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Causality and Knowledge Representation

For Knowledge Representation, not just deriving conclusions but
sometimes we require explanations

Causality: is a quite common concept in human daily discourse.
Present in (chronologically or physically) distant cultures.

What “A has caused B” actually means?

I Sufficient cause
I Necessary cause
I Actual or contributory cause
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Joint interaction

Example

There is a law asserts that driving drunk is punishable.

Suppose that some person drove drunk.

Take the logic program consisting of one rule and two labelled facts

punish ← drive, drunk d : drive k : drunk

Joint interaction of multiple events.
The cause formed by “{d,k} together has caused punish”.

Two kinds of causal rules:
I Unlabelled rules: tracing them is irrelevant for causal purposes.
I Labelled rules: keep track of possible ways to derive an effect.

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 3 / 35



Joint interaction

Example

There is a law asserts that driving drunk is punishable.

Suppose that some person drove drunk.

Take the logic program consisting of one rule and two labelled facts

punish ← drive, drunk d : drive k : drunk

Joint interaction of multiple events.
The cause formed by “{d,k} together has caused punish”.

Two kinds of causal rules:
I Unlabelled rules: tracing them is irrelevant for causal purposes.
I Labelled rules: keep track of possible ways to derive an effect.

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 3 / 35



Labels

We may want to keep track of involved rules and not only facts:

Example

Law ` asserts that driving drunk is punishable with imprisonment.

The execution e of a sentence establishes that people who are punished
are imprisoned .

Suppose that some person drove drunk.
` : punish← drive, drunk d : drive k : drunk

e : prison ← punish

We get a cause in the form of a label graph
d
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e
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Main ideas

Multi-valued semantics for logic programs: each true atom will be
associated to a set of justifications (causal graphs)

Accordingly, falsity = lack of justification.
I This coincides with the informal reading for default negation:

not p = there is no way to derive p

Causes must be non-redundant.
I Some causes will be stronger than others.
I This allows us defining a lattice and algebraic operations

+ (alternative causes), ∗ (joint causation) and · (rule application).

Important result: semantically obtained causal values correspond
to (non-redundant) syntactic proofs using the program rules!
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Outline

1 Motivation and examples

2 Causes as graphs

3 Positive programs

4 Default negation

5 Queries about causality

6 Conclusions and future work
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Causal Graphs

Definition
A causal graph G is a transitively and reflexively closed graph of labels.

In our example, we would actually have

d

**

��

��

k

tt

��

��

`

��

��

e YY

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 7 / 35



Causal Graphs

Definition
A causal graph G is a transitively and reflexively closed graph of labels.

In our example, we would actually have

d

**

��

��

k

tt

��

��

`

��

��

e YY

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 7 / 35



Causal Graphs

Definition
A causal graph G is a transitively and reflexively closed graph of labels.

In our example, we would actually have

d

**

��

��

k

tt

��

��

`

��

��

e YY

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 7 / 35



Causal Graphs

G∗ is the transitive and reflexive closure of G

Product G ∗G′ def
= (G ∪G′)∗

Application G ·G′ def
= graph with vertices V ∪ V ′ and edges

E ∪ E ′ ∪ { (x , y) | x ∈ V , y ∈ V ′ }

Atomic graphs ` stands for 〈{`}, {(`, `)} 〉 `
��

Any causal graph can be built from product, application and
atomic graphs. Example: d

**

k

tt`

��
e

(d ∗ k)·`·e
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Causal Graphs

Definition
A causal graph G is sufficient for (or weaker than) another causal
graph G′, written G ≤ G′, when G ⊇ G′.

Notice that direction is switched: the smaller the graph, the
stronger the cause!

The empty graph 〈∅, ∅〉 is the top element, denoted by 1.
I stands for absolute truth, and assigned to >.
I 1 is the ∗ product and · application identity t ∗ 1 = t and t ·1 = 1·t = t

We add a bottom element 0,
I weaker than any causal graph 0 < G for all G,
I stands for false,
I 0 is the ∗ and · application annihilator t ∗ 0 = 0 and t ·0 = 0·t = 0
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Positive programs

Syntax: as usual plus an (optional) rule label

t : H ← B1, . . . ,Bn

with H, Bi atoms and t can be a label t = ` or t = 1.

Definition (Causal model)
A causal model of P is an interpretation such that, for each rule:(

I(B1) ∗ . . . ∗ I(Bn)
)
· t ≤ I(H)
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Alternative causes (symmetrical overdetermination)

Example

A second law m specifies that resisting to authority is punishable.

Suppose that some person drove drunk and resisted to authority.

` : punish← drive, drunk d : drive k : drunk

e : prison ← punish m : punish← resist r : resist

Two equally valid alternative causes
d

**

k

tt`

��
e

r

��
m

��
e

(d ∗ k)·`·e r·m·e
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Alternative causes: Addition

addition (+) represents alternative causes

I( punish ) = (d ∗ k)·` + r·m·e

Causal values are ideals of causal graphs. (+) corresponds
to the union (∪) of ideals.

Disregard redundant causes.

•

• •

•
• r·e • •

• •
•

r·m·e •

• •
• •
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Alternative causes

Theorem

〈VLb,+, ∗, ·〉 is the free algebra generated by labels Lb. Operations ∗
and + are the meet and join of a completely distributive lattice.

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity
t = t + 0
t = t ∗ 1

Annihilator
1 = 1 + t
0 = 0 ∗ t
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Alternative causes

More specigic are the (·) application equations

Associativity
t · (u·w) = (t ·u) · w

Addition distributivity
t · (u+w) = (t ·u) + (t ·w)
(t + u) · w = (t ·w) + (u·w)

Identity
t = t · 1
t = 1 · t

Annihilator
0 = t · 0
0 = 0 · t

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

l is a label, c, d and e terms without (+)

Label idempotence
` · ` = `

Product distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Transitivity
c · d · e = (c · d) ∗ (d · e) with d 6= 1
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Positive programs

Definition (Direct consequences)

TP(I)(p)
def
=
∑{ (

I(B1) ∗ . . . ∗ I(Bn)
)
· t | (t : p ← B1, . . . ,Bn) ∈ P

}

Theorem (Analogous to standard LP)
Let P be a (possibly infinite) positive logic program with n causal rules.
(i) lfp(TP) is the least model of P,
(ii) lfp(TP) = TP ↑ ω (0), and
(iii) iteration ends in finite steps when P is finite lfp(TP) = TP ↑ n (0).

Theorem
Removing all labels we get the traditional (two-valued) least model.
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Positive programs

Positive programs have a least model.

I( prison ) = (d ∗ k)·`·e + r·m·e

If we remove all labels, then it corresponds to the standard least
model.

I( prison ) = 1

Each subterm with no sums is a cause. But what do causal values
really capture?

I syntactic proofs?
I some proofs? all proofs?

Notice we have not used syntactic information!
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Positive programs

Theorem
The causal value of an atom in the least model exactly corresponds to
all its possible (non-redundant) proofs.

(d ∗ k)·`·e

>
drive

(d)
>

drunk
(k)

punish
(`)

prison
(e)

r·m·e

>
resist

(r)

punish
(m)

prison
(e)
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4 Default negation
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Default negation

Negation will be used for representing defaults.
I Inertia laws are an example of dynamic defaults.

I Suppose now that we add time to our running example and
we are imprisoned by resist at situation s1, then

free prison

s0 s1

r·m·e

resist

prison prison

s100 s200

wait wait

r·m·e r·m·einertia inertia

Inertia law

prison(T + 1) ← prison(T ), not free(T + 1)

Causal values persist by inertia. We disregard explanations for
not being free along that period!
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Default negation

not free(T + 1) is the default (or expected) behaviour
I if this happens, no cause is propagated (not free(T +1) becomes 1).

Program reduct.
Static default: punished people normally goes to prison

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish, not abnormal r : resist

If we assume I( abnormal ) = 0 (false).

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish,((((((hhhhhhnot abnormal r : resist

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 21 / 35



Default negation

not free(T + 1) is the default (or expected) behaviour
I if this happens, no cause is propagated (not free(T +1) becomes 1).

Program reduct.
Static default: punished people normally goes to prison

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish, not abnormal r : resist

If we assume I( abnormal ) = 0 (false).

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish,((((((hhhhhhnot abnormal r : resist

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 21 / 35



Default negation

not free(T + 1) is the default (or expected) behaviour
I if this happens, no cause is propagated (not free(T +1) becomes 1).

Program reduct.
Static default: punished people normally goes to prison

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish, not abnormal r : resist

If we assume I( abnormal ) = 0 (false).

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish,((((((hhhhhhnot abnormal r : resist

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 21 / 35



Default negation

we can flexibly add exceptions

abnormal ← pardon
abnormal ← revoke
abnormal ← diplomat

If we assume to be a diplomat, then I( abnormal ) = 1 (true).

` : punish← drive, drunk d : drive
m : punish← resist k : drunk
e : prison← punish, not abnormal r : resist

Theorem
For each (standard) two-valued stable model there is (exactly one)
corresponding causal stable model and vice versa.
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Sufficient Cause

Why are we in prison?
I sufficient(X ,prison)?, X should be a minimimal explanation

d

**

k

tt`

��
e

r

��
m

��
e

(d ∗ k)·`·e r·m·e

I Was d ∗ k ∗ chew sufficient to cause it?
I sufficient(d ∗ k ∗ chew ,prison) should holds, despite of lack of

minimality
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Sufficient Cause

Given a causal graph G
I G is a sufficient explanation for p iff G ≤ I(p)

I G is a sufficient cause for p iff G is a subgraph-minimal sufficient
explation for p

Complexity (complete results)
positive well answer set

founded (brave) (cautions)
entailment P P NP coNP
explanation P P NP coNP

cause P P NP coNP

I same complexity than entailment in standard LP
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Necessary Cause

Why are we in prison?
I What has been necessary to cause it?

d

**

k

tt`

��
e

r

��
m

��
e

(d ∗ k)·`·e r·m·e

I Only the rule e has been necessary.

I Suppose we do not resit. Then drive and drunk would have been
necessary causes.

I Suppose we were not drunk. Then resit would have been a
necessary cause.
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Necessary Cause

Given a causal graph G
I G is a necessary cause for p iff G subgraph of all sufficient causes

for p and I(p) 6= 0

I G is a necessary cause for p iff G ≥ I(p) and I(p) 6= 0

Complexity (complete results)
positive well answer set

founded (brave) (cautions)
entailment P P NP coNP
necessary coNP coNP ΣP

2 coNP
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Actual and Contributory Cause

Why are we in prison?
I Actual Cause ≈ contingency necessary cause.

I There exists a possible world where G is a necessary cause [Pearl
2000, Halpern & Pearl 2001 and 2005].
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(d ∗ k)·`·e r·m·e

I Contributory cause: Necessary condition in a sufficient cause
[Mackie 1965, Wright 1988]
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Actual and Contributory Cause

Given a causal graph G
I G is a actual cause for p iff there exists a sufficient cause G′ for p

such that G ⊆ G′

Complexity
positive well answer set

founded (brave) (cautions)
entailment P P NP coNP

actual ≤ NP ≤ NP ≤ NP ≤ ΠP
2

HP 2001 NP / ΣP
2

HP 2005 DP
2

I [Eiter & Lukasiewicz 2001, Aleksandrowicz et. al. 2014]
I ΣP

2 ≤ DP
2 ≤ ∆P

3 ≤ ΣP
3

I ΠP
2 ≤ DP

2 ≤ ∆P
3 ≤ ΠP

3
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Causality and Knowledge Representation

Example (Lewis2000)
Suzy throws a rock at a bottle. The rock hits the bottle, shattering it.
Suzy’s friend Billy throws a rock at the bottle a couple of seconds later.
Who has caused the bottle to shattered?

hit(suzy) = throw(suzy)

hit(billy) = throw(billy) ∧ ¬hit(suzy)

shattered = hit(suzy) ∨ hit(billy)

throw(suzy) throw(billy)

hit(suzy) hit(billy)

shattered

I Actual Cause in structural equations [Halpern&Pearl2005,
Hall2007, Halpern2008, Halpern2014]

J. Fandinno ( 1- University of Corunna, SPAIN[5pt] 2- Vienna University of Technology, AUSTRIA [15pt] Logical Reasoning and computationCorunna, Spain )Causal stable models February 24th, 2015 30 / 35



Causality and Knowledge Representation

Suppose that John has also thrown after Billy.

hit(suzy) = throw(suzy)

hit(billy) = throw(billy) ∧ ¬hit(suzy)

hit(john) = throw(john) ∧ ¬hit(suzy) ∧ ¬hit(billy)

shattered = hit(suzy) ∨ hit(billy) ∨ hit(john)

Change: John has thrown before Suzy.

hit(suzy) = throw(suzy) ∧ ¬hit(john)

hit(billy) = throw(billy) ∧ ¬hit(suzy) ∧ ¬hit(john)

hit(john) = throw(john)

shattered = hit(suzy) ∨ hit(billy) ∨ hit(john)

Small changes implies revise the entire model. Problem of
tolerance to the elaboration [McCarthy1998]
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Causality and Knowledge Representation

Example (Lewis2000)
Suzy throws a rock at a bottle. The rock hits the bottle, shattering it.
Suzy’s friend Billy throws a rock at the bottle a couple of seconds later.
Who has caused the bottle to shattered?

shattered(T + 1)← throws(X ,T ), not shattered(T )

throw(suzy ,2)

throw(billy ,4)

Inertia axiom

shattered(T + 1)← shattered(T )

We may conclude that the bottle is shattered at 3, but not who
caused it.
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Causality and Knowledge Representation

r1 : shattered(T + 1)← throws(X ,T ), not shattered(T )

suzy : throw(suzy ,2)

billy : throw(billy ,4)

We may conclude that the bottle is shattered at 3 because

suzy

��
r1

suzy · r1

Note that rule r1 for T = 4 is not in the reduct of the program
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Conclusions

Multi-valued semantics based on (ideals of) causal graphs

Values capture non-redundant proofs, but with semantic, algebraic
operations

Default negation = absence of cause.
I Reduct definition allows defining causal stable models
I Allows expressing dynamic defaults (ex: inertia laws)

Ongoing work:
I Studding actual causation.
I Adding this causal operators on rule bodies.
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