Temporal Logics on Strings with Prefix Relation

Stéphane Demri
CNRS - Marie Curie Fellow
Joint work with Morgan Deters (NYU)

Corunna, February 2015

In Memoriam: Morgan Deters

LTL over Concrete Domains

Logics with Concrete Domains

- Temporal propositional logic \mathfrak{L},
- Concrete domain $\mathcal{D}=\left\langle\mathfrak{D},\left(\mathfrak{R}_{i}\right)_{i \in 1}\right\rangle$,
$\mathfrak{L}(\mathcal{D})$
- replacing propositional variables by domain-specific constraints,
- variables interpreted by elements of \mathfrak{D}.

Concrete Domains

- Concrete domain: $\mathcal{D}=\left\langle\mathfrak{D},\left(\mathfrak{R}_{i}\right)_{i \in 1}\right\rangle$.
- Interpretation domains for program variables.
- Atomic constraint: $\mathfrak{R}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{t}\right)$.
- A \mathfrak{D}-valuation $v: \operatorname{VAR} \rightarrow \mathfrak{D}$.
- Examples:

$$
\langle\mathbb{N}, \leq\rangle \quad\left\langle\{0,1\}^{*}, \preceq_{p}\right\rangle \quad\langle\mathbb{N},=,+1\rangle \quad\langle\mathbb{Q},<,=\rangle
$$

LTL over Concrete Domains

- Atomic term constraint $\mathfrak{R}\left(\mathrm{X}^{n_{1}} \mathrm{X}_{1}, \ldots, \mathrm{X}^{n_{t}} \mathrm{X}_{t}\right)$.
- $X^{i} \mathrm{x}$ interpreted as the value of x in the i th next state.
- $\phi::=\mathfrak{R}\left(\mathrm{X}^{n_{1}} \mathrm{x}_{1}, \ldots, \mathrm{X}^{n_{t}} \mathrm{x}_{t}\right)|\mathrm{X} \phi| \phi \mathrm{U} \phi|\neg \phi| \ldots$
- Linear models: $\sigma: \mathbb{N} \rightarrow($ VAR $\rightarrow \mathfrak{D})$.

$$
\sigma, j \models \mathfrak{R}\left(\mathrm{X}^{n_{1}} \mathrm{x}_{1}, \ldots, \mathrm{X}^{n_{t}} \mathrm{x}_{t}\right)
$$

iff
value of x_{1} in the $\left(j+n_{1}\right)$ th state

$$
(\overbrace{\sigma\left(j+n_{1}\right)\left(\mathrm{x}_{1}\right)} \quad, \ldots, \sigma\left(j+n_{t}\right)\left(\mathrm{x}_{t}\right)) \in \mathfrak{\Re}
$$

i.e. values at different states can be compared.

A LTL($\mathbb{Q},<,=)$-model

$$
\begin{array}{lllllll}
\mathrm{x}_{1} & 0 & \frac{3}{8} & \frac{1}{9} & 3 & \ldots & \\
\mathrm{x}_{2} & \frac{1}{2} & 0 & \frac{3}{4} & 2 & \ldots & \\
\mathrm{x}_{3} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 1 & \ldots & \\
\mathrm{x}_{4} & 1 & 2 & 3 & 4 & \ldots & F\left(x_{2}<\mathrm{X}^{2} x_{3}\right)
\end{array}
$$

Satisfiability of ϕ : is there σ such that $\sigma, 0 \models \phi$?

Spatio-Temporal Logics

- \mathcal{D} is a spatial domain in spatio-temporal logics, see e.g. [Balbiani \& Condotta, FROCOS'02; Wolter \& Zakharyaschev, 2002]
- \mathcal{D} is rather a class of domains.
- Example: RCC-8
[Randel \& Cui \& Cohn92, KR'92]
Variables interpreted as regions
Predicates: being "disconnected", "equal", "partial overlap",

LTL with Presburger Constraints

- Constraints on counters: $X x=x+1, x<X X y$.
- Satisfiability for $\operatorname{LTL}(\mathbb{N},=,+1)$ is undecidable.

LTL with Presburger Constraints

- Constraints on counters: $X x=x+1, x<X X y$.
- Satisfiability for $\operatorname{LTL}(\mathbb{N},=,+1)$ is undecidable.
- $\operatorname{LTL}(\mathbb{Z},=,<)$ is PSPACE-complete.
[Demri \& D'Souza, IC 07]
See also [Segoufin \& Toruńczyk, STACS'11]

LTL with Presburger Constraints

- Constraints on counters: $X x=x+1, x<X X y$.
- Satisfiability for $\operatorname{LTL}(\mathbb{N},=,+1)$ is undecidable.
- $\operatorname{LTL}(\mathbb{Z},=,<)$ is PSPACE-complete.
[Demri \& D'Souza, IC 07] See also [Segoufin \& Toruńczyk, STACS'11]
- Variants of LTL with Presburger constraints in:
- [Bouajjani et al., LICS 95], [Comon \& Cortier, CSL’O0],
- [Dang \& Ibarra \& San Pietro, FST\&TCS'01].

What is the problem with $\operatorname{LTL}(\mathcal{D})$?

- Local satisfiability is constrained.
- p_{1}, \ldots, p_{n} can hold independently of each other.
$-\mathrm{x}_{0}<\mathrm{x}_{1}, \ldots, \mathrm{x}_{n-1}<\mathrm{x}_{n}$ are not independent.
- Global satisfiability is constrained.
- Gp is satisfiable in LTL.
- $G(X x<x)$ is not satisfiable in $\operatorname{LTL}(\mathbb{N},<)$.
- How formulae define ω-regular classes of models ?

Temporal Logics on Strings

Reasoning about Strings

- Need for string reasoning: program verification, analysis of web applications, etc.
- Theory solvers for strings.
[Liang et al. - Abdulla et al., CAV'14; Hutagalung \& Lange, CSR'14]
- Solving word equations. [Makanin, Math. 77; Plandowski, JACM 04]
- What about reasoning on sequences of strings ?

LTL on Strings: $\operatorname{LTL}\left(\Sigma^{*}, \preceq_{p}\right)$

- String variables $\operatorname{SVAR}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\}$.
- Terms: $\mathrm{t}::=\mathfrak{w}|\mathrm{x}| \mathrm{Xx} \quad\left(\mathrm{x} \in \operatorname{SVAR}, \mathfrak{w} \in \Sigma^{*}\right)$
- Formulae:

$$
\phi \quad::=\quad \mathrm{t} \preceq_{p} \mathrm{t}^{\prime}|\neg \phi| \phi \wedge \phi|\mathrm{X} \phi| \phi \cup \phi
$$

- Example:

$$
\mathrm{GF}\left(\left(001 \preceq_{p} \mathrm{x}\right) \vee\left(\mathrm{x} \preceq_{p} 1001\right)\right) \wedge \mathrm{G}\left(\neg\left(\mathrm{x} \preceq_{p} \mathrm{Xx}\right)\right)
$$

A Model with $\Sigma=\{0,1\}$

$$
\begin{array}{ccccccl}
\mathrm{x}_{1} & 000 & 011110 & \varepsilon & 1111 & \ldots \\
\mathrm{x}_{2} & 101 & \mathbf{0 1 0 0 0 1} & 010001 & 00 & \cdots & \models \mathrm{~F}\left(\mathrm{x}_{2} \preceq_{p} \mathrm{XX}_{3}\right) \\
& & & & & &
\end{array}
$$

The Case $\Sigma=\{0\}$

- $\operatorname{LTL}(\mathbb{N}, \leq) \stackrel{\text { def }}{=} \operatorname{LTL}\left(\Sigma^{*}, \preceq_{p}\right)$ with $\Sigma=\{0\}$.
- Satisfiability problem for $\operatorname{LTL}(\mathbb{N}, \leq)$ is PSPACE-complete.
[Demri \& D'Souza, IC 07; Demri \& Gascon, TCS 08] See also [Segoufin \& Torunczyk, STACS'11]
- The PSPACE upper bound is preserved with several LTL extensions or with richer numerical constraints. (but no successor relation).

A Richer and Auxiliary Logic LTL(Σ^{*}, clen $)$

- clen($\left.\mathfrak{w}, \mathfrak{w}^{\prime}\right)$: length of the longest common prefix between \mathfrak{w} and \mathfrak{w}^{\prime} in Σ^{*}.

$$
\begin{aligned}
\sigma, i & =\operatorname{clen}\left(\mathrm{t}_{0}, \mathrm{t}_{0}^{\prime}\right) \leq \operatorname{clen}\left(\mathrm{t}_{1}, \mathrm{t}_{1}^{\prime}\right) \\
& \stackrel{\text { def }}{\Leftrightarrow} \\
\operatorname{clen}\left(\left[\mathrm{t}_{0}\right]_{i},\left[\mathrm{t}_{0}^{\prime}\right]_{i}\right) & \leq \operatorname{clen}\left(\left[\mathrm{t}_{1}\right]_{i},\left[\mathrm{t}_{1}^{\prime}\right]_{i}\right)
\end{aligned}
$$

- Reduction from $\operatorname{LTL}\left(\Sigma^{*}, \preceq_{p}\right)$ to $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$. $t \preceq p t^{\prime} \mapsto \operatorname{clen}(t, t) \leq \operatorname{clen}\left(t, t^{\prime}\right)$.
- In the sequel either $\Sigma=[0, k-1]$ for some $k \geq 1$ or $\Sigma=\mathbb{N}$.

Symbolic Models for $\operatorname{LTL}(\mathbb{N}, \leq)$

+ Local consistency between two consecutive positions.

Rephrasing the Satisfiability Property

ϕ is $\operatorname{LTL}(\mathbb{N}, \leq)$ satisfiable

iff
there is a symbolic model σ such that
$\sigma \models_{\text {symb }} \phi$ and σ has a concrete interpretation in \mathbb{N}

Characterisation for $\operatorname{LTL}(\mathbb{N}, \leq)$

- Usual notion of path π between two nodes.
- Strict length of the path π : $\operatorname{slen}(\pi)=$ number of edges labelled by $<$.
- Strict length between $\langle\mathrm{x}, i\rangle$ and $\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle$:
$\operatorname{slen}\left(\langle\mathrm{x}, i\rangle,\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle\right) \stackrel{\text { def }}{=} \sup \left\{\operatorname{slen}(\pi):\right.$ path π from $\langle\mathrm{x}, i\rangle$ to $\left.\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle\right\}$

Characterisation for $\operatorname{LTL}(\mathbb{N}, \leq)$

- Usual notion of path π between two nodes.
- Strict length of the path π : $\operatorname{slen}(\pi)=$ number of edges labelled by $<$.
- Strict length between $\langle\mathrm{x}, i\rangle$ and $\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle$:
$\operatorname{slen}\left(\langle\mathrm{x}, i\rangle,\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle\right) \stackrel{\text { def }}{=} \sup \left\{\operatorname{slen}(\pi):\right.$ path π from $\langle\mathrm{x}, i\rangle$ to $\left.\left\langle\mathrm{x}^{\prime}, i^{\prime}\right\rangle\right\}$
- Symbolic model σ has a concrete interpretation iff any pair of nodes has a finite strict length.
[Cerans, ICALP'94; Demri \& D'Souza, IC 07]
[Gascon, PhD thesis 07;Carapelle \& Kartzow \& Lohrey, CONCUR'13]

When WMSO+U Enters Into the Play

- $\sigma \models \mathrm{U} \times \phi \stackrel{\text { def }}{\Leftrightarrow}$ for every $b \in \mathbb{N}$, there is a finite Y with $\operatorname{card}(Y) \geq b$ such that $\sigma \models \phi(Y)$. $\mathrm{BX} \phi \stackrel{\text { def }}{=} \neg \mathrm{UX} \phi$.
[Bojańczyk, CSL'04; Bojańczyk \& Colcombet, LICS'06]
- Symbolic models for LTL($\mathbb{N}, \leq)$ having a concrete interpretation can be characterized by a formula in Bool(MSO,WMSO+U).
- This leads to decidability of $\operatorname{CTL}^{\star}(\mathbb{N}, \leq)$.
[Carapelle \& Kartzow \& Lohrey, CONCUR'13] (based on [Bojańczyk \& Toruńczyk, STACS'12]) See also decidable fragments in [Bozzelli \& Gascon, LPAR'06]

Back to Strings Simple but Essential Properties for clen(•)

$$
\begin{aligned}
& \mathfrak{w}_{1} 0000102 \\
& \mathfrak{w}_{2} \mathbf{0} 000 \\
& \longrightarrow \operatorname{clen}\left(\mathfrak{w}_{1}, \mathfrak{w}_{2}\right) \leq \operatorname{len}\left(\mathfrak{w}_{1}\right)
\end{aligned}
$$

Back to Strings Simple but Essential Properties for clen(•)

$\mathfrak{w}_{1} 000102$
 $\mathfrak{w}_{2} 0000$

$\longrightarrow \operatorname{clen}\left(\mathfrak{w}_{1}, \mathfrak{w}_{2}\right) \leq \operatorname{len}\left(\mathfrak{w}_{1}\right)$
$\mathfrak{w}_{0} 000102$
$\mathfrak{w}_{1} 00001356$
$\mathfrak{w}_{2} 000214$
$\mathfrak{w}_{k} 000313$
$\longrightarrow \exists i, j \in[1, k]$ such that $\operatorname{clen}\left(\mathfrak{w}_{0}, \mathfrak{w}_{1}\right)<\operatorname{clen}\left(\mathfrak{w}_{i}, \mathfrak{w}_{j}\right)$
(Pigeonhole Principle $-\operatorname{card}(\Sigma)=k \geq 2$)

Back to Strings Simple but Essential Properties for clen(•)

$$
\begin{array}{llllll}
\mathfrak{w}_{1} & 0 & 0 & 0 & 1 & 0 \\
\mathfrak{w}_{2} & 0 & 0 & 0 & 0
\end{array}
$$

$\longrightarrow \operatorname{clen}\left(\mathfrak{w}_{1}, \mathfrak{w}_{2}\right) \leq \operatorname{len}\left(\mathfrak{w}_{1}\right)$
$\mathfrak{w}_{0} 000102$
$\mathfrak{w}_{1} 00001356$
$\mathfrak{w}_{2} 000214$
$\mathfrak{w}_{k} 000313$
$\longrightarrow \exists i, j \in[1, k]$ such that $\operatorname{clen}\left(\mathfrak{w}_{0}, \mathfrak{w}_{1}\right)<\operatorname{clen}\left(\mathfrak{w}_{i}, \mathfrak{w}_{j}\right)$
(Pigeonhole Principle $-\operatorname{card}(\Sigma)=k \geq 2$)

String Compatible Counter Valuations

- Counter valuation $\mathfrak{c}:\left\{\operatorname{clen}\left(t, t^{\prime}\right): t, t^{\prime} \in T\right\} \rightarrow \mathbb{N}$.
- String-compatibility:

$$
\bigwedge_{t, t^{\prime} \in T}\left(\operatorname{clen}(t, t) \geq \operatorname{clen}\left(t, t^{\prime}\right)\right)
$$

\wedge
$\left(\left(\bigwedge\left(\operatorname{clen}\left(t_{0}, t_{1}\right)<\operatorname{clen}\left(t_{i}, t_{i}\right)\right)\right) \wedge \operatorname{clen}\left(t_{0}, t_{1}\right)=\cdots=\operatorname{clen}\left(t_{0}, t_{k}\right)\right.$

$$
\Rightarrow\left(\bigvee_{i \neq j \in[1, k]}\left(\operatorname{clen}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)<\operatorname{clen}\left(\mathrm{t}_{i}, \mathrm{t}_{j}\right)\right)\right)
$$

$$
\bigwedge_{t, t^{\prime}, t^{\prime \prime} \in T}\left(\operatorname{clen}\left(t, t^{\prime}\right)<\operatorname{clen}\left(t^{\prime}, t^{\prime \prime}\right)\right) \Rightarrow\left(\operatorname{clen}\left(t, t^{\prime}\right)=\operatorname{clen}\left(t, t^{\prime \prime}\right)\right)
$$

- Size in $\mathcal{O}\left((q+r)^{k+2}\right)$ with $\operatorname{card}(T)=q+r$.

Characterisation

- String compatibility is equivalent to the existence of a string valuation witnessing the values of the counters clen $\left(t, t^{\prime}\right)$.
- The exact statement is a bit more complex to be used after in the translation from $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ to $\operatorname{LTL}(\mathbb{N}, \leq)$.

Characterisation

- String compatibility is equivalent to the existence of a string valuation witnessing the values of the counters clen $\left(t, t^{\prime}\right)$.
- The exact statement is a bit more complex to be used after in the translation from $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ to $\operatorname{LTL}(\mathbb{N}, \leq)$.
- Checking satisfiability of Boolean combinations of prefix constraints is NP-complete. (upper bound by reduction into QF Presburger arithmetic)
- PSPace can be obtained using word equations and Plandowski's PSPACE upper bound. (suffix constraints can be added at no cost)

Translation

- Formula ϕ with constant strings $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{q}$ and, string variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}$.
- For all $i, j \in[1, q], c_{i, j} \stackrel{\text { def }}{=} \operatorname{clen}\left(\mathfrak{w}_{i}, \mathfrak{w}_{j}\right)$.
- $\mathrm{T} \stackrel{\text { def }}{=}\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{q}\right\} \cup\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\} \cup\left\{\mathrm{XX}_{1}, \ldots, \mathrm{X} \mathrm{x}_{r}\right\}$.
- $\phi_{1}^{\text {subst }}$: replace each \mathfrak{w}_{i} by y_{i}.
- $\phi_{2}^{\text {rig }} \stackrel{\text { def }}{=} \mathrm{G}\left(\bigwedge_{i, j \in[1, q]}\left(\operatorname{clen}\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right)=c_{i, j}\right)\right)$.

Translation (II)

- Formula $\phi_{3}^{\text {next }}$:

$$
G\left(\bigwedge_{t, t^{\prime} \in\left\{y_{1}, \ldots, y_{q}\right\} \cup\left\{X_{x_{1}}, \ldots, \mathrm{Xx}_{r}\right\}} \operatorname{clen}\left(t, \mathrm{t}^{\prime}\right)=\mathrm{X} \operatorname{clen}\left(\mathrm{t} \backslash \mathrm{X}, \mathrm{t}^{\prime} \backslash \mathrm{X}\right)\right)
$$

- Formulae $\psi_{\mathrm{I}}, \psi_{\text {II }}$ and $\psi_{\text {III }}$ related to string-compatible counter valuations over T .
- ϕ is satisfiable in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ iff

$$
\phi_{1}^{\text {subst }} \wedge \phi_{2}^{\text {rig }} \wedge \phi_{3}^{\text {next }} \wedge \psi_{\mathrm{I}} \wedge \psi_{\mathrm{II}} \wedge \psi_{\mathrm{III}}
$$

is satisfiable in $\operatorname{LTL}(\mathbb{N}, \leq)$.

Complexity and Decidability

- Satisfiability problems for $\operatorname{LTL}\left(\Sigma^{*}, \preceq_{p}\right)$ and $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ are PSPACE-complete.
- This also holds for any LTL extension that behaves as LTL as far as the translation into Büchi automata is concerned (Past LTL, linear μ-calculus, ETL, etc.).
- For any satisfiable ϕ in $\operatorname{LTL}\left(\mathbb{N}^{*}\right.$,clen), models with letters in $[0, N+2 \times \operatorname{size}(\phi)]$ are sufficient (N max. letter in ϕ).

Lifting to Branching-Time Temporal Logics

- $\operatorname{CTL}^{*}\left(\Sigma^{*}\right.$, clen $)$: branching-time extension of $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$.
- Translation can be extended for $\mathrm{CTL}^{\star}\left(\Sigma^{*}\right.$, clen $)$.
- Proof is a bit more complex but the string characterisation is used similarly.
- The satisfiability problem for $\operatorname{CTL}^{\star}\left(\Sigma^{*}\right.$, clen) is decidable. By reduction into $C T L^{\star}(\mathbb{N}, \leq)$ shown decidable in
[Carapelle \& Kartzow \& Lohrey, CONCUR'13]

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem. input: alphabet $\Sigma=[0, k-1]$ (k in unary) or $\Sigma=\mathbb{N}$, and a formula ϕ in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ question: is ϕ satisfiable in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $) ?$
- Dec. status of $\operatorname{LTL}\left(\{0,1\}^{*}, \preceq_{p}, \preceq_{s}\right)$.

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem.
input: alphabet $\Sigma=[0, k-1]$ (k in unary) or $\Sigma=\mathbb{N}$, and a formula ϕ in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ question: is ϕ satisfiable in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $) ?$
- Dec. status of $\operatorname{LTL}\left(\{0,1\}^{*}, \preceq_{p}, \preceq_{s}\right)$.
- Dec. status of $\operatorname{LTL}\left(\{0,1\}^{*}, \preceq_{p}\right.$, REG) with regularity tests.

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem.
input: alphabet $\Sigma=[0, k-1]$ (k in unary) or $\Sigma=\mathbb{N}$, and a formula ϕ in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $)$ question: is ϕ satisfiable in $\operatorname{LTL}\left(\Sigma^{*}\right.$, clen $) ?$
- Dec. status of $\operatorname{LTL}\left(\{0,1\}^{*}, \preceq_{p}, \preceq_{s}\right)$.
- Dec. status of $\operatorname{LTL}\left(\{0,1\}^{*}, \preceq_{p}\right.$, REG) with regularity tests.
- Decidability status of $\operatorname{LTL}\left(\{0,1\}^{*}, \sqsubseteq\right)$.

