Temporal Logics on Strings with Prefix Relation

Stéphane Demri CNRS – Marie Curie Fellow

Joint work with Morgan Deters (NYU)

Corunna, February 2015

In Memoriam: Morgan Deters

LTL over Concrete Domains

Logics with Concrete Domains

- Temporal propositional logic £,
- Concrete domain $\mathcal{D} = \langle \mathfrak{D}, (\mathfrak{R}_i)_{i \in I} \rangle$,

 $\mathfrak{L}(\mathcal{D})$

 \Longrightarrow

- replacing propositional variables by domain-specific constraints,
- variables interpreted by elements of D.

Concrete Domains

- Concrete domain: $\mathcal{D} = \langle \mathfrak{D}, (\mathfrak{R}_i)_{i \in I} \rangle$.
- Interpretation domains for program variables.
- Atomic constraint: $\Re(x_1, \ldots, x_t)$.
- A \mathfrak{D} -valuation $v : VAR \to \mathfrak{D}$.

• Examples:

$$\langle \mathbb{N}, \leq \rangle \quad \langle \{0,1\}^*, \preceq_{\textit{p}} \rangle \quad \langle \mathbb{N}, =, +1 \rangle \quad \langle \mathbb{Q}, <, = \rangle$$

LTL over Concrete Domains

- Atomic term constraint $\Re(X^{n_1}x_1, \ldots, X^{n_t}x_t)$.
- X^{*i*} x interpreted as the value of x in the *i*th next state.
- $\phi ::= \mathfrak{R}(\mathsf{X}^{n_1}\mathsf{x}_1, \dots, \mathsf{X}^{n_t}\mathsf{x}_t) \mid \mathsf{X}\phi \mid \phi \mathsf{U}\phi \mid \neg \phi \mid \dots$
- Linear models: $\sigma : \mathbb{N} \to (\mathsf{VAR} \to \mathfrak{D}).$

$$\sigma, j \models \mathfrak{R}(\mathsf{X}^{n_1}\mathsf{x}_1, \ldots, \mathsf{X}^{n_t}\mathsf{x}_t)$$

iff

value of x_1 in the $(j+n_1)$ th state $(\overbrace{\sigma(j+n_1)(x_1)}^{\text{value of }}, \dots, \sigma(j+n_t)(x_t)) \in \mathfrak{R}$

i.e. values at different states can be compared.

A $LTL(\mathbb{Q}, <, =)$ -model

Satisfiability of ϕ : is there σ such that σ , **0** $\models \phi$?

Spatio-Temporal Logics

- D is a spatial domain in spatio-temporal logics, see e.g. [Balbiani & Condotta, FROCOS'02; Wolter & Zakharyaschev, 2002]
- D is rather a class of domains.

. . .

• Example: RCC-8 [Randel & Cui & Cohn92, KR'92] Variables interpreted as regions Predicates: being "disconnected", "equal", "partial overlap",

LTL with Presburger Constraints

- Constraints on counters: Xx = x + 1, x < XXy.
- Satisfiability for $LTL(\mathbb{N}, =, +1)$ is undecidable.

LTL with Presburger Constraints

- Constraints on counters: Xx = x + 1, x < XXy.
- Satisfiability for $LTL(\mathbb{N}, =, +1)$ is undecidable.
- $LTL(\mathbb{Z}, =, <)$ is PSPACE-complete.

[Demri & D'Souza, IC 07]

See also [Segoufin & Toruńczyk, STACS'11]

LTL with Presburger Constraints

- Constraints on counters: Xx = x + 1, x < XXy.
- Satisfiability for $LTL(\mathbb{N}, =, +1)$ is undecidable.
- LTL(Z, =, <) is PSPACE-complete.
 <p>[Demri & D'Souza, IC 07]

 See also [Segoufin & Toruńczyk, STACS'11]
- Variants of LTL with Presburger constraints in:
 - [Bouajjani et al., LICS 95], [Comon & Cortier, CSL'00],
 - [Dang & Ibarra & San Pietro, FST&TCS'01].

What is the problem with $LTL(\mathcal{D})$?

- Local satisfiability is constrained.
 - p_1, \ldots, p_n can hold independently of each other.
 - $x_0 < x_1, \ldots, x_{n-1} < x_n$ are not independent.
- Global satisfiability is constrained.
 - Gp is satisfiable in LTL.
 - G(Xx < x) is not satisfiable in LTL($\mathbb{N}, <$).
- How formulae define ω-regular classes of models ?

Temporal Logics on Strings

Reasoning about Strings

- Need for string reasoning: program verification, analysis of web applications, etc.
- Theory solvers for strings.

[Liang et al. - Abdulla et al., CAV'14; Hutagalung & Lange, CSR'14]

Solving word equations.

[Makanin, Math. 77; Plandowski, JACM 04]

• What about reasoning on sequences of strings ?

LTL on Strings: $LTL(\Sigma^*, \preceq_{\rho})$

- String variables $SVAR = \{x_1, x_2, \ldots\}$.
- $\bullet \ \text{Terms: t} \quad ::= \quad \mathfrak{w} \ \mid \ x \ \mid \ Xx \qquad \qquad (x \in \text{SVAR}, \, \mathfrak{w} \in \Sigma^*)$
- Formulae:

$$\phi \quad ::= \quad \mathsf{t} \preceq_{\boldsymbol{\rho}} \mathsf{t}' \mid \neg \phi \mid \phi \land \phi \mid \mathsf{X}\phi \mid \phi \mathsf{U}\phi$$

• Example:

$$\mathsf{GF}((001 \preceq_{\rho} \mathsf{x}) \lor (\mathsf{x} \preceq_{\rho} 1001)) \land \mathsf{G}(\neg(\mathsf{x} \preceq_{\rho} \mathsf{X}\mathsf{x}))$$

A Model with $\Sigma = \{0, 1\}$

The Case $\Sigma = \{0\}$

- LTL(\mathbb{N}, \leq) $\stackrel{\text{def}}{=}$ LTL(Σ^*, \preceq_{ρ}) with $\Sigma = \{0\}$.
- Satisfiability problem for LTL(N, ≤) is PSPACE-complete.
 [Demri & D'Souza, IC 07; Demri & Gascon, TCS 08]
 See also [Segoufin & Torunczyk, STACS'11]
- The PSPACE upper bound is preserved with several LTL extensions or with richer numerical constraints. (but no successor relation).

A Richer and Auxiliary Logic $LTL(\Sigma^*, clen)$

 clen(w, w'): length of the longest common prefix between w and w' in Σ*.

$$\sigma, i \models \operatorname{clen}(\mathtt{t}_0, \mathtt{t}'_0) \leq \operatorname{clen}(\mathtt{t}_1, \mathtt{t}'_1)$$

$$\stackrel{\text{def}}{\Leftrightarrow}$$

$$\operatorname{clen}([\mathtt{t}_0]_i, [\mathtt{t}'_0]_i) \leq \operatorname{clen}([\mathtt{t}_1]_i, [\mathtt{t}'_1]_i)$$

- Reduction from LTL(Σ^*, \preceq_p) to LTL(Σ^*, clen). t $\preceq_p t' \mapsto \text{clen}(t, t) \leq \text{clen}(t, t')$.
- In the sequel either $\Sigma = [0, k 1]$ for some $k \ge 1$ or $\Sigma = \mathbb{N}$.

Symbolic Models for $LTL(\mathbb{N}, \leq)$

+ Local consistency between two consecutive positions.

Rephrasing the Satisfiability Property

$\phi \text{ is LTL}(\mathbb{N},\leq)$ satisfiable

iff

there is a symbolic model σ such that

 $\sigma \models_{\text{symb}} \phi$ and σ has a concrete interpretation in \mathbb{N}

Characterisation for $LTL(\mathbb{N}, \leq)$

- Usual notion of path π between two nodes.
- Strict length of the path π: slen(π) = number of edges labelled by <.
- Strict length between (x, i) and (x', i'):

 $\operatorname{slen}(\langle \mathbf{x}, i \rangle, \langle \mathbf{x}', i' \rangle) \stackrel{\text{def}}{=} \sup \left\{ \operatorname{slen}(\pi) : \operatorname{path} \pi \operatorname{from} \langle \mathbf{x}, i \rangle \operatorname{to} \langle \mathbf{x}', i' \rangle \right\}$

Characterisation for $LTL(\mathbb{N}, \leq)$

- Usual notion of path π between two nodes.
- Strict length of the path π: slen(π) = number of edges labelled by <.
- Strict length between $\langle x, i \rangle$ and $\langle x', i' \rangle$:

 $\operatorname{slen}(\langle \mathbf{x}, i \rangle, \langle \mathbf{x}', i' \rangle) \stackrel{\text{def}}{=} \sup \left\{ \operatorname{slen}(\pi) : \operatorname{path} \pi \operatorname{from} \langle \mathbf{x}, i \rangle \operatorname{to} \langle \mathbf{x}', i' \rangle \right\}$

• Symbolic model σ has a concrete interpretation iff any pair of nodes has a finite strict length.

[Cerans, ICALP'94; Demri & D'Souza, IC 07] [Gascon, PhD thesis 07;Carapelle & Kartzow & Lohrey, CONCUR'13]

When WMSO+U Enters Into the Play

• $\sigma \models U \times \phi \stackrel{\text{def}}{\Leftrightarrow}$ for every $b \in \mathbb{N}$, there is a finite Y with $\operatorname{card}(Y) \ge b$ such that $\sigma \models \phi(Y)$. BX $\phi \stackrel{\text{def}}{=} \neg U \times \phi$.

[Bojańczyk, CSL'04; Bojańczyk & Colcombet, LICS'06]

- Symbolic models for LTL(N, ≤) having a concrete interpretation can be characterized by a formula in Bool(MSO,WMSO+U).
- This leads to decidability of CTL*(N, ≤). [Carapelle & Kartzow & Lohrey, CONCUR'13]
 (based on [Bojańczyk & Toruńczyk, STACS'12]) See also decidable fragments in [Bozzelli & Gascon, LPAR'06]

Back to Strings Simple but Essential Properties for $clen(\cdot)$

 $\begin{array}{ccc} \mathfrak{w}_1 & \boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{1} \ \boldsymbol{0} \ \boldsymbol{2} \\ \mathfrak{w}_2 & \boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{0} \\ \longrightarrow \operatorname{clen}(\mathfrak{w}_1, \mathfrak{w}_2) \leq \operatorname{len}(\mathfrak{w}_1) \end{array}$

Back to Strings Simple but Essential Properties for $clen(\cdot)$

```
 \begin{array}{ccc} \mathfrak{w}_1 & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{2} \\ \mathfrak{w}_2 & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \longrightarrow \operatorname{clen}(\mathfrak{w}_1, \mathfrak{w}_2) \leq \operatorname{len}(\mathfrak{w}_1) \end{array}
```

 w_0 **000**102

```
 \begin{array}{c} \mathfrak{w}_{1} & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{3} \ \mathbf{5} \ \mathbf{6} \\ \mathfrak{w}_{2} & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{2} \ \mathbf{1} \ \mathbf{4} \\ \dots \\ \mathfrak{w}_{k} & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{3} \ \mathbf{1} \ \mathbf{3} \\ \longrightarrow \exists i, j \in [1, k] \text{ such that } \operatorname{clen}(\mathfrak{w}_{0}, \mathfrak{w}_{1}) < \operatorname{clen}(\mathfrak{w}_{i}, \mathfrak{w}_{j}) \\ (\text{Pigeonhole Principle} - \operatorname{card}(\Sigma) = k \geq 2) \end{array}
```

Back to Strings Simple but Essential Properties for $clen(\cdot)$

```
W1
         000102
 w<sub>2</sub> 0000
\longrightarrow clen(\mathfrak{w}_1, \mathfrak{w}_2) \leq len(\mathfrak{w}_1)
 w_0 000102
 w_1 00001356
 w<sub>2</sub> 000214
 . . .
 w_k 000313
\longrightarrow \exists i, j \in [1, k] such that \operatorname{clen}(\mathfrak{w}_0, \mathfrak{w}_1) < \operatorname{clen}(\mathfrak{w}_j, \mathfrak{w}_j)
(Pigeonhole Principle – card(\Sigma) = k \ge 2)
```

 $\begin{array}{cccc} \mathfrak{w}_{0} & \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{1} \, \mathbf{0} \, \mathbf{2} \\ \mathfrak{w}_{1} & \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{1} \, \mathbf{3} \, \mathbf{5} \end{array} \text{ and } \begin{array}{c} \mathfrak{w}_{1} & \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{1} \, \mathbf{3} \, \mathbf{5} \\ \mathfrak{w}_{2} & \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{0} \, \mathbf{1} \, \mathbf{4} \end{array}$ $\longrightarrow \operatorname{clen}(\mathfrak{w}_{0}, \mathfrak{w}_{1}) = \operatorname{clen}(\mathfrak{w}_{0}, \mathfrak{w}_{2})$

String Compatible Counter Valuations

- Counter valuation $\mathfrak{c}:\{clen(\texttt{t},\texttt{t}'):\texttt{t},\texttt{t}'\in\texttt{T}\}\rightarrow\mathbb{N}.$
- String-compatibility:

$$\bigwedge_{\mathtt{t},\mathtt{t}'\in\mathtt{T}}(\mathsf{clen}(\mathtt{t},\mathtt{t})\geq\mathsf{clen}(\mathtt{t},\mathtt{t}'))$$

 $\bigwedge_{\mathtt{t}_0,\ldots,\mathtt{t}_k\in\mathtt{T}} ((\bigwedge_{i\in[0,k]} (\operatorname{clen}(\mathtt{t}_0,\mathtt{t}_1) < \operatorname{clen}(\mathtt{t}_i,\mathtt{t}_i))) \wedge \operatorname{clen}(\mathtt{t}_0,\mathtt{t}_1) = \cdots = \operatorname{clen}(\mathtt{t}_0,\mathtt{t}_k)$

$$\Rightarrow (\bigvee_{i \neq j \in [1,k]} (\operatorname{clen}(t_0,t_1) < \operatorname{clen}(t_i,t_j)))$$

$$\bigwedge_{t,t',t''\in T} (\operatorname{clen}(t,t') < \operatorname{clen}(t',t'')) \Rightarrow (\operatorname{clen}(t,t') = \operatorname{clen}(t,t''))$$

• Size in $\mathcal{O}((q+r)^{k+2})$ with $\operatorname{card}(\mathbb{T}) = q+r$.

Characterisation

- String compatibility is equivalent to the existence of a string valuation witnessing the values of the counters clen(t,t').
- The exact statement is a bit more complex to be used after in the translation from LTL(Σ*, clen) to LTL(ℕ, ≤).

Characterisation

- String compatibility is equivalent to the existence of a string valuation witnessing the values of the counters clen(t,t').
- The exact statement is a bit more complex to be used after in the translation from LTL(Σ*, clen) to LTL(ℕ, ≤).
- Checking satisfiability of Boolean combinations of prefix constraints is NP-complete. (upper bound by reduction into QF Presburger arithmetic)
- PSPACE can be obtained using word equations and Plandowski's PSPACE upper bound. (suffix constraints can be added at no cost)

Translation

- Formula φ with constant strings w₁, ..., w_q and, string variables x₁, ..., x_r.
- For all $i, j \in [1, q]$, $c_{i,j} \stackrel{\text{def}}{=} \operatorname{clen}(\mathfrak{w}_i, \mathfrak{w}_j)$.

•
$$\mathbb{T} \stackrel{\text{def}}{=} \{y_1, \ldots, y_q\} \cup \{x_1, \ldots, x_r\} \cup \{Xx_1, \ldots, Xx_r\}.$$

• ϕ_1^{subst} : replace each w_i by y_i .

•
$$\phi_2^{rig} \stackrel{\text{def}}{=} G(\bigwedge_{i,j\in[1,q]}(\operatorname{clen}(\mathsf{y}_i,\mathsf{y}_j)=c_{i,j})).$$

Translation (II)

• Formula ϕ_3^{next} :

$$\mathsf{G}\;(\bigwedge_{\mathtt{t},\mathtt{t}'\in\{y_1,\ldots,y_q\}\cup\{Xx_1,\ldots,Xx_r\}}\operatorname{clen}(\mathtt{t},\mathtt{t}')=X\;\operatorname{clen}(\mathtt{t}\setminus X,\mathtt{t}'\setminus X))$$

- Formulae ψ_I, ψ_{II} and ψ_{III} related to string-compatible counter valuations over T.
- φ is satisfiable in LTL(Σ*, clen) iff

 $\phi_1^{subst} \wedge \phi_2^{rig} \wedge \phi_3^{next} \wedge \psi_{\mathrm{I}} \wedge \psi_{\mathrm{II}} \wedge \psi_{\mathrm{III}}$

is satisfiable in LTL(\mathbb{N}, \leq).

Complexity and Decidability

- Satisfiability problems for LTL(Σ*, ≤_ρ) and LTL(Σ*, clen) are PSPACE-complete.
- This also holds for any LTL extension that behaves as LTL as far as the translation into Büchi automata is concerned (Past LTL, linear μ-calculus, ETL, etc.).
- For any satisfiable φ in LTL(N*,clen), models with letters in [0, N + 2 × size(φ)] are sufficient (N max. letter in φ).

Lifting to Branching-Time Temporal Logics

- $CTL^{*}(\Sigma^{*}, clen)$: branching-time extension of $LTL(\Sigma^{*}, clen)$.
- Translation can be extended for $CTL^{*}(\Sigma^{*}, clen)$.
- Proof is a bit more complex but the string characterisation is used similarly.
- The satisfiability problem for CTL*(Σ*, clen) is decidable. By reduction into CTL*(N, ≤) shown decidable in [Carapelle & Kartzow & Lohrey, CONCUR'13]

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem.
 input: alphabet Σ = [0, k − 1] (k in unary) or Σ = N, and a formula φ in LTL(Σ*, clen)
 question: is φ satisfiable in LTL(Σ*, clen)?
- Dec. status of LTL($\{0, 1\}^*, \leq_{\rho}, \leq_{s}$).

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem.
 input: alphabet Σ = [0, k 1] (k in unary) or Σ = N, and a formula φ in LTL(Σ*, clen)
 question: is φ satisfiable in LTL(Σ*, clen)?
- Dec. status of $LTL(\{0, 1\}^*, \leq_{\rho}, \leq_{s})$.
- Dec. status of LTL($\{0, 1\}^*, \leq_{\rho}$, REG) with regularity tests.

A Selection of Open Problems

- Complexity characterisation for uniform sat. problem.
 input: alphabet Σ = [0, k − 1] (k in unary) or Σ = N, and a formula φ in LTL(Σ*, clen)
 question: is φ satisfiable in LTL(Σ*, clen)?
- Dec. status of $LTL(\{0, 1\}^*, \leq_{\rho}, \leq_{s})$.
- Dec. status of LTL($\{0, 1\}^*, \leq_{\rho}$, REG) with regularity tests.
- Decidability status of LTL({0, 1}*, ⊑).