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Logics with Concrete Domains

• Temporal propositional logic L,

• Concrete domain D = 〈D, (Ri)i∈I〉,

=⇒

L(D)

• replacing propositional variables by domain-specific
constraints,

• variables interpreted by elements of D.
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Concrete Domains

• Concrete domain: D = 〈D, (Ri)i∈I〉.

• Interpretation domains for program variables.

• Atomic constraint: R(x1, . . . , xt ).

• A D-valuation v : VAR→ D.

• Examples:

〈N,≤〉 〈{0,1}∗,�p〉 〈N,=,+1〉 〈Q, <,=〉
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LTL over Concrete Domains
• Atomic term constraint R(Xn1x1, . . . ,Xnt xt ).

• Xi x interpreted as the value of x in the i th next state.

• φ ::= R(Xn1x1, . . . ,Xnt xt ) | Xφ | φUφ | ¬φ | . . .

• Linear models: σ : N→ (VAR→ D).

σ, j |= R(Xn1x1, . . . ,Xnt xt )

iff

(

value of x1 in the (j+n1)th state︷ ︸︸ ︷
σ(j + n1)(x1) , . . . , σ(j + nt )(xt )) ∈ R

i.e. values at different states can be compared.
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A LTL(Q, <,=)-model

x1 0 3
8

1
9 3 . . .

x2
1
2 0 3

4 2 . . .

x3
1
4

1
4

1
4 1 . . .

x4 1 2 3 4 . . .

|= F(x2 < X2x3)

Satisfiability of φ: is there σ such that σ, 0 |= φ?
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Spatio-Temporal Logics

• D is a spatial domain in spatio-temporal logics, see e.g.
[Balbiani & Condotta, FROCOS’02; Wolter & Zakharyaschev, 2002]

• D is rather a class of domains.

• Example: RCC-8 [Randel & Cui & Cohn92, KR’92]
Variables interpreted as regions
Predicates: being “disconnected”, “equal”, “partial overlap”,
...
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LTL with Presburger Constraints

• Constraints on counters: Xx = x + 1, x < XXy.

• Satisfiability for LTL(N,=,+1) is undecidable.

• LTL(Z,=, <) is PSPACE-complete.
[Demri & D’Souza, IC 07]

See also [Segoufin & Toruńczyk, STACS’11]

• Variants of LTL with Presburger constraints in:
• [Bouajjani et al., LICS 95], [Comon & Cortier, CSL’00],

• [Dang & Ibarra & San Pietro, FST&TCS’01].
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What is the problem with LTL(D)?

• Local satisfiability is constrained.
– p1, . . . , pn can hold independently of each other.
– x0 < x1, . . . , xn−1 < xn are not independent.

• Global satisfiability is constrained.
– Gp is satisfiable in LTL.
– G(Xx < x) is not satisfiable in LTL(N, <).

• How formulae define ω-regular classes of models ?
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Temporal Logics on Strings
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Reasoning about Strings

• Need for string reasoning: program verification, analysis of
web applications, etc.

• Theory solvers for strings.
[Liang et al. – Abdulla et al., CAV’14; Hutagalung & Lange, CSR’14]

• Solving word equations.
[Makanin, Math. 77; Plandowski, JACM 04]

• What about reasoning on sequences of strings ?
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LTL on Strings: LTL(Σ∗,�p)

• String variables SVAR = {x1, x2, . . .}.

• Terms: t ::= w | x | Xx (x ∈ SVAR, w ∈ Σ∗)

• Formulae:

φ ::= t �p t
′ | ¬φ | φ ∧ φ | Xφ | φ U φ

• Example:

GF((001 �p x) ∨ (x �p 1001)) ∧G(¬(x �p Xx))
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A Model with Σ = {0,1}

x1 000 011110 ε 1111 . . .

x2 101 010001 010001 00 . . .

x3 00 111 010001101 ε . . .

|= F(x2 �p Xx3)
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The Case Σ = {0}

• LTL(N,≤)
def
= LTL(Σ∗,�p) with Σ = {0}.

• Satisfiability problem for LTL(N,≤) is PSPACE-complete.
[Demri & D’Souza, IC 07; Demri & Gascon, TCS 08]

See also [Segoufin & Torunczyk, STACS’11]

• The PSPACE upper bound is preserved with several LTL
extensions or with richer numerical constraints.
(but no successor relation).
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A Richer and Auxiliary Logic LTL(Σ∗, clen)

• clen(w,w′): length of the longest common prefix between
w and w′ in Σ∗.

σ, i |= clen(t0,t
′
0) ≤ clen(t1,t

′
1)

def⇔

clen([t0]i , [t
′
0]i) ≤ clen([t1]i , [t

′
1]i)

• Reduction from LTL(Σ∗,�p) to LTL(Σ∗, clen).
t �p t′ 7→ clen(t,t) ≤ clen(t,t′).

• In the sequel either Σ = [0, k − 1] for some k ≥ 1 or Σ = N.
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Symbolic Models for LTL(N,≤)
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+ Local consistency between two consecutive positions.
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Rephrasing the Satisfiability Property

φ is LTL(N,≤) satisfiable

iff

there is a symbolic model σ such that

σ |=symb φ and σ has a concrete interpretation in N
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Characterisation for LTL(N,≤)

• Usual notion of path π between two nodes.

• Strict length of the path π: slen(π) = number of edges
labelled by <.

• Strict length between 〈x, i〉 and 〈x′, i ′〉:

slen(〈x, i〉, 〈x′, i ′〉) def
= sup {slen(π) : path π from 〈x, i〉 to 〈x′, i ′〉}

• Symbolic model σ has a concrete interpretation iff any pair
of nodes has a finite strict length.

[Cerans, ICALP’94; Demri & D’Souza, IC 07]
[Gascon, PhD thesis 07;Carapelle & Kartzow & Lohrey, CONCUR’13]
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When WMSO+U Enters Into the Play

• σ |= U X φ
def⇔ for every b ∈ N, there is a finite Y with

card(Y ) ≥ b such that σ |= φ(Y ).
BX φ def

= ¬U X φ.
[Bojańczyk, CSL’04; Bojańczyk & Colcombet, LICS’06]

• Symbolic models for LTL(N,≤) having a concrete
interpretation can be characterized by a formula in
Bool(MSO,WMSO+U).

• This leads to decidability of CTL?(N,≤).
[Carapelle & Kartzow & Lohrey, CONCUR’13]

(based on [Bojańczyk & Toruńczyk, STACS’12])
See also decidable fragments in [Bozzelli & Gascon, LPAR’06]
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Back to Strings
Simple but Essential Properties for clen(·)

w1 0 0 0 1 0 2
w2 0 0 0 0
−→ clen(w1,w2) ≤ len(w1)

w0 0 0 0 1 0 2
w1 0 0 0 0 1 3 5 6
w2 0 0 0 2 1 4
. . .
wk 0 0 0 3 1 3
−→ ∃i , j ∈ [1, k ] such that clen(w0,w1) < clen(wi ,wj)
(Pigeonhole Principle – card(Σ) = k ≥ 2)

w0 0 0 0 1 0 2
w1 0 0 0 0 1 3 5

and
w1 0 0 0 0 1 3 5
w2 0 0 0 0 1 4

−→ clen(w0,w1) = clen(w0,w2)
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String Compatible Counter Valuations
• Counter valuation c : {clen(t,t′) : t,t′ ∈ T} → N.

• String-compatibility:∧
t,t′∈T

(clen(t,t) ≥ clen(t,t′))

∧
t0,...,tk∈T

((
∧

i∈[0,k ]

(clen(t0,t1) < clen(ti ,ti)))∧clen(t0,t1) = · · · = clen(t0,tk ))

⇒ (
∨

i 6=j∈[1,k ]

(clen(t0,t1) < clen(ti ,tj)))

∧
t,t′,t′′∈T

(clen(t,t′) < clen(t′,t′′))⇒ (clen(t,t′) = clen(t,t′′))

• Size in O((q + r)k+2) with card(T) = q + r .

String Compatible Counter Valuations 22



Characterisation

• String compatibility is equivalent to the existence of a string
valuation witnessing the values of the counters clen(t,t′).

• The exact statement is a bit more complex to be used after
in the translation from LTL(Σ∗, clen) to LTL(N,≤).

• Checking satisfiability of Boolean combinations of prefix
constraints is NP-complete.
(upper bound by reduction into QF Presburger arithmetic)

• PSPACE can be obtained using word equations and
Plandowski’s PSPACE upper bound.
(suffix constraints can be added at no cost)
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Translation

• Formula φ with constant strings w1, . . . , wq and, string
variables x1, . . . , xr .

• For all i , j ∈ [1,q], ci,j
def
= clen(wi ,wj).

• T def
= {y1, . . . , yq} ∪ {x1, . . . , xr} ∪ {Xx1, . . . ,Xxr}.

• φsubst
1 : replace each wi by yi .

• φrig
2

def
= G (

∧
i,j∈[1,q](clen(yi , yj) = ci,j)).
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Translation (II)

• Formula φnext
3 :

G (
∧

t,t′∈{y1,...,yq}∪{Xx1,...,Xxr}

clen(t,t′) = X clen(t \ X,t′ \ X))

• Formulae ψI, ψII and ψIII related to string-compatible
counter valuations over T.

• φ is satisfiable in LTL(Σ∗, clen) iff

φsubst
1 ∧ φ

rig
2 ∧ φnext

3 ∧ ψI ∧ ψII ∧ ψIII

is satisfiable in LTL(N,≤).
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Complexity and Decidability

• Satisfiability problems for LTL(Σ∗,�p) and LTL(Σ∗, clen)
are PSPACE-complete.

• This also holds for any LTL extension that behaves as LTL
as far as the translation into Büchi automata is concerned
(Past LTL, linear µ-calculus, ETL, etc.).

• For any satisfiable φ in LTL(N∗,clen), models with letters in
[0,N + 2× size(φ)] are sufficient (N max. letter in φ).
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Lifting to Branching-Time Temporal Logics

• CTL?(Σ∗, clen): branching-time extension of LTL(Σ∗, clen).

• Translation can be extended for CTL?(Σ∗, clen).

• Proof is a bit more complex but the string characterisation
is used similarly.

• The satisfiability problem for CTL?(Σ∗, clen) is decidable.
By reduction into CTL?(N,≤) shown decidable in

[Carapelle & Kartzow & Lohrey, CONCUR’13]
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A Selection of Open Problems

• Complexity characterisation for uniform sat. problem.
input: alphabet Σ = [0, k − 1] (k in unary) or Σ = N,

and a formula φ in LTL(Σ∗, clen)
question: is φ satisfiable in LTL(Σ∗, clen)?

• Dec. status of LTL({0,1}∗, �p, �s).

• Dec. status of LTL({0,1}∗, �p, REG) with regularity tests.

• Decidability status of LTL({0,1}∗, v).
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