Causal Graph Justifications of Stable Models

Jorge Fandinno¹

Joint work with: Pedro Cabalar¹ and Michael Fink²

1- University of Corunna, SPAIN

2- Vienna University of Technology, AUSTRIA

Logical Reasoning and computation Corunna, Spain

February 24th, 2015

E N 4 E N

Causality and Knowledge Representation

- For Knowledge Representation, not just deriving conclusions but sometimes we require explanations
- Causality: is a quite common concept in human daily discourse. Present in (chronologically or physically) distant cultures.
- What "A has caused B" actually means?

E N 4 E N

Causality and Knowledge Representation

- For Knowledge Representation, not just deriving conclusions but sometimes we require explanations
- Causality: is a quite common concept in human daily discourse. Present in (chronologically or physically) distant cultures.
- What "A has caused B" actually means?
 - Sufficient cause
 - Necessary cause
 - Actual or contributory cause

Joint interaction

Example

- There is a law asserts that *driving drunk* is *punishable*.
- Suppose that some person drove drunk.

Take the logic program consisting of one rule and two labelled facts

 $\textit{punish} \leftarrow \textit{drive}, \textit{drunk} \qquad d: \textit{drive} \qquad k: \textit{drunk}$

Joint interaction of multiple events.
 The cause formed by "{d, k} together has caused punish".

EN 4 EN

Joint interaction

Example

- There is a law asserts that *driving drunk* is *punishable*.
- Suppose that some person drove drunk.

Take the logic program consisting of one rule and two labelled facts

 $\textit{punish} \leftarrow \textit{drive}, \textit{drunk} \qquad \texttt{d}:\textit{drive} \qquad \texttt{k}:\textit{drunk}$

- Joint interaction of multiple events.
 The cause formed by "{d, k} together has caused punish".
- Two kinds of causal rules:
 - Unlabelled rules: tracing them is irrelevant for causal purposes.
 - Labelled rules: keep track of possible ways to derive an effect.

- 3

Labels

• We may want to keep track of involved rules and not only facts:

Example

- Law *l* asserts that *driving drunk* is *punishable* with imprisonment.
- The execution e of a sentence establishes that people who are *punished* are *imprisoned*.
- Suppose that some person drove drunk.
 - $\boldsymbol{\ell}: \textit{punish} \leftarrow \textit{drive}, \textit{drunk} \qquad \texttt{d}: \textit{drive} \qquad \texttt{k}: \textit{drunk}$

e : prison \leftarrow punish

We get a cause in the form of a label graph

E N 4 E N

- Multi-valued semantics for logic programs: each true atom will be associated to a set of justifications (causal graphs)
- Accordingly, falsity = lack of justification.
 - This coincides with the informal reading for default negation: not p = there is no way to derive p

- Multi-valued semantics for logic programs: each true atom will be associated to a set of justifications (causal graphs)
- Accordingly, falsity = lack of justification.
 - This coincides with the informal reading for default negation: not p = there is no way to derive p
- Causes must be non-redundant.
 - Some causes will be stronger than others.
 - This allows us defining a lattice and algebraic operations
 + (alternative causes), * (joint causation) and · (rule application).

- Multi-valued semantics for logic programs: each true atom will be associated to a set of justifications (causal graphs)
- Accordingly, falsity = lack of justification.
 - This coincides with the informal reading for default negation: not p = there is no way to derive p
- Causes must be non-redundant.
 - Some causes will be stronger than others.
 - This allows us defining a lattice and algebraic operations
 + (alternative causes), * (joint causation) and · (rule application).
- Important result: semantically obtained causal values correspond to (non-redundant) syntactic proofs using the program rules!

A D N A B N A B N A B N

Outline

2 Causes as graphs

- 3 Positive programs
- 4 Default negation
- 5 Queries about causality
- Conclusions and future work

.1	Far	ndii	nno

The Sec. 74

< 17 ▶

Definition

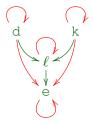
A causal graph G is a transitively and reflexively closed graph of labels.

< ロ > < 同 > < 回 > < 回 >

Definition

A causal graph G is a transitively and reflexively closed graph of labels.

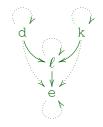
In our example, we would actually have



Definition

A causal graph G is a transitively and reflexively closed graph of labels.

In our example, we would actually have



- G* is the transitive and reflexive closure of G
- Product $G * G' \stackrel{def}{=} (G \cup G')^*$
- Application $G \cdot G' \stackrel{\text{def}}{=}$ graph with vertices $V \cup V'$ and edges $E \cup E' \cup \{ (x, y) \mid x \in V, y \in V' \}$
- Atomic graphs ℓ stands for $\langle \{\ell\}, \{(\ell, \ell)\} \rangle$

- G* is the transitive and reflexive closure of G
- Product $G * G' \stackrel{def}{=} (G \cup G')^*$
- Application $G \cdot G' \stackrel{\text{def}}{=}$ graph with vertices $V \cup V'$ and edges $E \cup E' \cup \{ (x, y) \mid x \in V, y \in V' \}$
- Atomic graphs ℓ stands for $\langle \{\ell\}, \{(\ell, \ell)\} \rangle$
- Any causal graph can be built from product, application and atomic graphs. Example:

$$d k$$

$$\downarrow$$

$$e$$

$$(d * k) \cdot \ell \cdot e$$

Definition

A causal graph *G* is sufficient for (or weaker than) another causal graph *G'*, written $G \leq G'$, when $G \supseteq G'$.

 Notice that direction is switched: the smaller the graph, the stronger the cause!

E 5 4 E 5

Definition

A causal graph *G* is sufficient for (or weaker than) another causal graph *G'*, written $G \leq G'$, when $G \supseteq G'$.

- Notice that direction is switched: the smaller the graph, the stronger the cause!
- The empty graph $\langle \emptyset, \emptyset \rangle$ is the top element, denoted by 1.
 - ► stands for absolute truth, and assigned to T.
 - ▶ 1 is the * product and · application identity t * 1 = t and $t \cdot 1 = 1 \cdot t = t$

4 10 1 4 10 1

Definition

A causal graph *G* is sufficient for (or weaker than) another causal graph *G'*, written $G \leq G'$, when $G \supseteq G'$.

- Notice that direction is switched: the smaller the graph, the stronger the cause!
- The empty graph $\langle \emptyset, \emptyset \rangle$ is the top element, denoted by 1.
 - \blacktriangleright stands for absolute truth, and assigned to $\top.$
 - ▶ 1 is the * product and · application identity t * 1 = t and $t \cdot 1 = 1 \cdot t = t$
- We add a bottom element 0,
 - weaker than any causal graph 0 < G for all G,
 - stands for false,
 - 0 is the * and · application annihilator t * 0 = 0 and $t \cdot 0 = 0 \cdot t = 0$

Outline

2 Causes as graphs

- 3 Positive programs
- 4 Default negation
- 5 Queries about causality
- Conclusions and future work

J. Fandinno	
-------------	--

The Sec. 74

Positive programs

• Syntax: as usual plus an (optional) rule label

 $t: H \leftarrow B_1, \ldots, B_n$

with *H*, *B_i* atoms and *t* can be a label $t = \ell$ or t = 1.

3

Positive programs

• Syntax: as usual plus an (optional) rule label

 $t: H \leftarrow B_1, \ldots, B_n$

with *H*, *B_i* atoms and *t* can be a label $t = \ell$ or t = 1.

Definition (Causal model)

A causal model of P is an interpretation such that, for each rule:

 $(\mathcal{I}(B_1) * \ldots * \mathcal{I}(B_n)) \cdot t \leq \mathcal{I}(H)$

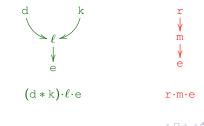
Alternative causes (symmetrical overdetermination)

Example

- A second law *m* specifies that *resisting* to authority is *punishable*.
- Suppose that some person drove drunk and resisted to authority.

ℓ : punish \leftarrow drive, drunk	d : <i>drive</i>	k : drunk
$e: \textit{prison} \leftarrow \textit{punish}$	m : <i>punish ← resist</i>	r : <i>resist</i>

• Two equally valid alternative causes

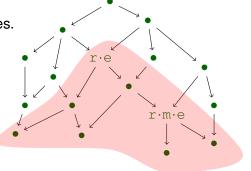


Alternative causes: Addition

• addition (+) represents alternative causes

 $\mathcal{I}(punish) = (d * k) \cdot \ell + r \cdot m \cdot e$

- Causal values are ideals of causal graphs. (+) corresponds to the union (∪) of ideals.
- Disregard redundant causes.



Theorem

 $\langle V_{Lb}, +, *, \cdot \rangle$ is the free algebra generated by labels Lb. Operations * and + are the meet and join of a completely distributive lattice.

Associativity	Commutativity	Absorption
t + (u+w) = (t+u) + w	t+u = u+t	t = t + (t * u)
t * (u * w) = (t * u) * w	t * u = u * t	t = t * (t+u)
Distributive	Identity	Annihilator
t + (u * w) = (t+u) * (t+w)		1 = 1 + t
t * (u+w) = (t * u) + (t * w)	t = t * 1	0 = 0 * t

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Alternative causes

• More specigic are the (.) application equations

Associativ	/ity	Additio	n distril	butivity
$t \cdot (u \cdot w) =$	$(t \cdot u) \cdot w$			$(t \cdot u) + (t \cdot w)$
		$(t + u) \cdot w$	= ($(t \cdot w) + (u \cdot w)$
Identity	Annihilator		Abs	orption
$t = t \cdot 1$	$0 = t \cdot$	0 t	=	$t + u \cdot t \cdot w$
$t = 1 \cdot t$	$0 = 0 \cdot$	t u·t·	w =	$t * u \cdot t \cdot w$

I is a label, c, d and e terms without (+)

Positive programs

Definition (Direct consequences)

$$T_{\mathcal{P}}(\mathcal{I})(p) \stackrel{\text{def}}{=} \sum \left\{ \left(\mathcal{I}(B_1) * \ldots * \mathcal{I}(B_n) \right) \cdot t \mid (t : p \leftarrow B_1, \ldots, B_n) \in P \right\}$$

Theorem (Analogous to standard LP)

Let P be a (possibly infinite) positive logic program with n causal rules.

- (i) $lfp(T_P)$ is the least model of P,
- (ii) If $p(T_P) = T_P \uparrow {}^{\omega}$ (**0**), and

(iii) iteration ends in finite steps when P is finite $lfp(T_P) = T_P \uparrow^n(\mathbf{0})$.

Theorem

Removing all labels we get the traditional (two-valued) least model.

J. Fandinno

```
\mathcal{I}(prison) = (d * k) \cdot \ell \cdot e + r \cdot m \cdot e
```

• If we remove all labels, then it corresponds to the standard least model.

 $\mathcal{I}(prison) = 1$

- A TE N - A TE N

```
\mathcal{I}(prison) = (d * k) \cdot \ell \cdot e + r \cdot m \cdot e
```

• If we remove all labels, then it corresponds to the standard least model.

 $\mathcal{I}(prison) = 1$

• Each subterm with no sums is a cause. But what do causal values really capture?

A B b 4 B b

```
\mathcal{I}(prison) = (d * k) \cdot \ell \cdot e + r \cdot m \cdot e
```

• If we remove all labels, then it corresponds to the standard least model.

```
\mathcal{I}(prison) = 1
```

- Each subterm with no sums is a cause. But what do causal values really capture?
 - syntactic proofs?

A B b 4 B b

```
\mathcal{I}(prison) = (d * k) \cdot \ell \cdot e + r \cdot m \cdot e
```

• If we remove all labels, then it corresponds to the standard least model.

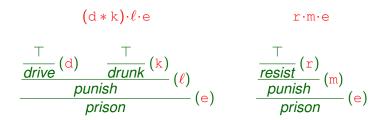
```
\mathcal{I}(prison) = 1
```

- Each subterm with no sums is a cause. But what do causal values really capture?
 - syntactic proofs?
 - some proofs? all proofs?
- Notice we have not used syntactic information!

- A TE N - A TE N

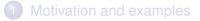
Theorem

The causal value of an atom in the least model exactly corresponds to all its possible (non-redundant) proofs.



A B b 4 B b

Outline



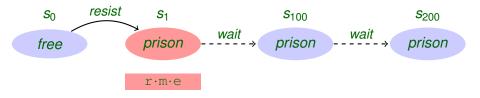
- 2 Causes as graphs
- 3 Positive programs
- Default negation
- 5 Queries about causality
- Conclusions and future work

.1	Far	ndii	nno

3 > 4 3

- Negation will be used for representing defaults.
 - Inertia laws are an example of dynamic defaults.

- Negation will be used for representing defaults.
 - Inertia laws are an example of dynamic defaults.
 - Suppose now that we add time to our running example and we are imprisoned by *resist* at situation s₁, then

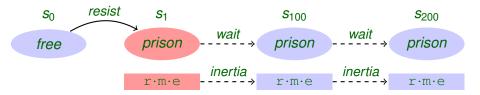


Inertia law

 $prison(T+1) \leftarrow prison(T), not free(T+1)$

4 3 5 4 3

- Negation will be used for representing defaults.
 - Inertia laws are an example of dynamic defaults.
 - Suppose now that we add time to our running example and we are imprisoned by *resist* at situation s₁, then

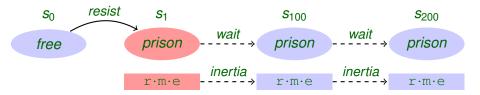


Inertia law

 $prison(T+1) \leftarrow prison(T), not free(T+1)$

4 3 5 4 3

- Negation will be used for representing defaults.
 - Inertia laws are an example of dynamic defaults.
 - Suppose now that we add time to our running example and we are imprisoned by *resist* at situation s₁, then



Inertia law

$prison(T+1) \leftarrow prison(T), not free(T+1)$

 Causal values persist by inertia. We disregard explanations for not being free along that period!

< ロ > < 同 > < 回 > < 回 >

- not free(T + 1) is the default (or expected) behaviour
 - if this happens, no cause is propagated (*not free*(T+1) becomes 1).

3

- not free(T + 1) is the default (or expected) behaviour
 - if this happens, no cause is propagated (*not free*(T+1) becomes 1).
- Program reduct. Static default: punished people normally goes to prison
 - ℓ : punish \leftarrow drive, drunk
 - $m: punish \leftarrow resist$
 - e: prison \leftarrow punish, not abnormal r: resist
- drive d: k: drunk

- not free(T + 1) is the default (or expected) behaviour
 - if this happens, no cause is propagated (not free(T+1) becomes 1).
- Program reduct. Static default: punished people normally goes to prison

ℓ :	$punish \leftarrow drive, drunk$	d :	drive
m :	$punish \leftarrow resist$	k :	drunk
e :	prison ← punish, <mark>not abnormal</mark>	r :	resist

- If we assume $\mathcal{I}(abnormal) = 0$ (false).
 - ℓ : punish \leftarrow drive, drunk d: drive
 - $m: punish \leftarrow resist$
 - e: prison \leftarrow punish, not abnormal

- k: drunk
- r : *resist*

we can flexibly add exceptions

abnormal ← pardon abnormal ← revoke abnormal ← diplomat

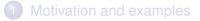
• If we assume to be a *diplomat*, then $\mathcal{I}(abnormal) = 1$ (true).

ℓ :	$punish \leftarrow drive, drunk$	d:	drive
m :	$punish \leftarrow resist$	k :	drunk
—е:	_prison ← punish, not abnormal	r:	resist

Theorem

For each (standard) two-valued stable model there is (exactly one) corresponding causal stable model and vice versa.

Outline



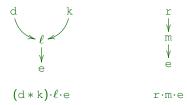
- 2 Causes as graphs
- 3 Positive programs
- 4 Default negation
- 5 Queries about causality
 - Conclusions and future work

.1	Far	ndir	าทอ
υ.	i ui	iun	

The Sec. 74

• Why are we in prison?

► sufficient(X, prison)?, X should be a minimimal explanation

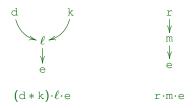


J. Fandinno	
-------------	--

3 → 4 3

• Why are we in prison?

► sufficient(X, prison)?, X should be a minimimal explanation



- Was d * k * chew sufficient to cause it?
- sufficient(d * k * chew, prison) should holds, despite of lack of minimality

1	Fai	ndi	nn	^
υ.	ı aı	iui		U

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Given a causal graph G
 - *G* is a sufficient explanation for *p* iff $G \leq I(p)$
 - ► G is a sufficient cause for p iff G is a subgraph-minimal sufficient explation for p

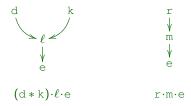
- Given a causal graph G
 - *G* is a sufficient explanation for *p* iff $G \leq I(p)$
 - ► *G* is a sufficient cause for *p* iff *G* is a subgraph-minimal sufficient explation for *p*
- Complexity (complete results)

	positive	well	answer set	
		founded	(brave)	(cautions)
entailment	Р	Р	NP	coNP
explanation	P	Р	NP	coNP
cause	Р	Р	NP	coNP

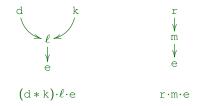
same complexity than entailment in standard LP

4 3 5 4 3 5

- Why are we in prison?
 - What has been necessary to cause it?

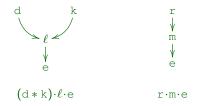


- Why are we in prison?
 - What has been necessary to cause it?



Only the rule e has been necessary.

- Why are we in prison?
 - What has been necessary to cause it?



- Only the rule *e* has been necessary.
- Suppose we do not resit. Then *drive* and *drunk* would have been necessary causes.
- Suppose we were not drunk. Then *resit* would have been a necessary cause.

4 3 5 4 3 5

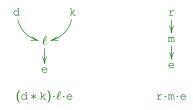
- Given a causal graph G
 - G is a necessary cause for p iff G subgraph of all sufficient causes for p and l(p) ≠ 0
 - *G* is a necessary cause for *p* iff $G \ge I(p)$ and $I(p) \ne 0$
- Complexity (complete results)

	positive	well	answer set	
		founded	(brave)	(cautions)
entailment	Р	Р	NP	coNP
necessary	coNP	coNP	Σ_2^P	coNP

- A TE N - A TE N

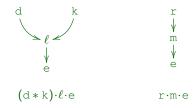
Actual and Contributory Cause

- Why are we in prison?
 - Actual Cause \approx contingency necessary cause.
 - ► There exists a possible world where *G* is a necessary cause [Pearl 2000, Halpern & Pearl 2001 and 2005].



Actual and Contributory Cause

- Why are we in prison?
 - Actual Cause \approx contingency necessary cause.
 - ► There exists a possible world where *G* is a necessary cause [Pearl 2000, Halpern & Pearl 2001 and 2005].



 Contributory cause: Necessary condition in a sufficient cause [Mackie 1965, Wright 1988]

A B F A B F

Actual and Contributory Cause

- Given a causal graph G
 - G is a actual cause for p iff there exists a sufficient cause G' for p such that G ⊆ G'
- Complexity

	positive	well	answe	r set
		founded	(brave)	(cautions)
entailment	Р	Р	NP	coNP
actual	\leq NP	\leq NP	\leq NP	$\leq \Pi_2^P$
HP 2001		NP	/ Σ ^P ₂	
HP 2005		Ľ	$\mathbf{D}_2^{\mathrm{P}}$	

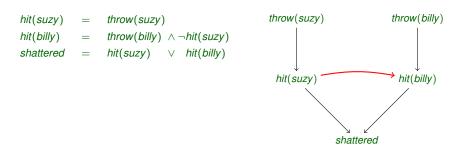
[Eiter & Lukasiewicz 2001, Aleksandrowicz et. al. 2014]

$$\Sigma_2^{\mathrm{P}} \leq \mathrm{D}_2^{\mathrm{P}} \leq \Delta_3^{\mathrm{P}} \leq \Sigma_3^{\mathrm{P}} \\ \Gamma_2^{\mathrm{P}} < \mathrm{D}_2^{\mathrm{P}} < \Delta_2^{\mathrm{P}} < \Pi_2^{\mathrm{P}}$$

(4) (3) (4) (4) (4)

Example (Lewis2000)

Suzy throws a rock at a bottle. The rock hits the bottle, shattering it. Suzy's friend Billy throws a rock at the bottle a couple of seconds later. Who has caused the bottle to shattered?



 Actual Cause in structural equations [Halpern&Pearl2005, Hall2007, Halpern2008, Halpern2014]

Suppose that John has also thrown after Billy.

hit(suzy)	=	throw(suzy)
hit(billy)	=	throw(billy) $\land \neg$ hit(suzy)
hit(john)	=	<i>throw(john)</i> $\land \neg$ <i>hit(suzy)</i> $\land \neg$ <i>hit(billy)</i>
shattered	=	$hit(suzy) \lor hit(billy) \lor hit(john)$

A B F A B F

Suppose that John has also thrown after Billy.

hit(suzy)	=	throw(suzy)
hit(billy)	=	throw(billy) $\land \neg$ hit(suzy)
hit(john)	=	<i>throw(john)</i> $\land \neg$ <i>hit(suzy)</i> $\land \neg$ <i>hit(billy)</i>
shattered	=	<i>hit(suzy)</i> \lor <i>hit(billy)</i> \lor <i>hit(john)</i>

• Change: John has thrown before Suzy.

A B F A B F

Suppose that John has also thrown after Billy.

hit(suzy)	=	throw(suzy)
hit(billy)	=	throw(billy) $\land \neg$ hit(suzy)
hit(john)	=	<i>throw(john)</i> $\land \neg$ <i>hit(suzy)</i> $\land \neg$ <i>hit(billy)</i>
shattered	=	<i>hit(suzy)</i> \lor <i>hit(billy)</i> \lor <i>hit(john)</i>

• Change: John has thrown before Suzy.

hit(suzy)	=	throw(suzy) ∧ ¬hit(john)
hit(billy)	=	throw(billy) $\land \neg hit(suzy) \land \neg hit(john)$
hit(john)	=	throw(john)
shattered	=	$hit(suzy) \lor hit(billy) \lor hit(john)$

A B F A B F

Suppose that John has also thrown after Billy.

hit(suzy)	=	throw(suzy)
hit(billy)	=	throw(billy) $\land \neg$ hit(suzy)
hit(john)	=	<i>throw(john)</i> $\land \neg$ <i>hit(suzy)</i> $\land \neg$ <i>hit(billy)</i>
shattered	=	$hit(suzy) \lor hit(billy) \lor hit(john)$

• Change: John has thrown before Suzy.

hit(suzy)	=	throw(suzy) ∧ ¬hit(john)
hit(billy)	=	throw(billy) $\land \neg$ hit(suzy) $\land \neg$ hit(john)
hit(john)	=	throw(john)
shattered	=	<i>hit(suzy)</i> \lor <i>hit(billy)</i> \lor <i>hit(john)</i>

 Small changes implies revise the entire model. Problem of tolerance to the elaboration [McCarthy1998]

Example (Lewis2000)

Suzy throws a rock at a bottle. The rock hits the bottle, shattering it. Suzy's friend Billy throws a rock at the bottle a couple of seconds later. Who has caused the bottle to shattered?

> shattered $(T + 1) \leftarrow throws(X, T)$, not shattered(T)throw(suzy, 2) throw(billy, 4)

< 日 > < 同 > < 回 > < 回 > < □ > <

Example (Lewis2000)

Suzy throws a rock at a bottle. The rock hits the bottle, shattering it. Suzy's friend Billy throws a rock at the bottle a couple of seconds later. Who has caused the bottle to shattered?

> $shattered(T + 1) \leftarrow throws(X, T), not shattered(T)$ throw(suzy, 2)throw(billy, 4)

Inertia axiom

 $shattered(T+1) \leftarrow shattered(T)$

• We may conclude that the bottle is *shattered* at 3, but not who caused it.

 r_1 : shattered(T + 1) \leftarrow throws(X, T), not shattered(T) suzy : throw(suzy, 2) billy : throw(billy, 4)

 r_1 : shattered(T + 1) \leftarrow throws(X, T), not shattered(T) suzy : throw(suzy, 2) billy : throw(billy, 4)

• We may conclude that the bottle is *shattered* at 3 because

suzy \downarrow r_1 $suzy \cdot r_1$

• Note that rule r_1 for T = 4 is not in the reduct of the program

J. Fandinno	J.	Far	ndir	nno
-------------	----	-----	------	-----

- Multi-valued semantics based on (ideals of) causal graphs
- Values capture non-redundant proofs, but with semantic, algebraic operations
- Default negation = absence of cause.
 - Reduct definition allows defining causal stable models
 - Allows expressing dynamic defaults (ex: inertia laws)
- Ongoing work:
 - Studding actual causation.
 - Adding this causal operators on rule bodies.

4 3 5 4 3 5

Causal Graph Justifications of Stable Models Jorge Fandinno

Thanks for your attention!

Logical Reasoning and computation Corunna, Spain

February 24th, 2015

The Sec. 74