∗P,↖∗P,∧L)

The multi-adjoint program:

〈hfc ↖∗G rm ∧L lo, 0.75〉
〈oh ↖∗G lo, 0.5〉
〈nb ↖∗P rm, 0.75〉
〈oh ↖∗P lw, 1〉
〈nb ↖∗G lo, 1〉



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

The usual procedure is to measure the levels of “oil”, “water” and
“mixture” of a specific motor, after that the values for low oil,
low water and rich mixture are obtained, which are represented
in the program as:

〈lo, 0.20〉 〈lw, 0.20〉 〈rm, 0.50〉

Finally, the values for the rest of variables are computed.
For instance, in order to attain the value for overheating(o,w),
for a level of oil, o, and water, w , the rules 〈oh ↖∗G lo, ϑ1〉 and
〈oh ↖∗P lw, ϑ2〉 are considered and its value is obtained as:

oh(o,w) = (lo(o) &
∗
G ϑ1) ∨ (lw(w) &

∗
P ϑ2)



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

From another point of view, the problem could be:
given the levels of oil, o1, . . . , on, the levels of water, w1, . . . ,wn,
and the measures of mixture, r1, . . . , rn,
and the values of the variables: nb(ri , oi ), hfc(ri , oi ) and
oh(oi ,wi ), for all i ∈ {1, . . . , n};
to look for the values of ϑ1 and ϑ2, which solve the following
system obtained after assuming the experimental data for the
propositional symbols, ov1, o1,w1, . . . , ovn, on,wn.

oh(ov1) = (lo(o1) &∗G ϑ1) ∨ (lw(w1) &∗P ϑ2)
...

...
...

...
oh(ovn) = (lo(on) &∗G ϑ1) ∨ (lw(wn) &∗P ϑ2)



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Multi-adjoint relation equations

Multi-adjoint relation equations arise as a generalization of the
usual fuzzy relation equations, following the philosophy of
multi-adjoint framework.

Given the universes U, V and W ,
the fuzzy relations K : W × U → P, and D : W × V → L1,
an unknown fuzzy relation R : U × V → L2,
and a mapping that relates each element in U to one adjoint triple,
σ : U → {1, . . . , l},
a multi-adjoint relation equation is∨

u∈U
(K (w , u) &σ(u) R(u, v)) = D(w , v), w ∈W , v ∈ V (1)



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

U = {rm, lo, lw, rm ∧L lo}, V = {hfc, nb, oh}, W = {1, 2, 3};
the mapping σ that relates the elements lo, rm ∧L lo to the Gödel
triple, and rm, lw to the product triple;
and the relations K : W × U → [0, 1]100, and
D : W × V → [0, 1]20.
The unknown fuzzy relation R : U × V → [0, 1]8 is formed by the
weights of the rules in the program.
For instance, for v = oh,

oh(ov1) = (lo(o1) &∗G ϑ
oh
lo) ∨ (lw(w1) &∗P ϑ

oh
lw)

oh(ov2) = (lo(o2) &∗G ϑ
oh
lo) ∨ (lw(w2) &∗P ϑ

oh
lw)

oh(ov3) = (lo(o3) &∗G ϑ
oh
lo) ∨ (lw(w3) &∗P ϑ

oh
lw)

where ϑohlo and ϑohlw are the weights associated with the rules with
head oh.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

The greatest solution of MARE

Given a multi-adjoint relation equation, its associated multi-adjoint
property-oriented context is (W ,U,K , σ) , and the concept lattice
associated with this context will be called MΠN(K ).

Theorem

Let v ∈ V and the fuzzy subset fv ∈ LW
1 , defined as

fv (w) = D(w , v), for all w ∈W .
Then the corresponding System can be solved if and only if

〈f ↓
N

v , fv 〉 is a concept of MΠN(K ).

In this case, f ↓
N

v is the greatest solution.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Concept-forming operators

Given a frame (L1, L2,P,&1, . . . ,&l) and context (A,B,R, σ), we

consider ↑π : LB
2 → LA

1 , ↓
N

: LA
2 → LB

1 :

g↑π(a) = sup{R(a, b) &σ(b) g(b) | b ∈ B}

f ↓
N

(b) = inf{f (a)↖σ(b) R(a, b) | a ∈ A}

These definitions are generalizations of the classical and fuzzy
possibility and necessity operators by Düntsch, Gediga, Georgescu,
Popescu, Lai, etc.

The pair (↑π , ↓
N

) is an isotone Galois connection, that is ↑π and ↓
N

are order-preserving; and they satisfy that f ↓
N↑π �1 f , for all

f ∈ LA
1 , and that g �2 g↑π↓

N
, for all g ∈ LB

2 .



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Multi-adjoint property-oriented concept lattice

Concept

A pair of fuzzy sets 〈g , f 〉, with g ∈ LB
2 , f ∈ LA

1 , such that g↑π = f

and f ↓
N

= g , is called multi-adjoint property-oriented concept.
g is called the extension and f , the intension of the concept.

The set of the concepts

MπN = {〈g , f 〉 | g ∈ LB
2 , f ∈ LA

1 and g↑π = f , f ↓
N

= g}

together with the ordering � defined by
〈g1, f1〉 � 〈g2, f2〉 iff g1 �2 g2 (or f1 �1 f2) forms a complete
lattice, (MπN ,�), which is called multi-adjoint property-oriented
concept lattice.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

For example, the experimental data could be:

oh(ov1) = 0.3 oh(ov2) = 0.6 oh(ov3) = 0.5
lo(o1) = 0.3 lo(o2) = 0.6 lo(o3) = 0.5
lw(w1) = 0.3 lw(w2) = 0.8 lw(w3) = 0.2

The multi-adjoint property-oriented context is (W ,U,K , σ),
where the relation K : W × U → [0, 1]100 is defined by

Table: Relation K .

lo lw

1 0.3 0.3
2 0.6 0.8
3 0.5 0.2



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example: behavior of a motor

Example

The fuzzy subset foh : W → [0, 1]20 associated with oh is defined
by foh(1) = 0.3, foh(2) = 0.6, and foh(3) = 0.5.

First of all, we compute (foh)↓
N

.

(foh)↓
N

(lo) = 1.00

(foh)↓
N

(lw) = 0.75

And then, the fuzzy subset (foh)↓
N↑π is obtained.

(foh)↓
N↑π(1) = 0.3

(foh)↓
N↑π(2) = 0.6

(foh)↓
N↑π(3) = 0.5

Thus, the largest values to ϑohlo, ϑohlw are 1.00, 0.75, respectively.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Computing the complete set of solutions

The set of solutions Fuzzy Relation Equations can be characterized,
providing a useful mechanism to obtain the whole set of solutions.
This characterization is given by the equivalence classes ↓−1

N (fv ).

Theorem

The whole set of solutions of System (1) is

SS&(fv ) = (f ↓
N

v ] \
⋃
{(f ↓

N−
v ] | 〈f ↓N−v , f −v 〉 ∈ Pre(〈f ↓Nv , fv 〉)}



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example

The considered equation can be solved and f ↓
N

v = (1.000, 0.750) is
the greatest solution.
Now, we apply Theorem 9 to obtain the set of solutions. First of

all, we compute the predecessors concepts of 〈f ↓
N

v , fv 〉 in the lattice
MΠN(K ).

[(0.000,0.000),(0.00,0.00,0.00)]

[(0.000, 0.125),(0.05,0.10,0.05)]

[(0.000, 0.250),(0.10,0.20,0.05)] [(0.125, 0.125),(0.15,0.15,0.15)]

[(0.000, 0.375),(0.15,0.30,0.10)] [(0.125, 0.250),(0.15,0.20,0.15)]

[(0.000, 0.500),(0.15,0.40,0.10)] [(0.125, 0.375),(0.15,0.30,0.15)] [(0.250, 0.250),(0.25,0.25,0.25)]

[(0.125, 0.500),(0.50,0.40,0.15)] [(0.250, 0.375),(0.25,0.30,0.25)]

[(0.125, 0.625),(0.20,0.50,0.15)] [(0.250, 0.500),(0.25,0.40,0.25)]

[(0.125, 0.750),(0.25,0.60,0.15)] [(0.250, 0.625),(0.25,0.50,0.25)] [(0.375, 0.500),(0.30,0.40,0.40)]

[(0.125, 0.875),(0.30,0.70,0.20)] [(0.250, 0.750),(0.25,0.60,0.25)] [(0.375, 0.625),(0.30,0.40,0.50)]

[(0.125, 1.000),(0.30,0.80,0.20)] [(0.250, 0.875),(0.30,0.70,0.25)] [(0.375, 0.750),(0.30,0.60,0.40)] [(0.500, 0.625),(0.30,0.50,0.50)]

[(0.250, 1.000),(0.30,0.80,0.25)] [(0.375, 0.875),(0.30,0.70,0.40)] [(1.000, 0.750),(0.30,0.60,0.50)]

[(0.375, 1.000),(0.30,0.80,0.40)] [(1.000, 0.875),(0.30,0.70,0.50)]

[(1.000, 1.000),(0.30,0.80,0.50)]

Figure: Concept lattice MΠN



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

The whole set of solutions

[(0.375, 0.750),(0.30,0.60,0.40)] [(0.500, 0.625),(0.30,0.50,0.50)]

0.30,0.70,0.40)] [(1.000, 0.750),(0.30,0.60,0.50)]

Figure: Concept lattice MΠN

The set of the predecessors of the greatest solution is

{〈(0.375, 0.750), (0.30, 0.60, 0.40)〉, 〈(0.500, 0.625), (0.30, 0.50, 0.50)〉}
Solutions: ((1.000, 0.750)] \ ((0.375, 0.750)] ∪ ((0.500, 0.625)]

{(1.000, 0.000), (1.000, 0.125), (1.000, 0.250), (1.000, 0.375), (1.000, 0.500),
(1.000, 0.625), (1.000, 0.750), (0.875, 0.000), (0.875, 0.125), (0.875, 0.250),
(0.875, 0.375), (0.875, 0.500), (0.875, 0625), (0.875, 0.750), (0.750, 0.000),
(0.750, 0.125), (0.750, 0.250), (0.750, 0.375), (0.750, 0.500), (0.750, 0.625),
(0.750, 0.750), (0.625, 0.000), (0.625, 0.125), (0.625, 0.250), (0.625, 0.375),
(0.625, 0.500), (0.625, 0.625), (0.625, 0.750), (0.500, 0.750)}



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example with no minimal solution

Frame: ([0, 1]10, [0, 1], [0, 1],&∗G).

〈oh ↖∗G lo, ϑohlo〉
〈oh ↖∗G lw, ϑohlw〉

Universes U = {lo, lw},V = {oh}, W = {1, 2}, and the fuzzy
relations K , D, defined by the matrices:

Table: Relations K and D.

lo lw

1 0.2 0.3
2 0.5 0.7

oh

1 0.1
2 0.1

the equation K �σ R = D can be solved (〈f ↓
N

v , fv 〉 ∈ MΠN(K )).



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

The greatest solution

Therefore, the greatest solution of the equation K �σ R = D,
which is equivalent to the system

0.2 &∗G R(u1, v) ∨ 0.3 &∗G R(u2, v) = 0.1
0.5 &∗G R(u1, v) ∨ 0.7 &∗G R(u2, v) = 0.1

is the fuzzy relation R : U × V → [0, 1], defined by R(u1, v) = 0.1,
R(u2, v) = 0.1, which we can write as R = (0.1, 0.1).

In order to find out the rest of the solutions of the system, we need

to obtain the predecessors of 〈f ↓
N

v , fv 〉 = 〈(0.1, 0.1), (0.1, 0.1)〉.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

The whole set of solutions has not minimal solutions

Pre(〈f ↓Nv , fv 〉) = {〈(0, 0), (0, 0)〉}

Therefore, the complete set of solutions is

SS&(fv ) = (f ↓
N

v ] \
⋃
{(f ↓

N−
v ] | 〈f ↓N−v , f −v 〉 ∈ Pre(〈f ↓Nv , fv 〉)}

= {(x , y) ∈ [0, 1]× [0, 1] | x ≤ 0.1, y ≤ 0.1} \ {(0, 0)}
= [0, 0.1]× [0, 0.1] \ {(0, 0)}

The whole set of solutions is formed by R : U ×V → [0, 1], defined
as R(u1, v) = x , R(u2, v) = y , with
(x , y) ∈ [0, 0.1]× [0, 0.1] \ {(0, 0)}, which clearly has no minimal
elements.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

The abduction problem

The abduction problem considers two subsets of variables,
the observed variables, OV ,
and the hypotheses, H,
and consists in find out the values of the hypotheses in order to
explain the given values of the observed variables.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Solving the abduction problem

Example

We consider as observed variables the propositional symbols:

OV = {nb, oh}

and as hypotheses: H = {rm, lo, lw}.
Hence, we know the weights of the rules and the values of their
heads for an observation ov1, nbi and we need to find out the
values of the propositional symbols in the body of each rule.
Therefore, we must solve the system of multi-adjoint relation
equations:

oh(ovi ) = (lo(oi ) &∗G ϑ
oh
lo) ∨ (lw(wi ) &∗P ϑ

oh
lw) ∨ (rm(ri ) &∗P 0)

nb(nbi ) = (lo(oi ) &∗G ϑ
nb
lo) ∨ (lw(wi ) &∗P 0) ∨ (rm(ri ) &∗P ϑ

nb
rm)

the values of lo(oi ), lw(wi ), rm(ri ) are unknown.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Example abduction reasoning

Frame: ([0, 1]10, [0, 1], [0, 1],&∗G).

〈oh ↙∗G lo, 0, 2〉
〈nb ↙∗G rm, 0.5〉

〈oh ↙∗G lw, 0.3〉
〈nb ↙∗G lo, 0.7〉

Universes U = {ϑlo, ϑlw},V = {1}, W = {oh, nb}, and the fuzzy
relations K , D, defined by the matrices:

Table: Relations K and D.

ϑlo ϑlw
oh 0.2 0.3
nb 0.5 0.7

1

oh 0.1
nb 0.1

the equation K �σ R = D can be solved.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Papers

Jesús Medina and Juan Carlos D́ıaz-Moreno Multi-adjoint relation
equations: Definition, properties and solutions using
concept lattices. Information Sciences, 253:
100–109, 2013.

Jesús Medina and Juan Carlos D́ıaz-Moreno Using concept lattice
theory to obtain the set of solutions of multi-adjoint
relation equations. Information Sciences, 266:
218–225, 2014.

Jesús Medina, Esko Turunen and Juan Carlos D́ıaz-Moreno An
algebraic characterization to compute minimal
solutions of general fuzzy relation equations on linear
carriers. Submitted.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Conclusions and future work

• Multi-adjoint logic programming is a general framework of
fuzzy logic programming.

• Multi-adjoint relation equations are the most flexible relation
equation that can be solved, at the moment.

• Two important problems in fuzzy logic programming have
been considered, find out the weights of the rules of a
multi-adjoint logic program and the abduction problem, which
have been solved using fuzzy relation equations.

• In the future, more problems will be considered. Moreover,
the comparison of other mechanism to solve the adductive
reasoning will be studied.



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

Cornejo ME, Medina J, Raḿırez-Poussa E (2013) A
comparative study of adjoint triples. Fuzzy Sets and Systems
211:1–14, DOI 10.1016/j.fss.2012.05.004

D́ıaz JC, Medina J (2013) Multi-adjoint relation equations:
Definition, properties and solutions using concept lattices.
Information Sciences 253:100–109

Medina J, Ojeda-Aciego M, Vojtáš P (2001) Multi-adjoint
logic programming with continuous semantics. In: Logic
Programming and Non-Monotonic Reasoning, LPNMR’01,
Lecture Notes in Artificial Intelligence 2173, pp 351–364

Medina J, Ojeda-Aciego M, Valverde A, Vojtáš P (2004)
Towards biresiduated multi-adjoint logic programming. Lecture
Notes in Artificial Intelligence 3040:608–617



Introduction Adjoint triples Multi-adjoint logic programming Computing the weights Solving abduction problem Conclusions

THANK YOU FOR YOUR ATTENTION

Jesús Medina Moreno

Departamento 
de Matemáticas

Department of Mathematics
University of Cádiz, Spain
jesus.medina@uca.es

A Coruña, February 24th 2015


	Introduction
	

	Adjoint triples
	Adjoint triples
	Examples

	Multi-adjoint logic programming
	Introduction
	Multi-adjoint logic programming
	Language
	Multi-adjoint logic program
	Example: behavior of a motor

	Computing the weights of the rules of M.A.L. programs
	Multi-adjoint relation equations
	Computing the complete set of solutions

	Solving the abduction problem
	The abduction problem

	Conclusions and future work

