
Gelfond-Zhang aggregates as propositional formulas

Pedro Cabalara, Jorge Fandinnoa,d,2, Torsten Schaubb,c,4, Sebastian
Schellhornb

aUniversity of Corunna, Spain
bUniversity of Potsdam, Germany

cINRIA, Rennes, France
dIRIT, Université de Toulouse, CNRS, Toulouse, France

Abstract

Answer Set Programming (ASP) has become a popular and widespread
paradigm for practical Knowledge Representation thanks to its expressiveness
and the available enhancements of its input language. One of such enhance-
ments is the use of aggregates, for which different semantic proposals have
been made. In this paper, we show that any ASP aggregate interpreted under
Gelfond and Zhang’s (GZ) semantics can be replaced (under strong equiva-
lence) by a propositional formula. Restricted to the original GZ syntax, the
resulting formula is reducible to a disjunction of conjunctions of literals but
the formulation is still applicable even when the syntax is extended to allow
for arbitrary formulas (including nested aggregates) in the condition. Once
GZ-aggregates are represented as formulas, we establish a formal comparison
(in terms of the logic of Here-and-There) to Ferraris’ (F) aggregates, which
are defined by a different formula translation involving nested implications.
In particular, we prove that if we replace an F-aggregate by a GZ-aggregate
in a rule head, we do not lose answer sets (although more can be gained).

Email addresses: cabalar@udc.es (Pedro Cabalar), jorge.fandino@udc.es,
jorge.fandinno@irit.fr (Jorge Fandinno), torsten@cs.uni-potsdam.de (Torsten
Schaub), seschell@cs.uni-potsdam.de (Sebastian Schellhorn)

1Partially supported by grants GPC-ED431B 2016/035 and 2016-2019 ED431G/01
(Xunta de Galicia, Spain), and TIN 2013-42149-P, TIN 2017-84453-P (MINECO, Spain).

2Funded by the Centre International de Mathématiques et d’Informatique de Toulouse
through contract ANR-11-LABEX-0040-CIMI within the program ANR-11-IDEX-0002-02.

3This work was partially funded by DFG grant SCHA 550/9.
4Affiliated with the School of Computing Science at Simon Fraser University, Canada,

and the Institute for Integrated and Intelligent Systems at Griffith University, Australia.

Preprint submitted to Elsevier July 4, 2019

This extends the previously known result that the opposite happens in rule
bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may
yield more answer sets. Finally, we characterise a class of aggregates for which
GZ- and F-semantics coincide.

Keywords: Aggregates, Answer Set Programming

1. Introduction

Knowledge Representation and Reasoning (KRR) has constituted one of
the central areas of Artificial Intelligence since its very beginning and, in
particular, logic-based approaches have attracted most of the interest in the
literature. Although classical logic copes with many of the usual desiderata
for KRR such as simplicity, clear semantics or well-known inference methods
and their associated complexity, it was soon detected to fall short for practical
purposes in different aspects. For instance, one crucial feature in many KRR
scenarios, even in extremely simple ones, is the need to draw conclusions
in absence of information, something impossible in classical logic due to its
monotonic inference relation. As a result, since the introduction of the three
well-known approaches, circumscription [1], default logic [2] and modal non-
monotonic logics [3] in the historical special issue of the Artificial Intelligence
journal in 1980, Non-Monotonic Reasoning (NMR) has centered great part of
the discussion in KRR.

Nowadays, Answer Set Programming (ASP [4]) has become an established
problem-solving paradigm and a prime candidate for practical KRR. The
reasons for this success are manifold. The most obvious one is the availability
of effective solvers [5, 6] and a growing list of covered application domains [7].
A probably equally important reason is its declarative semantics, having been
generalized from the original stable models [8] of normal logic programs up
to arbitrary first-order [9, 10] and infinitary [11] formulas. Several logical
characterizations of ASP have been obtained, among which Equilibrium
Logic [12] and its monotonic basis, the intermediate logic of Here-and-There
(HT), are arguably the most prominent ones. These generalisations have
allowed us to understand ASP as a general logical framework for NMR.
Finally, a third relevant cause of ASP’s success lies in its flexible specification
language [13], offering constructs especially useful for practical KRR. Some
of its distinctive constructs are aggregates, allowing for operations on sets of
elements such as counting the number of instances for which a formula holds,

2

or adding all the integer values for some predicate argument. To understand
the utility of this kind of constraints think about representing in first-order
logic, for instance, that predicate p is satisfied by at least n = 3 different
individuals. A typical formalization would look like:

∃x∃y∃z (p(x) ∧ p(y) ∧ p(z) ∧ x 6= y ∧ y 6= z ∧ x 6= z)

This pattern becomes obviously cumbersome when increasing the number n
of individuals, as the number of required inequalities combinatorily explodes.
Moreover, the formula above cannot be constructed if n is an arbitrary
parameter whose value is not known beforehand. On the other hand, this
same meaning can be simply captured by a natural ASP aggregate of the
form count{X : p(X)} ≥ n.

Unfortunately, there is no clear agreement on the expected behavior of
aggregates in ASP, and several alternative semantics have been defined [14,
15, 16, 17, 18, 19], among which perhaps Ferraris’ [17] and Faber et al’s [18]
are the two more consolidated ones due to their respective implementations in
the ASP solvers clingo [5] and DLV [6]. Although these two approaches may
differ when the aggregates are in the scope of default negation, they coincide
for the rest of cases (like all the examples in this paper), even when aggregates
are involved in recursive definitions. Ferraris’ (F-)aggregates additionally
show a remarkable feature: they can be expressed as propositional formulas
in the logic of HT, something that greatly simplifies their formal treatment.
To illustrate this, let us explore the simple rule:

p(a)← count{X : p(X)} ≥ n. (1)

where p(a) recursively depends on the number of atoms of the form p(X). Sup-
pose first that n = 1. Since the domain only contains a, count{X : p(X)} ≥ 1
is true iff p(a) holds. This is captured in Ferraris’ translation of (1) for n = 1
that amounts to p(a) ← p(a), a tautology whose only stable model is ∅.
Suppose now that n = 0. Then, the aggregate is considered as tautological
and the HT-translation of (1) corresponds to p(a)← > whose unique stable
model is {p(a)}. Finally, as one more elaboration, assume n = 1 and suppose
we add the fact p(b). Then, (1) becomes the formula p(a)← p(a) ∨ p(b) that,
together with fact p(b), is HT-equivalent to:

p(b). p(a)← p(a). p(a)← p(b). (2)

This results in the unique stable model {p(a), p(b)}.

3

Recently, Gelfond and Zhang [19] (GZ) proposed a more restrictive inter-
pretation of recursive aggregates that imposes the so-called Vicious Circle
Principle, namely, “no object or property can be introduced by the definition
referring to the totality of objects satisfying this property.” According to this
principle, if we have a program whose only definition for p(a) is (1), we may
leave p(a) false, but we cannot be forced to derive its truth, since it depends on
a set of atoms {X : p(X)} that includes p(a) itself. In this way, if n = 1, the
GZ-stable model for (1) is also ∅, as there is no need to assume p(a). However,
if we have n = 0, we cannot leave p(a) false any more (the rule would have a
true body and a false head) and, at the same time, p(a) cannot become true
because it depends on a vicious circle. Something similar happens for n = 1
when adding fact p(b). As shown in [20], GZ-programs are stronger than
F-programs in the sense that, when they represent the same problem, any
GZ-stable model is also an F-stable model, but the opposite may not hold
(as we saw in the examples above). Without entering a discussion of which
semantics is more intuitive or suitable for practical purposes, one objective
disadvantage of GZ-aggregates is that they lacked a logical representation so
far; they were exclusively defined in terms of a reduct, something that made
their formal analysis more limited and the comparison to F-aggregates more
cumbersome.

In this paper, we show that, in fact, it is also possible to understand
a GZ-aggregate as a propositional formula, classically equivalent to the
F-aggregate translation, but with a different meaning in HT. For instance, the
GZ-translation for (1) with n = 1 coincides with the F-encoding p(a)← p(a),
but if we change to n = 0 we get the formula p(a) ← p(a) ∨ ¬p(a) whose
antecedent is valid in classical logic, but not in HT. In fact, the whole formula
is HT-equivalent to the program:

p(a)← p(a). p(a)← ¬p(a).

This makes it now obvious that there is no stable model. Similarly, when
we add fact p(b) and n = 1, the GZ-translation eventually leads to the
propositional program:

p(b).

p(a) ← ¬p(a) ∧ p(b).
p(a) ← p(a) ∧ ¬p(b).
p(a) ← p(a) ∧ p(b).

(3)

Again, it is classically equivalent to the F-translation (2), but quite differ-
ent in logic programming, where the left rules enforce the non-existence of
stable models.

4

The rest of the paper is organized as follows. In the next section, we review
some basic definitions that will be needed through the paper. In Section 3,
we present a generalisation of Ferraris’ reduct that covers GZ-aggregates
and show that the latter can be replaced, under strong equivalence, by a
propositional formula. In Section 4, we show that, in general, GZ-aggregates
are stronger than F-aggregates in HT and, as a result, characterise the effect of
replacing some occurrence of a GZ-aggregate by a corresponding F-aggregate.
We also identify a family of aggregates in which both semantics coincide.
In Section 5, we lift the fragment in which both semantics coincide to their
first-order languages: Alog and gringo [21]. Finally, Section 6 concludes the
paper.

2. Background

We begin by introducing some basic definitions used in the rest of the
paper. Let L be some syntactic language and assume we have a definition
of stable model for any theory Γ ⊆ L in that syntax. Moreover, let SM(Γ)
denote the stable models of Γ. Two theories Γ,Γ′ are strongly equivalent,
written Γ ≡s Γ′, iff SM(Γ ∪ ∆) = SM(Γ′ ∪ ∆) for any theory ∆. We will
provide a stronger definition of ≡s for expressions in L. Let Γ(ϕ) denote some
theory with a distinguished occurrence of a subformula ϕ and let Γ(ψ) be the
result of replacing that occurrence ϕ by ψ in Γ(ϕ). Two expressions ϕ, ψ ∈ L
are said to be strongly equivalent, also written ϕ ≡s ψ, when Γ(ϕ) ≡s Γ(ψ)
for an arbitrary5 Γ(ϕ) ⊆ L. We also recall next some basic definitions and
results related to the logic of Here-and-There (HT). Let At be a set of ground
atoms called the propositional signature. A propositional formula ϕ is defined
using the grammar:

ϕ ::= ⊥ | a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ for any a ∈ At.

We use Greek letters ϕ and ψ and their variants to stand for propositional
formulas. We define the derived operators ¬ϕ def= (ϕ→ ⊥), ϕ↔ ψ def= (ϕ→
ψ) ∧ (ψ → ϕ) and > def= ¬⊥.

5Note that, for arbitrary languages and semantics, this definition is stronger than usual,
as it refers to any subformula replacement and not just conjunctions of formulas, as usual.
For instance, ϕ ≡s ψ also implies {ϕ⊗ α} ≡s {ψ ⊗ α} for any binary operator ⊗ in our
language. When L is a logical language and ≡s amounts to equivalence in HT (or any
logic with substitution of equivalents) the distinction becomes irrelevant.

5

A classical interpretation T is a set of atoms T ⊆ At . We write |=cl

to stand both for classical satisfaction and entailment, and ≡cl represents
classical equivalence. An HT-interpretation is a pair 〈H,T 〉 of sets of atoms
H ⊆ T ⊆ At .

Definition 1 (HT-satisfaction). An interpretation 〈H,T 〉 satisfies a formula
ϕ, written 〈H,T 〉 |= ϕ, if any of the following recursive conditions holds:

• 〈H,T 〉 6|= ⊥
• 〈H,T 〉 |= p iff p ∈ H, for any atom p

• 〈H,T 〉 |= ϕ1 ∧ ϕ2 iff 〈H,T 〉 |= ϕ1 and 〈H,T 〉 |= ϕ2

• 〈H,T 〉 |= ϕ1 ∨ ϕ2 iff 〈H,T 〉 |= ϕ1 or 〈H,T 〉 |= ϕ2

• 〈H,T 〉 |= ϕ1 → ϕ2 iff both:

(i) T |=cl ϕ1 → ϕ2 and

(ii) 〈H,T 〉 6|= ϕ1 or 〈H,T 〉 |= ϕ2 �

It is not difficult to see that 〈T, T 〉 |= ϕ iff T |=cl ϕ. A (propositional)
theory is a set of propositional formulas. An interpretation 〈H,T 〉 is a model
of a theory Γ when 〈H,T 〉 |= ϕ for all ϕ ∈ Γ. A theory Γ entails a formula
ϕ, written Γ |= ϕ, when all models of Γ satisfy ϕ. Two theories Γ, Γ′ are
(HT)-equivalent , written Γ ≡ Γ′, if they share the same set of models.

Definition 2 (equilibrium/stable model). A total interpretation 〈T, T 〉 is an
equilibrium model of a formula ϕ iff 〈T, T 〉 |= ϕ and there is no H ⊂ T such
that 〈H,T 〉 |= ϕ. If so, we say that T is a stable model of ϕ. �

Proposition 1. The following are general properties of HT:

i) if 〈H,T 〉 |= ϕ then 〈T, T 〉 |= ϕ (i.e., T |=cl ϕ)

ii) 〈H,T 〉 |= ¬ϕ iff T |=cl ¬ϕ �

Definition 3 (Ferraris’ reduct). The reduct of a formula ϕ with respect to
an interpretation T , written ϕT , is defined as:

ϕT def=


⊥ if T 6|=cl ϕ
a if ϕ is some atom a ∈ T

ϕT
1 ⊗ ϕT

2 if T |=cl ϕ and ϕ = (ϕ1 ⊗ ϕ2) for some ⊗ ∈ {∧,∨,→}

That is, ϕT is the result of replacing by ⊥ each maximal subformula ψ of ϕ
s.t. T 6|=cl ψ.

6

Proposition 2 (Lemma 1 in [22]). For any pair of interpretations H ⊆ T
and any ϕ: H |=cl ϕ

T iff 〈H,T 〉 |= ϕ. �

As is well-known, strong equivalence for propositional formulas corresponds
to HT-equivalence [23], that is, ϕ ≡s ψ iff ϕ ≡ ψ in that language. The
following result follows from Corollary 3 in [24].

Proposition 3. If ϕ |= ψ and ϕ ≡cl ψ, then SM(ϕ) ⊇ SM(ψ). �

In other words, if ϕ is stronger than ψ in HT (and so, in classical logic
too), but they further happen to be classically equivalent, then ϕ is weaker
with respect to stable models. As an example, note that (p ∨ q) |= (¬p→ q).
As they are classically equivalent, SM(p ∨ q) ⊇ SM(¬p→ q) which is not such
a strong result. However, since HT-entailment is monotonic with respect to
conjunction, it follows that (p ∨ q) ∧ γ |= (¬p→ q) ∧ γ also holds for any γ,
and thus, if we replace a disjunctive rule (p ∨ q) by (¬p→ q) in any program
we may lose some stable models, but the remaining are still applicable to
(p ∨ q). We can generalize this behavior not only on conjunctions, but also
to cover the replacement of any subformula ϕ. We say that an occurrence
ϕ of a formula is positive in a theory Γ(ϕ) if the number of implications
in Γ(ϕ) containing occurrence ϕ in the antecedent is even. It is called negative
otherwise.

Proposition 4. Let ϕ and ψ be two formulas satisfying ϕ |= ψ and ϕ ≡cl ψ.
Then:

i) SM(Γ(ϕ)) ⊇ SM(Γ(ψ)) for any theory Γ(ϕ) where occurrence ϕ is positive;

ii) SM(Γ(ϕ))⊆ SM(Γ(ψ)) for any theory Γ(ϕ) where occurrence ϕ is nega-
tive. �

Back to the example, note that (p ∨ q) occurs positively in (p ∨ q) ∧ γ and
so, (¬p→ q) ∧ γ has a subset of stable models. On the other hand, it occurs
negatively in (p ∨ q) → γ, and so, (¬p → q) → γ has a superset of stable
models.

3. Aggregates as formulas

To deal with aggregates, we consider a simplified first-order6 signature Σ = 〈C,A,P〉
formed by three pairwise disjoint sets respectively called constants, aggregate

6An extension to a full first-order language is under development.

7

symbols and predicate symbols. An arithmetic term is a combination of nu-
merical constants, variables and arithmetic operators built in the usual way.
A term is either a constant c ∈ C, a variable X or an arithmetic term. We
use the vector overline to represent tuples of terms, such as ~t, and write |~t|
to stand for the tuple’s arity. As usual, a predicate atom is an expression of
the form p(~t) where ~t is a tuple of terms; an arithmetic atom is an expression
of the form t ≺ t′ with t and t′ arithmetic terms and ≺∈ {=, 6=,≤,≥, <,>}
an arithmetic relation. A regular atom is either a predicate atom or an
arithmetic atom. An (aggregate) formula ϕ is recursively defined by the
following grammar:

ϕ ::= ⊥ | a | f{ ~X :ϕ} ≺ t | f{~c :ϕ, . . . ,~c :ϕ} ≺ t | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

where a is regular atom, f ∈ A is an aggregate symbol, ~X is a non-empty
tuple of variables, ~c is a non-empty tuple of constants, ≺∈ {=, 6=,≤,≥, <,>}
is an arithmetic relation, and t is an arithmetic term. A (aggregate) the-
ory is a set of aggregate formulas. As we can see, we distinguish two
types of aggregates: f{ ~X :ϕ} ≺ t called GZ-aggregates (or set atoms); and
f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ t, with all ~ci of same arity, called F-aggregates. This
syntactic distinction respects the original syntax7 also turns out to be con-
venient for comparison purposes, since we can assign a different semantics
to each type of aggregate without ambiguity. An important observation is
that, in our general language, it is possible to nest GZ and F-aggregates
in a completely arbitrary way, since ϕ and ϕ1, . . . , ϕm inside brackets are
aggregate formulas in their turn. Achieving this generalisation is not surpris-
ing, once aggregates can be seen as propositional formulas. A GZ-formula
(resp. F-formula) is one in which all its aggregates are GZ-aggregates (resp.
F-aggregates). We sometimes informally talk about rules (resp. programs)
instead of formulas (resp. theories) when the syntax coincides with the usual
in logic programming.

The technical treatment of F-aggregates is directly extracted from [17],
so the focus in this section is put on GZ-aggregates, where our contribution
lies. One of their distinctive features is the use of variables ~X. In fact,
a formula ϕ inside A = f{ ~X :ϕ} ≺ t (called the condition of A) normally

contains occurrences of ~X, so we usually write it as cond(~X). Moreover,

7Ferraris actually uses ϕi = w rather than ~c :ϕ, but this is not a substantial difference,
assuming w is the first element in tuple ~c.

8

the occurrences of variables ~X in A are said to be bound to A. A variable
occurrence X in a formula ϕ is free if it is not bound to any GZ-aggregate
in ϕ. An atom is either a regular atom (predicate or arithmetic atom) or an
aggregate. A (regular) literal is either a (regular) atom a (positive literal) or
its default negation not a (negative literal). A predicate atom p(~t) is said to

be ground iff all its terms are constants ~t ⊆ C|~t|; an arithmetic atom t ≺ t′ is
said to be ground iff t and t′ are numbers; and an aggregate atom f{. . . } ≺ t
is said to be ground iff it contains no free variables8 and t is a number. We
write At(C,P) to stand for the set of ground atoms for predicates P and
constants C. A theory is said to be ground iff all atoms occurring in it are
ground. We define the grounding of a formula ϕ(~X) with free variables ~X as

expected: Gr(ϕ(~X)) def= {ϕ(~c) | ~c ∈ C| ~X|} where ϕ(~c) is the result of replacing

all occurrences of the variables ~X in ϕ(~X) by the constants in ~c and evaluating

all arithmetic terms. Similarly, by Gr(Γ) def=
⋃
{Gr(ϕ(~X)) | ϕ(~X) ∈ Γ} we

denote the grounding of any theory Γ. Until Section 5, we will exclusively
deal with ground theories. This is not a limitation, since a non-ground formula
ϕ(~X) in some theory can be understood as an abbreviation of its grounding

Gr(ϕ(~X)), as usual. Given a set of formulas S, we write
∧
S and

∨
S to

stand for their conjunction and disjunction, respectively; we let
∨
∅ = ⊥ and∧

∅ = >.
To define the semantics, we assume that for all aggregate symbols f ∈ A

and arities m ≥ 1, there exists a predefined associated partial function
f̂m : 2C

m → Z that, for each set S of m-tuples of constants, either returns
a number f̂m(S) or is undefined. This predefined value is the expected
one for the usual aggregate functions sum, count, max, etc. For example, for
aggregate symbol sum and arity m = 1 the function returns the aggregate
addition when the set consists of (1-tuples of) integer numbers. For instance,
ŝum1({7, 2,−4}) = 5 and ŝum1(∅) = 0 but ŝum1({7, a, 3, b}) is undefined. For
integer aggregate functions of arity m > 1, we assume that the aggregate is
applied on the leftmost elements in the tuples when all of them are integer, so
that, for instance, ŝum2({〈7, a〉, 〈2, b〉, 〈2, a〉}) = 11. We omit the arity when
clear from the context.

A classical interpretation T is a set of ground atoms T ⊆ At(C,P).

Definition 4. A classical interpretation T satisfies a formula ϕ, denoted by

8Note that ground aggregates may still contain variables, but bound to the aggregate.

9

T |=cl ϕ, when the following recursive conditions hold:

• T 6|=cl ⊥
• T |=cl p(~c) iff p(~c) ∈ T for any ground atom p(~c)

• T |=cl f{ ~X :cond(~X)} ≺ n iff f̂| ~X|
(
{ ~c ∈ C| ~X| | T |=cl cond(~c) }

)
has some value k ∈ Z and k ≺ n
under the usual meaning of
arithmetic relation ≺

• T |=cl f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ n iff f̂|~c1|
(
{ ~ci | T |=cl ϕi }

)
has some value k ∈ Z and k ≺ n,
again, under its usual meaning

• T |=cl ϕ1 ∧ ϕ2 iff T |=cl ϕ1 and T |=cl ϕ2

• T |=cl ϕ1 ∨ ϕ2 iff T |=cl ϕ1 or T |=cl ϕ2

• T |=cl ϕ1 → ϕ2 iff T 6|=cl ϕ1 or T |=cl ϕ2

We say that T is a (classical) model of a theory Γ iff T |=cl ϕ for all ϕ ∈ Γ. �

Given interpretation T , we divide any theory Γ into the two disjoint
subsets:

Γ+
T

def= {ϕ ∈ Γ | T |=cl ϕ} Γ−T
def= Γ \ Γ+

T

that is, the formulas in Γ satisfied by T and not satisfied by T , respectively.
When set Γ is parametrized, say Γ(z), we write Γ+

T (z) and Γ−T (z) instead
of Γ(z)+T and Γ(z)−T . For instance, Gr+T (ϕ) collects the formulas from Gr(ϕ)
satisfied by T .

Definition 5 (reduct). We will define the reduct of a GZ-aggregate formula

A = f{ ~X :cond(~X)} ≺ n with respect to a classical interpretation T , denoted
as AT , in the following way:

AT def=

{
⊥ if T 6|=cl A(∧

Gr+T (cond(~X))
)T

otherwise

The reduct of an F-aggregate B = f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ n is the formula:

BT def=

{
⊥ if T 6|=cl B
f{~c1 :ϕT

1 , . . . ,~cm :ϕT
m} ≺ n otherwise

The reduct of any other formula is just as in Definition 3. The reduct of a
theory is the set of reducts of its formulas. �

10

Definition 6 (stable model). A classical interpretation T is a stable model
of a theory Γ iff T is a ⊆-minimal model of ΓT . �

Note that, when restricted to F-formulas, Definition 3 exactly matches
the reduct definition for aggregate theories by Ferraris [17]. On the other
hand, when restricted to GZ-formulas, it generalises the reduct definition by
Gelfond-Zhang [19] allowing arbitrary formulas in cond(~X), including nested
aggregates. For this reason, in our setting, the reduct is recursively applied
to (
∧
Gr+T (cond(~X)))T . In the original case [19], cond(~X) was a conjunction

of atoms, but it is straightforward to see that, then, (
∧
Gr+T (cond(~X)))T =∧

Gr+T (cond(~X)). To sum up, the above definitions of stable model and reduct
correspond to the original ones for Ferraris [17] and Gelfond-Zhang [19] when
restricted to their respective syntactic fragments.

Proposition 5. Stable models are classical models. �

Example 1. Let P1 be the program consisting of fact p(b) and rule (1) with
n = 1, and let A1 be the GZ-aggregate in that rule. We show that P1 has
no stable models. Given ground atoms p(a) and p(b), the only model of
the program is T = {p(a), p(b)}, since p(b) is fixed as a fact, and so, A1

must be true, so (1) entails p(a) too. Since T |=cl A1, the reduct becomes
AT

1 = p(a) ∧ p(b), and so, P T
1 contains the rules p(b) and p(a)← p(a) ∧ p(b),

their least model being {p(b)}, so T is not stable. As another example of the
aggregate reduct, if we took T = ∅, then T 6|=cl A1 and AT

1 = ⊥. �

Example 2. As an example of nested GZ-aggregates, consider:

A2 = count
{
X : sum{Y : owns(X, Y)} ≥ 10

}
≥ 2

and imagine that owns(X, Y) means that X owns some item Y whose cost is
also Y . Accordingly, A2 checks whether there are 2 or more persons X that
own items for a total cost of at least 10. Suppose we have the interpretation:

T = {owns(a, 6), owns(a, 8), owns(b, 2), owns(b, 3), owns(c, 12)}

Then A2 holds in T since both a and c have total values greater than 10: 14 for
a and 12 for c. Therefore, AT

2 corresponds to (
∧
Gr+T (sum{Y : owns(X, Y)} ≥

10))T . After grounding free variable X, we obtain:

(sum{Y : owns(a, Y)} ≥ 10 ∧ sum{Y : owns(c, Y)} ≥ 10)T

11

Note that b does not occur, since its total sum is lower than 10 in T . If
we apply again the reduct to the conjuncts above, we eventually obtain the
conjunction: owns(a, 6) ∧ owns(a, 8) ∧ owns(c, 12). �

Proposition 6. Given formulas ϕ and ψ, the following conditions hold:

i) H |=cl ϕ
T implies T |=cl ϕ, and

ii) T |=cl ϕ
T iff T |=cl ϕ

for any pair of interpretations H ⊆ T . Furthermore, the following condition
also holds

iii) if H |=cl ϕ
T iff H |=cl ψ

T for all interpretations H ⊆ T , then ϕ and ψ
are strongly equivalent, ϕ ≡s ψ. �

Proposition 6 generalises results from [17] to our extended language combining
GZ and F-aggregates. In particular, item iii) provides a sufficient condition
for strong equivalence that, in the case of propositional formulas, amounts to
HT-equivalence.

We now move to consider propositional translations of aggregates. As said
in the introduction, any F-aggregate can be understood as a propositional
formula. Take any F-aggregate B = f{~c1 : ϕ1, . . . ,~cm : ϕm} ≺ n where all
formulas in {ϕ1, . . . , ϕm} are propositional – moreover, let us call conds (the
conditions) to this set of formulas. By Φ[B], we denote the propositional
formula:

Φ[B] def=
∧

T :T 6|=clB

((∧
conds+

T

)
→
(∨

conds−T

))
(4)

The following result directly follows from Proposition 12 in [17].

Proposition 7. For any F-aggregate B with propositional conditions, we
have B ≡s Φ[B]. �

Given an F-formula ϕ, we can define its (strongly equivalent) propositional
translation Φ[ϕ] as the result of the exhaustive replacement of non-nested
aggregates B by Φ[B] until all aggregates are eventually removed.

Our main contribution is to provide an analogous propositional encoding
for GZ-aggregates. To this aim, we extend translation Φ to be also ap-
plicable to any GZ-aggregate A = f{ ~X :cond(~X)} ≺ n with a propositional
condition cond(~X), so that Φ[A] corresponds to the propositional formula:

Φ[A] def=
∨

T :T |=clA

(∧
Gr+T (cond(~X)) ∧ ¬

∨
Gr−T (cond(~X))

)
(5)

12

Proposition 8. For any GZ-aggregate A with a propositional condition, we
have A ≡s Φ[A]. �

This result allows us to define, for any arbitrary aggregate formula ϕ,
its (strongly equivalent) propositional translation Φ[ϕ], again by exhaustive
replacement of non-nested aggregates (now of any kind) C by their proposi-
tional formulas Φ[C]. For any theory Γ, its (strongly equivalent) propositional
translation is defined as Φ[Γ] def= { Φ[ϕ] | ϕ ∈ Γ }.

Example 3. Take again the aggregate A1 in the body of rule (1) with n = 1
and assume we have constants a, b. The classical models of A1 are {p(a)},
{p(b)} and {p(a), p(b)}, since some atom p(X) must hold. As a result:

Φ[A1] = p(a)∧¬p(b) ∨ p(b)∧¬p(a) ∨ p(a)∧p(b)

and Φ[(1)] amounts to the last three rules in (3). �

Example 4. Take GZ-aggregate A3 = count{X : p(X)} = 1 and assume we
have constants C = {a, b, c}. The classical models of A3 are {p(a)}, {p(b)}
and {p(c)}. Accordingly:

Φ[A3] =

p(a) ∧ ¬(p(b) ∨ p(c))
∨ p(b) ∧ ¬(p(a) ∨ p(c))
∨ p(c) ∧ ¬(p(a) ∨ p(b))

≡
p(a) ∧ ¬p(b) ∧ ¬p(c)
∨ p(b) ∧ ¬p(a) ∧ ¬p(c)
∨ p(c) ∧ ¬p(a) ∧ ¬p(b)

Theorem 1 (Main Result). Any aggregate theory Γ is strongly equivalent to
its propositional translation Φ[Γ], that is, Γ ≡s Φ[Γ]. �

4. Relation to Ferraris Aggregates

In this section, we study the relation between GZ and F-aggregates.
One first observation is that GZ-aggregates are first-order structures with
quantified variables, while F-aggregates allow sets of propositional expressions.
Encoding a GZ-aggregate as an F-aggregate is easy: we can just ground the
variables. The other direction, however, is not always possible, since the set of
conditions in the F-aggregate may not have a regular representation in terms
of variable substitutions. Given a GZ-aggregate A = f{ ~X :cond(~X)} ≺ n we
define its corresponding F-aggregate F[A]:

F[A] def= f{ ~c :cond(~c) | cond(~c) ∈ Gr(cond(~X)) } ≺ n (6)

13

This correspondence is analogous to the process of instantiation used in [18]
to ground aggregates with variables. It is easy to check that A and F[A] are
classically equivalent. This can be checked using satisfaction from Definition 4
or classical logic for their propositional representations Φ[A] ≡cl Φ[F[A]].
Moreover, it can be observed that these two logical representations are
somehow dual. Indeed, Φ[F[A]] eventually amounts to:

Φ[F[A]] ≡
∧

T :T 6|=clA

((∧
Gr+T (cond(~X))

)
→
(∨

Gr−T (cond(~X))
))

(7)

which is a conjunction of formulas like α→ β for countermodels of A, whereas
Φ[A], formula (5), is a disjunction of formulas like α ∧ ¬β for models of A.
Another interesting consequence of the classical equivalence of A and F[A] is
that, due to Proposition 1- ii), we can safely replace one by another when
negated. In other words:

Proposition 9. Let ϕ be a formula with some occurrence of a GZ-aggregate
A and let ψ be the result of replacing A by its corresponding F-aggregate F[A]
in ϕ. Then, we have that ¬ϕ ≡ ¬ψ. �

However, as we saw in the introduction examples, replacing some GZ-
aggregate A by its F-aggregate version F[A] may change the program semantics.
Still, the stable models obtained after such replacement are not arbitrary. As
we said, [20] proved that if the GZ-aggregate A occurs in a positive rule body,
then the replacement by the F-aggregate F[A] preserves the stable models,
but may yield more. Next, we generalise this result to aggregate theories
without nested GZ-aggregates. To this aim, we make use of the following
proposition asserting that, indeed, Φ[A] is stronger than Φ[F[A]] in HT.

Proposition 10. For any GZ-aggregate A, Φ[A] |= Φ[F[A]]. �

Theorem 2. For any occurrence A of a GZ-aggregate without nested aggre-
gates:

i) SM(Γ(A)) ⊇ SM(Γ(F[A])) for any theory Γ(A) where occurrence A is
positive;

ii) SM(Γ(A)) ⊆ SM(Γ(F[A])) for any theory Γ(A) where occurrence A is
negative. �

Proof. From Φ[A] ≡cl Φ[F[A]] and Proposition 10 we directly apply Proposi-
tion 4. �

14

In particular, this means that if we replace a (non-nested) GZ-aggregate A
by its F-version F[A] in the positive head of some rule, we still get stable
models of the original program, but perhaps not all of them. Theorem 2 is
not directly applicable to theories with nested aggregates because applying
operator Φ[·] produces a new formula in which nested aggregates may occur
both positively and negatively.

It is well known that GZ and F-semantics do not agree even in the case
of monotonic aggregates as illustrated by the example in the introduction.
Nevertheless, we identify next a more restricted family of aggregates for which
both semantics coincide.

Proposition 11. Any GZ-aggregate A of the following types satisfies A ≡s F[A]:

i) A = (count{ ~X : cond(~X)} = n)

ii) A = (sum{X, ~Y : cond(X, ~Y) ∧X > 0} = n)

iii) A = (sum{X, ~Y : cond(X, ~Y) ∧X < 0} = n). �

Note that the result ii (resp. iii) of Proposition 11 does not apply if the
condition X > 0 (resp. X < 0) is dropped. For instance, the program
consisting of the rule

p(0) ← sum{X : p(X)} = 0 (8)

has a unique stable model {p(0)} under Ferraris’ semantic but no stable
model under GZ’s one.

5. Relation between Alog and clingo aggregates

In this section, we restrict ourselves to the syntax of logic programming
and lift the relation between GZ and F-aggregates to their respective first
order languages, studying a syntactic fragment in which the semantics of
Alog [19] and gringo [21] coincide. We also show that every Alog program
whose aggregates are all of count type can be easily rewritten to this fragment
in an human friendly way. The same applies to program that also contain sum

aggregates provided that 0 does not occur as a constant in the program. It
is worth mentioning that a compilation for GZ-aggregates into F-aggregates
has already been described in the literature [25]. This compilation has
the advantage of covering programs containing any kind of aggregates. On
the other hand, it makes uses of new auxiliary atoms that obscure the

15

semantics of the program. In this sense, this compilation is better suited
for automatic translation while our rewriting, though less general, preserves
human readability.

An Alog rule is an expression of the form:

Head ← Pos ∧ Neg ∧ Agg (9)

where Head is a disjunction of atoms, Pos is a conjunction of regular atoms,
Neg is a conjunction of negative regular literals, and Agg is a conjunction of
GZ-aggregates. An Alog program is a set of Alog rules. Recall that, in this
section, we no longer assume that atoms or programs are ground. Note that
every Alog program is also a program in the syntax of gringo, though their
semantic may differ. We also recall the notion of global variable from [21]: a
variable is said to be global in a rule of the form of (9) iff it occurs in any
literal in Pos or Neg or in any term t of any aggregate atom in Agg of the
form f{ ~X :cond(~X)} ≺ t. An instance of a rule is obtained by replacing all
global variables by constants. The gringo grounding of logic program Π,
denoted Grgringo(Π), is obtained by collecting all possible instances of its rules
and replace every aggregate atom A by F[A]. A set of atoms T is a gringo

stable model of a program Π iff it is a stable model of Grgringo(Π). Note
that notions of global and free variables do not coincide: an occurrence of
a variable may be both global and bound. This implies that the Alog and
gringo grounding of a program may be different and, as a result, the same
program may have different stable models. To illustrate this fact, consider
the following example from [19]:

Example 5. Let P2 consisting of the following rules

r ← count{X : p(X)} ≥ 2 ∧ q(X) (10)

p(a)

p(b)

q(a)

Variable X is both global in (10) and bound in count{X : p(X)} ≥ 2. As a
result, the Alog grounding of P2 is obtained by replacing rule (10) by rules

r ← count{X : p(X)} ≥ 2 ∧ q(a)

r ← count{X : p(X)} ≥ 2 ∧ q(b)

16

On the other hand, its clingo grounding is obtained by replacing the same rule
by

r ← count{a : p(a)} ≥ 2 ∧ q(a)

r ← count{b : p(b)} ≥ 2 ∧ q(b)

Both programs have a unique stable model, but a different one: {p(a), p(b), q(a), r}
for the former and {p(a), p(b), q(a)} for the latter. �

We say that an aggregate atom is closed [26] iff no global variable occurs
in it. We say that a rule (resp. program) is closed if all its aggregate atoms
are closed. Then, from Proposition 11, we immediately get the following
result for closed programs:

Proposition 12. Let Π be a closed logic program where all aggregate atoms
are of the form count{ ~X : cond(~X)} = t. Then, the stable model of Π with
respect to Alog and gringo coincide. �

An interesting property of Alog is that we can rewrite any logic program
as an equivalent closed program where all aggregate conditions are equalities.

Definition 7. Given a logic program Π, by tr 1(Π) we denote the result of
replacing

i) every occurrence of a global variable that is also bound to some aggregate
A by a same new fresh variable not occurring anywhere else, and

ii) every aggregate f{ ~X : cond(~X, ~Y)} ≺ t with ≺ different from =, by

the formula f{ ~X : cond(~X, ~Y)} = Z ∧ Z ≺ t with Z also a new fresh
variable not occurring any where else. �

Proposition 13. Given a logic program Π, the Alog stable models of Π and
tr 1(Π) coincide. �

From Proposition 12 and Proposition 13 it immediately follows that we
can rewrite any Alog program where all aggregates are of the type count into
an equivalent one in which its stable models coincide with the gringo stable
models.

Theorem 3. Given a logic program Π where all aggregate atoms are of the
form count{ ~X : cond(~X)} = t, then the Alog stable models of Π coincide
with the gringo stable models of tr 1(Π). �

17

Example 6 (Ex. 5 continued). As mentioned above, P2 is a program whose
stable models are different according to Alog and gringo semantics. On the
other hand, we have that tr 1(P2) is

r ← count{Y : p(Y)} = Z ∧ Z ≥ 2 ∧ q(X) (11)

p(a)

p(b)

q(a)

whose unique stable model is {p(a), p(b), q, r} according to both semantics.
Recall that this is the the unique stable model of P2 according to Alog. As
a further example, let P3 be the logic program consisting of rule (1) with
n = 1. Recall from the introduction that P3 has a unique stable model
{p(a)} according to Ferraris semantics while it does not have any stable
model semantics according to Gelfond and Zhang semantics. Note that, since
this program is ground, gringo and Alog semantics respectively coincide
with Ferraris and Gelfond and Zhang semantics as described in Section 3.
Furthermore, we have that tr 1(P3) is

p(a)← count{X : p(X)} = Z ∧ Z ≥ 0

which has no stable model under both semantics. �

Note that, in general, the rewriting tr 1(·) is not safe for other kinds of
aggregates with an associated function f for which there exist sets S and S ′

with S ⊂ S ′ such that f(S) = f(S ′). For instance, the sum of the empty set
and the set {1,−1} is in both cases 0 and, as a result, we have that programs
involving sum over these two sets will have different stable models.

Example 7. Let P4 be the logic program consisting of the following rules:

p(1) ← sum{X : p(X)} = 0 (12)

p(1) ← p(−1)

p(−1) ← p(1)

It is easy to check that tr 1(P4) = P4, but this program has no stable model
under the Alog semantics and has a unique stable model {p(1), p(−1)} under
the gringo semantics. �

18

6. Conclusions

We have provided a (strong equivalence preserving) translation from logic
programs with GZ-aggregates to propositional theories in Equilibrium Logic.
Once we understand aggregates as propositional formulas, it is straightforward
to extend the syntax to arbitrary nesting of aggregates (both GZ and F-
aggregates) plus propositional connectives, something we called aggregate
theories. We have provided two alternative semantics for these theories:
one based on a direct, combined extension of GZ and F-reducts, and the
other on a translation to propositional formulas. The propositional formula
translation has helped us to characterise the effect (with respect to the
obtained stable models) of replacing a GZ-aggregate by its corresponding
F-aggregate. Moreover, we have been able to prove that both aggregates have
the same behaviour in the scope of negation. Finally, we identified a class of
aggregates in which the GZ and F-semantics coincide. It is worth to mention
that a propositional formula9 equivalent to Son and Pontelli aggregates
was also given in [16]. We expect that the current propositional formula
translations will open new possibilities to explore formal properties and
potential implementations of both GZ and F-aggregates, possibly extending
the idea of [20] to our general aggregate theories. Finally, an extension of the
current approach to a full first-order language with partial, evaluable functions
(as those in [27]) was developed in [28]. This allows treating aggregates as
ordinary first-order terms and combine them with arbitrary predicates, not
just arithmetic relations.

7. References

[1] J. McCarthy, Circumscription: A form of non-monotonic reasoning,
Artificial Intelligence 13 (1–2) (1980) 27–39.

[2] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1–2)
(1980) 81–132.

[3] D. V. McDermott, J. Doyle, Non-monotonic logic I, Artificial Intelligence
13 (1–2) (1980) 41–72.

9This formula is classically equivalent to the ones for GZ and F-aggregates, but there is
no pairwise HT-equivalence among the three of them.

19

[4] C. Baral, Knowledge Representation, Reasoning and Declarative Problem
Solving, Cambridge University Press, 2003.

[5] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving:
From theory to practice, Artificial Intelligence 187-188 (2012) 52–89.

[6] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, G. Ielpa, Design and
implementation of aggregate functions in the DLV system, Theory and
Practice of Logic Programming 8 (5-6) (2008) 545–580.

[7] E. Erdem, M. Gelfond, N. Leone, Applications of ASP, AI Magazine
37 (3) (2016) 53–68.

[8] M. Gelfond, V. Lifschitz, The stable model semantics for logic program-
ming, in: R. Kowalski, K. Bowen (Eds.), Proceedings of the Fifth Inter-
national Conference and Symposium of Logic Programming (ICLP’88),
MIT Press, 1988, pp. 1070–1080.

[9] D. Pearce, Equilibrium logic, Annals of Mathematics and Artificial
Intelligence 47 (1-2) (2006) 3–41.

[10] P. Ferraris, J. Lee, V. Lifschitz, A new perspective on stable models,
in: M. Veloso (Ed.), Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), AAAI/MIT Press, 2007,
pp. 372–379.

[11] A. Harrison, V. Lifschitz, M. Truszczynski, On equivalence of infinitary
formulas under the stable model semantics, Theory and Practice of Logic
Programming 15 (1) (2015) 18–34.

[12] D. Pearce, A new logical characterisation of stable models and answer
sets, in: J. Dix, L. Pereira, T. Przymusinski (Eds.), Proceedings of the
Sixth International Workshop on Non-Monotonic Extensions of Logic
Programming (NMELP’96), Vol. 1216 of Lecture Notes in Computer
Science, Springer-Verlag, 1997, pp. 57–70.

[13] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski,
T. Krennwallner, N. Leone, F. Ricca, T. Schaub, ASP-Core-2:
Input language format, Available at https://www.mat.unical.it/

aspcomp2013/ASPStandardization (2012).

20

[14] P. Simons, I. Niemelä, T. Soininen, Extending and implementing the
stable model semantics, Artificial Intelligence 138 (1-2) (2002) 181–234.

[15] N. Pelov, M. Denecker, M. Bruynooghe, Well-founded and stable seman-
tics of logic programs with aggregates, Theory and Practice of Logic
Programming 7 (3) (2007) 301–353.

[16] T. C. Son, E. Pontelli, A constructive semantic characterization of
aggregates in answer set programming, Theory and Practice of Logic
Programming 7 (3) (2007) 355–375.

[17] P. Ferraris, Logic programs with propositional connectives and aggregates,
ACM Transactions on Computational Logic 12 (4) (2011) 25.

[18] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive
aggregates in answer set programming, Artificial Intelligence 175 (1)
(2011) 278–298.

[19] M. Gelfond, Y. Zhang, Vicious circle principle and logic programs with
aggregates, Theory and Practice of Logic Programming 14 (4-5) (2014)
587–601.

[20] M. Alviano, W. Faber, Stable model semantics of abstract dialectical
frameworks revisited: A logic programming perspective, in: Q. Yang,
M. Wooldridge (Eds.), Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, AAAI Press, 2015, pp. 2684–2690.
URL http://ijcai.org/Abstract/15/380

[21] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, T. Schaub, Abstract
Gringo, Theory and Practice of Logic Programming 15 (4-5) (2015)
449–463, available at http://arxiv.org/abs/1507.06576.

[22] P. Ferraris, Answer sets for propositional theories, in: C. Baral, G. Greco,
N. Leone, G. Terracina (Eds.), Proceedings of the Eighth International
Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’05), Vol. 3662 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, 2005, pp. 119–131.

[23] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic pro-
grams, ACM Transactions on Computational Logic 2 (4) (2001) 526–541.

21

doi:10.1145/502166.502170.
URL http://doi.acm.org/10.1145/502166.502170

[24] F. Aguado, P. Cabalar, D. Pearce, G. Pérez, C. Vidal, A denotational se-
mantics for equilibrium logic, Theory and Practice of Logic Programming
15 (4-5) (2015) 620–634.

[25] M. Alviano, N. Leone, On the properties of GZ-aggregates in answer set
programming, in: S. Kambhampati (Ed.), Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, IJCAI/AAAI Press, 2016,
pp. 4105–4109.
URL http://www.ijcai.org/Abstract/16/611

[26] A. Harrison, V. Lifschitz, F. Yang, The semantics of gringo and infinitary
propositional formulas, in: C. Baral, G. De Giacomo, T. Eiter (Eds.),
Proceedings of the Fourteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR’14), AAAI Press, 2014.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/

7966

[27] P. Cabalar, Functional answer set programming, Theory and Practice of
Logic Programming 11 (2-3) (2011) 203–233.

[28] P. Cabalar, J. Fandinno, L. F. del Cerro, D. Pearce, Functional ASP
with intensional sets: Application to gelfond-zhang aggregates, Theory
and Practice of Logic Programming 18 (3-4) (2018) 390–405.

Appendix A. Proofs

Proof of Proposition 4. First, note that ϕ ≡cl ψ implies Γ(ϕ) ≡cl Γ(ψ)
due to substitution of equivalents in classical logic, regardless whether ϕ
occurs positively or negatively in Γ(ϕ). On the other hand, HT satisfies the
Deduction Theorem, i.e., ϕ |= ψ iff ϕ→ ψ is valid and, from the latter, we
can derive the following intuitionistic consequences:

(ϕ ∧ γ) → (ψ ∧ γ)

(ϕ ∨ γ) → (ψ ∨ γ)

(γ → ϕ) → (γ → ψ)

(ψ → γ) → (ϕ→ γ)

22

which are also consequences in the intermediate logic of HT. As a result, if
ϕ |= ψ, the above formulas hold and, together with ϕ ≡cl ψ, we can apply
Proposition 3 to conclude:

SM(ϕ ∧ γ) ⊇ SM(ψ ∧ γ)

SM(ϕ ∨ γ) ⊇ SM(ψ ∨ γ)

SM(γ → ϕ) ⊇ SM(γ → ψ)

SM(ϕ→ γ) ⊆ SM(ψ → γ)

Finally, we can apply these relations by bottom-up structural induction on
Γ(ϕ) having in mind that, as we can see, each time we work with a subformula
in an implication antecedent, the inclusion relation is reversed. If this happens
an even number of times, the final effect is canceled, and so SM(Γ(ϕ)) ⊇
SM(Γ(ψ)), since we started with SM(ϕ) ⊇ SM(ψ). Otherwise, visiting an odd
number of implication antecedents, we get SM(Γ(ϕ)) ⊆ SM(Γ(ψ)). �

Before proving Proposition 6, we introduce first some auxiliary lemmas.

Lemma 1. Let H and T be two classical interpretations such that H ⊆ T
and ϕ be a formula. Then, H |=cl ϕ

T implies T |=cl ϕ.

Proof. The proof is done by structural induction assuming the statement
holds for every subformula of ϕ. Note that H |=cl ϕ

T implies that the case
ϕT = ⊥ is always disregarded.
Case 1 : ϕ = a ground atom. Then

H |=cl a
T iff (H |=cl a and a ∈ T), and so, T |=cl a

Case 2 : ϕ = A = f{ ~X :cond(~X)} ≺ n a GZ-aggregate. Then

H |=cl A
T iff (H |=cl

(∧
Gr+T (cond(~X))

)T
with T |=cl A). Thus, T |=cl A

Case 3 : ϕ = B = f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ n an F-aggregate. Then

H |=cl B
T iff (H |=cl f{~c1 :ϕT

1 , . . . ,~cm :ϕT
m} ≺ n and T |=cl B).

and so, T |=cl B.
Case 4 : In case that ϕ = (ϕ1 ⊗ ϕ2). By definition with ⊗ ∈ {∧,∨,→},

H |=cl ϕ
T iff H |=cl (ϕ1 ⊗ ϕ2)

T

iff H |=cl (ϕT
1 ⊗ ϕT

2) for T |=cl (ϕ1 ⊗ ϕ2)

which implies T |=cl ϕ

�

23

Lemma 2. Any set of atoms T and formula ϕ satisfy: T |=cl ϕ
T iff T |=cl ϕ.

Proof. From Lemma 1 with H = T , it immediately follows that T |=cl ϕ
T

implies T |=cl ϕ. We need to prove T |=cl ϕ implies T |=cl ϕ
T .

Case 1 : ϕ = a ground atom. Then

T |=cl a iff a ∈ T implies aT = a implies T |=cl a
T

Case 2 : ϕ = A = f{ ~X :cond(~X)} ≺ n a GZ-aggregate. Then,

T |=cl A implies f̂| ~X|
(
{ ~c ∈ C| ~X| | T |=cl cond(~c) }

)
≺ n

and AT =
(∧

Gr+T (cond(~X))
)T

Furthermore, by induction hypothesis, T |=cl cond(~c) implies that T |=cl

cond(~c)T for all ~c ∈ C| ~X| and, thus,

T |=cl

(∧{
cond(~c)T

∣∣ ~c ∈ C| ~X| and T |=cl cond(~c)
})

implies T |=cl

(∧{
cond(~c)

∣∣ ~c ∈ C| ~X| and T |=cl cond(~c)
})T

implies T |=cl

(∧{
ψ ∈ { cond(~c) | ~c ∈ C| ~X| }

∣∣ T |=cl ψ
})T

implies T |=cl

(∧{
ψ ∈ Gr(cond(~X))

∣∣ T |=cl ψ
})T

implies T |=cl

(∧
Gr+T (cond(~X))

)T
implies T |=cl A

T

Case 3 : ϕ = B = f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ n an F-aggregate. Then

T |=cl B implies BT = f{~c1 :ϕT
1 , . . . ,~cm :ϕT

m} ≺ n and f̂|~c|
(
{ ~ci | T |=cl ϕi }

)
≺ n

implies T |=cl f̂|~c|
(
{ ~ci | T |=cl ϕ

T
i }
)
≺ n

implies T |=cl f{~c1 :ϕT
1 , . . . ,~cm :ϕT

m} ≺ n

implies T |=cl B
T

Case 4 : In case that ϕ = (ϕ1⊗ϕ2) with ⊗ ∈ {∧,∨}. By induction, it follows

T |=cl (ϕ1 ⊗ ϕ2) implies (ϕ1 ⊗ ϕ2)
T = (ϕT

1 ⊗ ϕT
2) and T |=cl (ϕT

1 ⊗ ϕT
2)

implies T |=cl (ϕ1 ⊗ ϕ2)
T

implies T |=cl ϕ
T

24

Case 5 : In case that ϕ = (ϕ1 → ϕ2). By induction it follows

T |=cl (ϕ1 → ϕ2) implies ϕT = (ϕT
1 → ϕT

2) and either T 6|=cl ϕ1 or T |=cl ϕ2

implies ϕT = (ϕT
1 → ϕT

2) and either T 6|=cl ϕ
T
1 or T |=cl ϕ

T
2

implies ϕT = (ϕT
1 → ϕT

2) and T |=cl ϕ
T
1 → ϕT

2

implies T |=cl ϕ
T �

For formulas ϕ and ψ, let us write ϕ⇔ ψ when the following condition hold:
H |=cl ϕ

T iff H |=cl ψ
T for all interpretations H ⊆ T .

Lemma 3. Let ψ and ψ′ be a pair of formulas whose unique difference is
that some subformula ϕ of ψ is replaced by another subformula ϕ′ in ψ′. If
ϕ⇔ ϕ′ then ψ ⇔ ψ′.

Proof. The proof follows by structural induction assuming the statement
holds for all subformulas of ψ.
Case 1 : ψ = a ground atom, then the only (sub-)formula of ψ is ψ itself.
Thus either both ψ = ϕ and ψ′ = ϕ′ or ψ = ψ′. In both cases ψ ⇔ ψ′.

In the following holds, if ψ = ϕ and ψ′ = ϕ′ then the assertion is trivial.

Case 2: ψ = f{ ~X :cond(~X)} ≺ n is a GZ-aggregate.

Then, ψ′ = f{ ~X :cond ′(~X)} ≺ n and, by induction hypothesis cond(X) ⇔
cond ′(X) holds. Furthermore, from Lemma 2, this implies that cond(~c) ≡cl

cond ′(~c). Then,

H |=cl ψ
T iff H |=cl

∧
{ cond(~c)T | T |=cl cond(~c) with ~c ∈ C ~X } and T |=cl ψ

iff H |=cl

∧
{ cond ′(~c)T | T |=cl cond ′(~c) with ~c ∈ C ~X } and T |=cl ψ

′

iff H |=cl (ψ′)T

That is, ψ ⇔ ψ′.

Case 3 : ψ = f{~c1 :ϕ1, . . . ,~cm :ϕm} ≺ n an F-aggregate.
Then, ψ′ = f{~c1 :ϕ′1, . . . ,~cm :ϕ′m} ≺ n with ϕi ⇔ ϕ′i for all i by induction
hypothesis. Then,

H |=cl ψ
T iff H |=cl f{~c1 :ϕT

1 , . . . ,~cm :ϕT
m} ≺ n and T |=cl ψ

iff H |=cl f{~c1 : (ϕ′1)
T , . . . ,~cm : (ϕ′m)T} ≺ n and T |=cl ψ

′

iff H |=cl (ψ′)T

25

That is, ψ ⇔ ψ′.

Case 4 : If ψ = ϕ1 ⊗ ϕ2 for ⊗ ∈ {∧,∨,→}, then ψ′ = ϕ′1 ⊗ ϕ′2 with ϕ′i ⇔ ϕ′i
holds, by induction hypothesis. Then,

H |=cl ψ
T iff H |=cl ϕ

T
1 ⊗ ϕT

2 and T |=cl ψ

iff H |=cl (ϕ′1)
T ⊗ (ϕ′2)

T and T |=cl ψ
′

iff H |=cl (ψ′)T

That is, ψ ⇔ ψ′. �

Proof of Proposition 6. The proof follows directly from the above auxiliary
Lemmas: i) from Lemma 1, ii) from Lemma 2 and iii) from Lemma 3. In
particular, for iii), note that, if we take a theory Γ(ϕ) with a distinguished
occurrence of ϕ, we can separate the formula γ ∈ Γ(ϕ) containing that
particular occurrence of ϕ and define all the rest as Γ′ = Γ(ϕ)\{γ}. Then,
Γ(ψ) = Γ′ ∪ {γ′} where γ′ is obtained from γ by replacing some occurrence
of ϕ by ψ and, from Lemma 3, and the fact H |=cl ϕ

T iff H |=cl ψ
T for

all interpretations H ⊆ T it follows that that H |=cl γ
T iff H |=cl (γ′)T .

As a result, it is clear that, for any context theory ∆, H |=cl (Γ(ϕ) ∪ ∆)T

iff H |=cl (Γ(ψ) ∪ ∆)T for all H ⊆ T which, by definition, implies that
SM(Γ(ϕ) ∪∆) = SM(Γ(ψ) ∪∆) and ϕ ≡s ψ. �

Proof of Proposition 7. From Proposition 12 in [17], it follows that BT ≡cl

Φ[B]T for any interpretation T . Thus, the result follows directly from Propo-
sition 6. �

Proof of Proposition 8. Note that, from Proposition 6, if H |=cl A
T iff

H |=cl Φ[A]T holds then A ≡s Φ[A] holds. Hence, it is enough to show
H |=cl A

T iff H |=cl Φ[A]T .
Let us show that H |=cl A

T implies H |=cl Φ[A]T for any pair of classical
interpretations such that H ⊆ T . Note that T 6|=cl A implies that AT = ⊥
and, thus, H 6|=cl A

T and the statement holds vacuously.
Then, we may assume without loss of generality that T |=cl A and, thus, to

show that H |=cl Φ[A]T , it is enough to show that the following two conditions
hold:

26

(a) H |=cl cond(~c)T for every ~c ∈ C ~X s.t. T |=cl cond(~c), and

(b) H |=cl (¬cond(~c))T for every ~c ∈ C ~X s.t. T 6|=cl cond(~c)

Furthermore, by definition, T |=cl A implies

AT =
∧
{ cond(~c)T | T |=cl cond(~c) with ~c ∈ C ~X } (A.1)

and, thus, H |=cl A
T implies that (a) holds. Moreover, T 6|=cl cond(~c) implies

cond(~c)T = ⊥ which, in its turn, implies H |=cl (¬cond(~c))T and, thus, (b)
follows.

The other way around. Assume that H |=cl Φ[A]T . Then, there is I |=cl A
satisfying the following two conditions:

(c) H |=cl cond(~c)T for every ~c ∈ C ~X such that I |=cl cond(~c), and

(d) H |=cl (¬cond(~c))T for every ~c ∈ C ~X such that I 6|=cl cond(~c)

From Proposition 6 and the fact that H ⊆ T , it follows that H |=cl cond(~c)T

implies that T |=cl cond(~c) and, thus, (c) implies

(c’) T |=cl cond(~c) for every ~c ∈ C ~X s.t. I |=cl cond(~c)

Similarly, H |=cl (¬cond(~c))T implies T |=cl (¬cond(~c)) which, in its turn,
implies that T 6|=cl cond(~c). Thus, (d) implies

(d’) T 6|=cl cond(~c) for every ~c ∈ C ~X such that I 6|=cl cond(~c)

From (c’) and (d’), it follows that

(e) T |=cl cond(~c) iff I |=cl cond(~c) holds for every ~c ∈ C ~X

In its turn, this implies that T |=cl A iff I |=cl A and, since I |=cl A, it
follows that T |=cl A and, thus, we have that (A.1) holds (note that T 6|=cl A
would imply that AT = ⊥). Then, to show that H |=cl A

T is enough to show

that H |=cl cond(~c)T for every ~c ∈ C ~X such that T |= cond(~c) which follows
from (c) and (e). �

For the following proofs, we need the following notation: given any for-
mula ϕ, by Jϕ K def= { I | I |=cl ϕ } we denote the set of all propositional
interpretation that satisfy ϕ.

Proof of Proposition 10. Suppose, for the sake of contradiction, that there
is some HT-interpretations such that 〈H,T 〉 |= Φ[A], but 〈H,T 〉 6|= Φ[F[A]].
Note that 〈H,T 〉 |= Φ[A] implies that there is some I ∈ JA K satisfying the
following two conditions:

(a) 〈H,T 〉 |= cond(~c) for all ~c ∈ C| ~X| s.t. I |= cond(~c),

27

(b) 〈H,T 〉 |= ¬cond(~c) for all ~c ∈ C| ~X| s.t. I 6|= cond(~c)

Furthermore, 〈H,T 〉 |= cond(~c) and 〈H,T 〉 |= ¬cond(~c) respectively imply
that T |= cond(~c) and T 6|= cond(~c). In its turn, this implies that T |= cond(~c)

iff I |= cond(~c) for all ~c ∈ C| ~X| which, since I ∈ JA K holds, implies that
T ∈ JA K holds, too. Note that, since T ∈ JA K, every J /∈ JA K must satisfy
one of the following condition hold:

(c) T 6|= cond(~c) and J |= cond(~c) for some ~c ∈ C| ~X|, or

(d) T |= cond(~c) and J 6|= cond(~c) for some ~c ∈ C| ~X|

Furthermore, 〈H,T 〉 6|= Φ[F[A]] implies that there is some J /∈ JA K such that
〈H,T 〉 6|= ψ with ψ = (ψ1 → ψ2) and

ψ1
def=

(∧
Gr+J (A)

)
ψ2

def=
(∨

Gr−J (A)
)

Hence, either T 6|= ψ or both 〈H,T 〉 |= ψ1 and 〈H,T 〉 6|= ψ2. If we assume that
T 6|= ψ, there must be some J /∈ JA K that satisfies the following conditions:

(e) T |= cond(~c) for all ~c ∈ C| ~X| s.t. J |= cond(~c),

(f) T 6|= cond(~c) for all ~c ∈ C| ~X| s.t. J 6|= cond(~c)

plus (c) and (d), which is a contradiction. Consequently, it must be that
both 〈H,T 〉 |= ψ1 and 〈H,T 〉 6|= ψ2, but this implies that that the following
condition hold:

(g) 〈H,T 〉 |= cond(~c) for all ~c ∈ C| ~X| s.t. J |= cond(~c),

(h) 〈H,T 〉 6|= cond(~c) for all ~c ∈ C| ~X| s.t. J 6|= cond(~c)

Then, since T ∈ JA K and J /∈ JA K, one of the following condition must hold

(i) I |= cond(~c) and J 6|= cond(~c) for some ~c ∈ C| ~X|

(j) I 6|= cond(~c) and J |= cond(~c) for some ~c ∈ C| ~X|

If the former, (a) and (h), respectively imply that both, 〈H,T 〉 |= cond(~c)
and 〈H,T 〉 6|= cond(~c), must hold, which is a contradiction. Otherwise,
the latter plus (b) and (g) respectively imply that 〈H,T 〉 |= ¬cond(~c) and
〈H,T 〉 |= cond(~c) hold, which is also a contradiction. �

For proving Proposition 11, we need to introduce the following notation and
some auxiliary results. Let ≺ denote any relation symbol. We say that
A = (f{ ~X :cond(~X)} ≺ n) is monotone (resp. antimonotone) iff f̂(W1) ≺ n

implies f̂(W2) ≺ n for all sets of tuplesW1 ⊆ W2 ⊆ C| ~X| (resp. W2 ⊆ W1 ⊆ C| ~X|).

28

It is regular iff for any pair W1,W2 of sets of tuples of constants s.t. W1 ⊂ W2

satisfies that either f̂(W1) 6≺ n or f̂(W2) 6≺ n. Furthermore, by A≥ we denote

the GZ-aggregate f≥{ ~X :cond(~X)} ≥ n “testing” the greater or equal relation,

that is, its function f̂≥ is defined so that f̂≥(W) ≥ n iff there is some W ′ ⊇ W

such that f̂(W ′) ≺ n Analogously, A≤ stands for f≤{ ~X :cond(~X)} ≤ n whose

function f̂≤ is defined so that f̂≤(W) ≤ n iff there is W ′ ⊆ W such that

f̂(W) ≺ n. Then, by ΦD[A], we denote the following formula:∧
T /∈JA≤ K

(
¬
∧

Gr+T (cond(~X))
)
∧

∧
T /∈JA≥ K

(∨
Gr−T (cond(~X))

)
(A.2)

Lemma 4. Let A be a regular aggregate. Then, JA K = JA≥ K ∩ JA≤ K. �

Proof. By definition, it is clear that JA K ⊆ JA≥ K ∩ JA≤ K. The other way
around. Let I ∈ JA≥ K ∩ JA≤ K. Then, there are W1 ⊆ WI ⊆ W2 such
that f̂(W1) ≺ n and f̂(W2) ≺ n. Furthermore, since A is regular, if either
W1 ⊂ WI or WI ⊂ W2 hold, then either f̂(W1) 6≺ n and f̂(W2) 6≺ n must
hold too. Therefore, W1 = WI = W2 and I ∈ JA K hold. �

Lemma 5. Any regular F-aggregate B with condition ϕ satisfies:

i) aggregates B≥ and B≤ are respectively monotone and antimonotone,

ii) T |=cl B iff T |=cl B
≥ ∧B≤

iii) Φ[B] ≡s Φ[B≥] ∧ Φ[B≤] ≡s ΦD[B].

Proof. Conditions i) and ii) directly follows from definition and Lemma 4,
respectively. Then, since B≥ is monotone and B≤ is antimonotone, from
Proposition 13 in [17], it follows that

Φ[B≥] ≡s

∧
I /∈JB≥ K

(∨
Gr−I (ϕ)

)
Φ[B≤] ≡s

∧
I /∈JB≤ K

(
¬
∧

Gr+I (ϕ)
)

Furthermore, since JB K = JB≤ K ∩ JB≥ K, it follows that I /∈ JA K iff either
I /∈ JB≥ K or I /∈ JB≤ K. Hence, we have that Φ[B≥] ∧ Φ[B≤] ≡s ΦD[B]

29

Moreover, we have that

Φ[B] =
∧

I /∈JB K

((∧
Gr+I (ϕ)

)
→
(∨

Gr−I (ϕ)
))

≡
∧

I /∈JB≥ K

((∧
Gr+I (ϕ)

)
→
(∨

Gr−I (ϕ)
))

∧
∧

I /∈JB≤ K

((∧
Gr+I (ϕ)

)
→
(∨

Gr−I (ϕ)
))

= Φ[B≥] ∧ Φ[B≤]

Consequently, Φ[B] ≡s Φ[B≥] ∧ Φ[B≤] ≡s ΦD[B] holds. �

ForA = f{ ~X :cond(~X)} ≺ n, we defineW〈H,T 〉(A) def= { ~c | 〈H,T 〉 |= cond(~c) }.
We also use WT (A) to stand for W〈T,T 〉(A).

Lemma 6. Any GZ-aggregate A = f{ ~X :cond(~X)} ≺ c with propositional

cond(~X) satisfies that the following three conditions are equivalent

i) 〈H,T 〉 |= Φ[F[A]]

ii) H |=cl F[A]T

iii) f̂(W〈H,T 〉(A)) ≺ n and f̂(WT (A)) ≺ n. �

Proof. Let us first prove that condition ii) holds iff iii) holds. In case that
T 6|=cl A, it follows that AT = ⊥ and T 6|=cl Φ[A] which, in their turn,
respectively imply that H 6|=cl F[A]T and f̂(WT (A)) 6≺ n. Hence, we may
assume without loss of generality that T |=cl A and, thus, that f̂(WT (A)) ≺ n
holds.

H |=cl F[A]T iff H |=cl f{~c1 :ϕT
1 , . . . ,~cm :ϕT

m} ≺ n

iff f̂{ ~ci | H |=cl ϕ
T
i } ≺ n

iff f̂({ ~ci | 〈H,T 〉 |=cl ϕi }) ≺ n

iff f̂(W〈H,T 〉) ≺ n

Recall that, by Proposition 3 in [17], it follows that any propositional formula ϕ
satisfies: H |=cl ϕ

T iff 〈H,T 〉 |=cl ϕ. This also implies that conditions i) and ii)
are equivalent and, thus, the statement holds. �

Lemma 7. Any regular GZ-aggregate A satisfies: Φ[F[A]] |= Φ[A]. �

30

Proof. Suppose, for the sake of contradiction, that there is some HT-interpretation
such that 〈H,T 〉 |= Φ[F[A]], but 〈H,T 〉 6|= Φ[A]. Suppose also that T |=cl A.
Then, from 〈H,T 〉 6|= Φ[A], it follows that one of the following conditions
must hold

(a) 〈H,T 〉 6|= cond(~c) for some ~c ∈ C| ~X| s.t. T |=cl cond(~c),

(b) 〈H,T 〉 6|= ¬cond(~c) for some ~c ∈ C| ~X| s.t. T 6|=cl cond(~c)

On the one hand, 〈H,T 〉 6|= ¬cond(~c) implies T 6|=cl ¬cond(~c) which, in its
turn, implies T |=cl cond(~c). Thus, (b) is a contradiction. On the other
hand, from Proposition 1, it follows that W〈H,T 〉 ⊆ WT holds for any HT-
interpretation 〈H,T 〉. Then, (a) implies that W〈H,T 〉 ⊂ WT which, since

A is regular, implies that either f̂(W〈H,T 〉) 6≺ n or f̂(WT) 6≺ n hold. If
the former, then 〈H,T 〉 6|= Φ[F[A]] (Lemma 6) which is a contradiction
with the assumption 〈H,T 〉 |= Φ[F[A]]. If the latter, we have that T 6|=cl A
and A ≡cl Φ[A] and T 6|=cl Φ[A], which is a contradiction with the facts
T |=cl Φ[F[A]] (because 〈H,T 〉 |= Φ[F[A]]) and Φ[A] ≡cl Φ[F[A]]. Hence, it
must be that T 6|= A and, thus, Lemma 5, implies:

(c) either T 6|= A≥ or T 6|= A≤, and

(d) 〈H,T 〉 |= Φ[F[A]] and Φ[F[A]] ≡s ΦD[F[A]] and, thus, 〈H,T 〉 |= ΦD[F[A]].

In its turn, these conditions imply that one of the following two contradictions
must hold:

(e) 〈H,T 〉 |= ¬cond(~c) for some ~c ∈ C| ~X| s.t. T |= cond(~c) (if T 6|= A≤)

(f) 〈H,T 〉 |= cond(~c) for some ~c ∈ C| ~X| s.t. T 6|= cond(~c) (if T 6|= A≥),

Consequently, 〈H,T 〉 |= Φ[F[A]] implies 〈H,T 〉 |= Φ[A]. �

Proof of Proposition 11. If A is regular, the from Proposition 10 and
Lemma 7, it respectively follows Φ[A] |= Φ[F[A]] and Φ[F[A]] |= Φ[A]. Thus,
Φ[A] ≡s Φ[F[A]]. Hence, it only remains to be prove that A is regular in
these cases. For that, note that ĉount(W1) < ĉount(W2) for all W1 ⊂
W2 and, thus, count{ ~X :cond(~X)} = n is regular. Similarly, if there is
no c ∈ C such that c ≤ 0 (resp. c ≥ 0), then ŝum(W1) < ŝum(W2) (resp.

ŝum(W1) > ŝum(W2)), so A = (sum{X, ~Y : cond(X, ~Y) ∧X > 0} = n) (resp.

A = (sum{X, ~Y : cond(X, ~Y) ∧X < 0} = n)) is also regular. Therefore, we
conclude that Φ[A] ≡s Φ[F[A]] holds. Finally, note that we have A ≡s Φ[A]
(Proposition 8) and F[A] ≡s Φ[F[A]] (Proposition 7) and, thus, we obtain that
the equivalence A ≡s F[A] holds. �

31

Proof of Proposition 12. Since Π is closed, the set of all instances of any
rule r coincide with Gr(r). Hence, for any ground rule r′ ∈ Gr(Π) there is a
rule r′′ ∈ Grgringo(Π) which is the result of replacing every aggregate atom
A by F[A], and vice-versa. From Proposition 11, we have that r′ ≡s r

′′ and,
thus, that the stable models of Gr(Π) and Grgringo(Π) coincide. �

Lemma 8. Any GZ-aggregate A = (f{ ~X :cond(~X)} ≺ n) satisfies:

A ≡s

(∨
m∈Z

(f{ ~X :cond(~X)} = m) ∧ (m ≺ n)
)

Proof. Let ϕ the right hand side of the above equivalence. Then, assume that
T 6|=cl A. This implies that AT = ⊥ and, it is clear that H 6|=cl A

T for all set
of atoms H ⊆ T . Furthermore, T 6|=cl A implies that:

f̂| ~X|
(
{ ~c ∈ C| ~X| | T |=cl cond(~c) }

)
= k

with k ∈ Z, k 6≺ n and the usual meaning of≺. Hence, for all m ∈ Z, it follows
that either T 6|=cl (f{ ~X :cond(~X)} = m) (case that m 6= k) or T 6|=cl (m ≺ n)
(case that m = k). Hence, T 6|=cl ϕ and, thus, it follows that ϕT = ⊥ and
H 6|=cl ϕ

T for any set of atoms H. That is, for all set of atoms H ⊆ T , we have
that both H 6|=cl A

T and H 6|=cl ϕ
T hold. From condition iii) in Proposition 6,

this implies that A ≡s ϕ.

Thus, we may assume without loss of generality that T |=cl A. That is, that

we have that f̂| ~X|
(
{ ~c ∈ C| ~X| | T |=cl cond(~c) }

)
= k with k ∈ Z and k ≺ n

and the usual meaning of the relation ≺. Furthermore, this implies that
T |=cl ϕ and, thus, that

ϕT ≡cl

∨
m∈Z

(f{ ~X :cond(~X)} = m)T ∧ (m ≺ n)T

≡cl

∨
m≺n

(f{ ~X :cond(~X)} = m)T

≡cl

∨
m≺n
m 6=k

(f{ ~X :cond(~X)} = m)T ∨ (f{ ~X :cond(~X)} = k)T

≡cl

∨
m≺n
m 6=k

⊥ ∨ (f{ ~X :cond(~X)} = k)T

≡cl (f{ ~X :cond(~X)} = k)T

32

Since T |=cl A and T |=cl (f{ ~X :cond(~X)} = k)T , it follows

AT =
(∧

Gr+T (cond(~X))
)T

= (f{ ~X :cond(~X)} = k)T

Then, for all set H ⊆ At , it follows that:
H |=cl ϕ

T iff H |=cl (f{ ~X :cond(~X)} = k)T iff H |=cl A
T . �

Proof of Proposition 13. First note that replacing bound variables does
not change the semantics of a logic program with respect to Alog . Hence, we
may assume without loss of generality that Π is a closed logic program and
we will show that step ii) of Definition 7 does not change the semantics of
the program either.

Let r(~Y) be some rule of the form

Head(~Y) ← Pos(~Y) ∧ Neg(~Y) ∧ Agg(~Y)

with free variables ~Y and let A = (f{ ~X : cond(~X, ~Y)} ≺ t) be some aggregate
in Agg . Let Agg ′ be the conjunction of all aggregates in Agg but for A,
let A′ = f{ ~X : cond(~X, ~Y)} = Z ∧ Z ≺ t with with Z a fresh variable not

occurring any where else, and let r′(~Y , Z) be the rule

Head(~Y) ← Pos(~Y) ∧ Neg(~Y) ∧ Agg ′(~Y) ∧ A′(~Y , Z)

We will show that Gr(r(~Y)) ≡s Gr(r′(~Y , Z)). First, we note that

Gr(r(~Y)) = {r(~c) | ~c ∈ C|~Y |}

and

Gr(r′(~Y , Z)) = {r′(~c, d) | ~c ∈ C|~Y | and d ∈ C}

Let S(r(~c)) def= { r′(~c, d) ∈ Gr(r′(~Y , Z)) | d ∈ C } be the set of ground rules

of r′(~Y , Z) corresponding to ground rule r(~c). We just need to show that
r(~c) ≡s

∧
S(r(~c)). Note that all rules in S(r(~c)) only differ on A′(~c, d), so

we have that
∧
S(r(~c)) is strongly equivalent to10.

Head(~c) ← Pos(~c) ∧ Neg(~c) ∧ Agg ′(~c) ∧
∨
{ A′(~c, d) | d ∈ C } (A.3)

10Follows by distribution of conjunction over disjunction and the intuitionistic equivalence
ϕ← ψ ∨ γ ≡ (ϕ← ψ ∧ ϕ← γ).

33

Futthermore, from Lemma 8, we have that A and
∨
{ A′(~c, d) | d ∈ C } are

strongly equivalent. Then, replacing
∨
{ A′(~c, d) | d ∈ C } by A in (A.3), we

have that∧
S(r(~c)) ≡s Head(~c) ← Pos(~c) ∧ Neg(~c) ∧ Agg ′(~c) ∧ A

Inductively applying this reasoning to all atoms in Agg ′(~c), we obtain that

r(~c) ≡s

∧
S(r(~c)) holds and, thus, Gr(r(~Y)) ≡s Gr(r′(~Y , Z)) follow. �

34

