
A MaxSAT Solver based on Differential
Evolution (preliminary report)

Manuel Framil1, Pedro Cabalar1, and José Santos1,2

1 Department of Computer Science and Information Technologies,
2 CITIC (Centre for Information and Communications Technology Research),

University of A Coruña (Spain)
{m.framil.deamorin, cabalar, jose.santos}@udc.es

Abstract. In this paper we present DeMaxSAT, a memetic algorithm for
solving the non-partial MaxSAT problem. It combines the evolutionary
algorithm of Differential Evolution with GSAT and RandomWalk, two
MaxSAT-specific local search heuristics. An implementation of the algo-
rithm has been used to solve the benchmarks for non-partial MaxSAT
included in the MaxSAT Evaluation 2021. The performance of DeMaxSAT
has reached results that are comparable, both in computing time and
quality of the solutions, to the best solvers presented in MaxSAT Eval-
uation 2021, reaching the state of the art for non-partial problems.

Keywords: MaxSAT · Differential Evolution · Memetic Algorithm

1 Introduction

The Boolean Satisfiability problem (SAT) is a well-known decision problem that
consists in determining whether there exists some interpretation that satisfies a
given propositional formula. The Maximum Satisfiability problem (MaxSAT) is
the optimization version of SAT: given a formula in Conjunctive Normal Form
(CNF), the goal is to find an interpretation that satisfies the maximum number
of clauses. Partial MaxSAT is a more general variant in which all clauses from
a given subset (called hard clauses) must always be satisfied in any solution.
Another generalization is the so-called Weighted MaxSAT problem, where each
clause has a non-negative weight and the aim is to maximize the sum of weights
of the satisfied clauses. Both generalizations can be combined into the Weighted
Partial MaxSAT problem, whose goal is to maximize the sum of weights of the
satisfied soft clauses, while keeping all hard clauses satisfied. The state-of-the-
art MaxSAT solvers are yearly evaluated in the MaxSAT Evaluation (MSE) [3].
This event witnessed the improvement of MaxSAT solvers in the recent years,
going from barely a hundred of clauses and variables in the nineties, up to over
10 millions of variables and 50 million of clauses nowadays.

Although most MaxSAT solvers are based today on search algorithms relying
on backend SAT solvers, other approaches have also been studied in the litera-
ture, including the use of Evolutionary Algorithms (EAs). For instance, several



2 Manuel Framil, Pedro Cabalar, and José Santos

approaches based on classical Genetic Algorithms (GAs) were used for the SAT
problem [5,12,16], including also combinations of GAs with local search [14].

Regarding MaxSAT, evolutionary algorithms can be useful when good quality
solutions need to be found in moderate time. Examples in this line can be found
in [17] (using Extremal Optimization), [2] (Artificial Bee Colony algorithm), [11]
(Harmony Search algorithm combined with a flip heuristic and Tabu search), [6]
(Scatter Search and GAs), [7] (GAs) and [9] (Bee Swarm Optimization algo-
rithm). These latter works used benchmarks with no more than 200 variables.

In this paper, we define an algorithm, called DeMaxSAT3, based on a hybrid
or memetic version [19] between an evolutionary algorithm (Differential Evolu-
tion - DE [23]) and problem-specific heuristics. The goal of this combination is
to integrate the global search advantage of the population-based search of the
evolutionary algorithm with the local search of the MaxSAT-specific heuristics,
the latter allowing fast refinement or exploitation of solutions held in the genetic
population. We compare our solver with the state-of-the-art solvers used in the
MSE competition, showing the advantages and the problems that appear in the
different benchmarks used.

The rest of the article is structured as follows. Section 2 contains the back-
ground, starting with a brief introduction to Binary Differential Evolution, and
proceeding afterwards with a description of two usual MaxSAT heuristics, GSAT
and Random Walk, that we incorporate later on in our algorithm. Section 3
presents the memetic algorithm DeMaxSAT and explains its different parameters.
In Section 4, we first describe the MSE benchmarks and the scoring scheme used
in that evaluation, and proceed then to explain the process of parameter tuning
performed on DeMaxSAT. Section 5 presents the results obtained on the bench-
marks and compares to other solvers presented to MSE 2021. Finally, Section 6
concludes the paper.

2 Background

Differential Evolution is an evolutionary algorithm introduced by Storn and
Price [23]. Our choice of DE was motivated by the fact that it is a robust method
with proven advantages over other EAs in many optimization problems and
also with few defining parameters [8]. DE starts with an initial population of
candidate solutions (called individuals or vectors) so that their genotypes encode
possible solutions to the optimization or search problem. In each generation of
the DE algorithm, new solutions are defined by combining the genotypes of
the solutions in the previous generation. Each individual x is assigned a value
representing its quality and given by a so-called fitness or objective function
fobj(x) to be optimized.

In order to apply DE to the MaxSAT problem, the DE algorithm must be
adapted for its use in a binary domain. We have followed the adaptation defined
by Doerr and Zheng [10], which aims to replicate the continuous nature of DE,

3 The code of DeMaxSAT is available at [1].



DeMaxSAT Solver 3

but with binary variables. Algorithm 1 shows the pseudo-code of the Binary
Differential Evolution (BDE) version (integrated with local search heuristics as
explained below). The key aspect of DE (and BDE) is the generation of candidate
vectors for each solution in the population, candidates that are defined by the
difference of (randomly chosen) vectors in the current population. The BDE
algorithm has four stages:

1. Initialization: This phase initializes the individuals of the first generation.
A usual random initialization is employed, with random binary values in
each genotype position.

2. Mutation: In this phase, in each generation g and for each target vector xg
i

of the current population of solutions, a donor ormutant vector vgi (following
the standard nomenclature in DE [8]) is created. This vector is defined in
line 21 of Algorithm 1: it implies an inversion of the binary value of vector
x1 when vectors x2 and x3 have different values at the same bit position in
their genotypes. x1 is called the base vector, x2 and x3 are randomly chosen
vectors and F is the parameter (weight factor) that controls the amplitude
of the mutation. The value of F acts as a probability of changing the binary
value of the base vector, i.e., it determines the level of exploration.

3. Crossover: The crossover operation is the same as in standard DE. The
candidate or trial vector ygi (for each target vector xg

i ) is generated by cross-
ing over the genotypes of the target vector xg

i with the mutant vector (line
24), with CR as the parameter that controls the crossover probability.

4. Selection: If the trial improves the target individual (x), that is, its fitness
value (fobj(yi)) is higher (when maximizing) or lower (when minimizing)
than the target fitness value, the candidate replaces the target vector in the
population for the next generation (lines 27-28).

The three last stages are repeated over generations until a stop criterion is
satisfied (e.g., a maximum number of generations). The main idea behind this
algorithm is that the “difference” between vectors x2 and x3 (which determines
the number of inverted binary values) will decrease as the evolutionary process
advances. In the first generations, this difference tends to be large, leading to
larger jumps in the search space and prioritizing the exploration in the search
space. As the population concentrates in promising areas of the search space
in successive generations, this difference is more likely to diminish with the
passage of generations, progressing to a stage where exploitation prevails over
exploration. Therefore, the DE algorithm presents an implicit control between
exploration and exploitation.

In this work, two heuristics are employed in combination with the BDE al-
gorithm: GSAT and Random Walk (RW). GSAT [22] is a greedy local search
algorithm that provides suboptimal solutions in a short time. In its adaptation
to MaxSAT instances, it starts with a randomly generated truth assignment,
and in every step reverses (“flips”) the variable that gives the largest increase
in the total number of clauses satisfied. This process is repeated until a maxi-
mum number of flips is reached. Random Walk (RW) [21] consists of randomly
choosing a clause from the set of unsatisfied clauses and inverting the value of



4 Manuel Framil, Pedro Cabalar, and José Santos

one of its variables. This forces the chosen clause to become satisfied (a clause
is a disjunction of literals, so if one literal becomes true, the whole clause is
satisfied), but could lead to an overall decrease in the total number of satisfied
clauses.

Algorithm 1 DeMaxSAT algorithm

1: for Individual x ∈ Population do
2: Individual x ← RandomInitialize()

3: end for
4: while not StopCriteria() do ▷ DeMaxSAT evolutionary generation
5: for i ∈ 1 : NP do ▷ NP defines the population size
6: if isOnHeuristicScope(xi) then
7: for k ∈ 1 : LSS do ▷ N steps of local search are performed
8: mrandk ← RandomNumber ∈ [0,1]

9: if mrandk > PRW then
10: Heuristic ← GSAT

11: else
12: Heuristic ← RandomWalk

13: end if
14: xi ← Heuristic(xi)

15: fobj(xi)← Re-Evaluate(xi)

16: end for
17: end if
18: xr1, xr2, xr3 ← RandomIndividuals(Population) ▷ xi ̸= xr1 ̸= xr2 ̸= xr3

19: for j ∈ 1 : D do ▷ D represents the dimensionality of the problem
20: mrandj ← RandomNumber ∈ [0,1]

21: vi,j =

{
1− xr1,j if xr2,j ̸= xr3,j and mrandj < F

xr1,j otherwise

22: ▷ v defines the mutant vector (v)
23: crandj ← RandomNumber ∈ [0,1]

24: yi,j =

{
vi,j if crandj <= CR

xi,j otherwise

25: ▷ y defines the trial vector (y) for the target vector (x)
26: end for
27: if fobj(yi) <= fobj(xi) then
28: xi = yi ▷ Replace x by y when the trial vector (y) has better fitness
29: end if
30: end for
31: end while
32: return the best solution found

The combination of GSAT with RW is done to decrease the probability of
getting stuck at local maxima and is simply performed by a random choice of
one of the two methods at each step, depending on some probability value PRW
(Random Walk with probability PRW , GSAT with probability 1 − PRW ). In
Algorithm 1, we refer to this combination as GSAT+RW or just LSS (Local



DeMaxSAT Solver 5

Search Step). Lines 9-12 in Algorithm 1 show this application of LSS search
steps on each selected population solution (as described below).

3 DeMaxSAT solver

The population solutions are truth assignments for the problem variables. There-
fore, in DeMaxSAT, individuals are binary vectors where each element represents
a variable of the MaxSAT instance, which can be set to 1 (true) or 0 (false).
Given any individual or truth assignment, the fitness function will return the
sum of weights of the clauses that are not satisfied by that assignment (i.e., the
goal is minimizing the fitness value).

Algorithm 1 details the combination between BDE and the two MaxSAT
heuristics considered. At the beginning of each generation, a subset of individuals
of the population is refined by performing N steps of GSAT+RW, just before
the BDE genetic operators (lines 18 and later in Algorithm 1). In each local
search step, one variable is flipped, so N variables will be flipped in total. Note
that, consequently, for the new truth assignment, it is not necessary to calculate
the fitness value of the entire truth assignment, but only of the clauses that have
changed (line 15).

The parameters that define the implementation are the following:

– GEN: Number of the generations performed by BDE. Given that the MSE
evaluation is based on getting the best solution we can after reaching a fixed
time limit, we do not set a fixed number of generations.

– NP: Population size. Number of solutions in the genetic population.
– F: Mutation probability. It controls the probability of inverting a bit of the

base vector when creating the mutant vi,j (lines 20-22 of the pseudo-code).
– CR: Crossover probability. It controls the probability of passing genetic

information from the mutant vector vi,j to the trial vector yi,j (lines 23-25).
– LSS: Local Search Step. The local search heuristics (GSAT and RW) are

applied N times for each generation and each individual. This parameter
adjusts the number of times these heuristics are performed, defining the value
of N as a percentage of the number of variables of the MaxSAT instance that
is being evaluated. That is, for instance, if LSS = 0.1 and the problem has
100 variables, the local heuristics will be run 10 times in each individual.
This strategy allows us to automatically adjust the number of local search
steps to the size of the problem.

– PRW: Probability of RandomWalk. This parameter controls the probability
of running GSAT or RW. During each local search step, a random number
r ∈ [0.0, 1.0] is generated. If r > PRW, GSAT is applied; otherwise, the
heuristic applied is RandomWalk (lines 9-12 of the pseudo-code).

– HSCOPE: Heuristic Scope. It controls the subset of individuals on which
the local search heuristics is applied. This parameter can be either all, if
the heuristics are applied to all individuals, or better than mean, in which
case the heuristics only affect the individuals whose fitness is lower (better)
than the average of the population (the objective is the minimization of the
number of unsatisfied clauses).



6 Manuel Framil, Pedro Cabalar, and José Santos

4 Benchmarks, scoring and parameter tuning

The MSE 2021 dataset is organized into families, which are sets of benchmarks
that encode the same problem and therefore share a similar structure, although
the size may vary from one instance to another. We have chosen all the families
that only contain non-partial instances, which in total get to 49 benchmarks
(29 weighted and 20 unweighted). We have excluded from the evaluation the
SeanSafarPour family, which contains the 10 non-partial largest instances, as
DEMaxSat cannot perform enough generations to provide an acceptable solu-
tion. This is remarked again in the last paragraph of the following section.

The size (and difficulty) of these instances is very heterogeneous, going from
hundreds of clauses up to thousands in the largest instances, as summarized in:

Min Max Mean Std

#Clauses 432 39k 4,175 5,922
#Variables 40 11k 526 1,735

To evaluate our solver, we have used the scoring scheme proposed by the MSE
for the incomplete track, where the optimum may not be reached and the aim
is to obtain the best possible solution in a given time limit (either 60s or 300s).
In fact, in many instances, the optimum is not even known and the best known
solution is used as a reference. The solver MSE score corresponds to the formula:∑

i∈solved instances

(cost of the best known solution for i) + 1

(cost of the solution found by the solver) + 1
(1)

where the cost of a solution corresponds to the sum of the weights of the un-
satisfied clauses. This score is divided by the number of benchmarks evaluated.
As a result, we obtain a value between 0 and 1 for each solver, representing how
close a solver is to the best known solutions, on average, for all instances. That
is, the closer the solver’s score is to 1, the closer the solutions given by the solver
will be to the best-known solutions, so the better the solver will be.

DeMaxSAT has different defining parameters (Section 3), so their appropri-
ate values must be adjusted. The parameter tuning of DeMaxSAT was performed
with a usual sweep of the defining parameters in an EA: changing the values
of one parameter while keeping the other defining parameters at standard or
fixed values. We kept CR = 0.4 and F = 0.6 (whose values have little influ-
ence over a wide range around these values), while PRW was set to 0.5 in all
subsequent experiments, as this value turned out to be the best in all difficulty
partitions discussed below. Instead, the most important effect of NP and LSS
was inspected. Note that the former determines how much simultaneous explo-
ration is performed in the search space, while the latter establishes how much
exploitation is performed on each solution of the genetic population. We tested
as well the effects changing the heuristics scope (HSCOPE in Section 3).

For this purpose, we swept the values of the three parameters (NP with
six values between 5 and 50, LSS with five values between 0.01 and 0.1, and



DeMaxSAT Solver 7

HSCOPE between all and better than mean), measuring the effect of the
combination of these values on the results provided by DeMaxSAT. From now on,
we will refer to a given combination of values NP , LSS and HSCOPE as a
configuration. It should be noted that a value LSS = 0.0 (pure DE without the
use of the heuristics) did not produce competitive results in DeMaxSAT so it will
not be considered in the following study.

The effect is defined as the average score provided by DeMaxSAT in a group of
instances considering two limited times, 60 and 300 seconds. Moreover, given the
stochasticity of DeMaxSAT (as any EA), for each instance and configuration, 10
independent runs were performed to consider the average score. The non-partial
MSE instances were divided into three groups, depending on their “difficulty”,
estimated as the value D := #variables × #clauses. The number of variables
defines the dimensionality of the search space, since it defines the length of the
population vectors. On the other hand, the number of clauses influences the
computation time of the heuristics. We considered the following classification:
i) instances with low difficulty (1 ≤ D < 2 · 105); ii) instances with medium
difficulty (2 · 105 ≤ D < 107); iii) instances with high difficulty (D ≥ 107). Note
that this categorization makes sense, since the appropriate configuration may
be different working with instances of low and high difficulty. Therefore, the
experimental determination must be made by working with the different groups
of instances.

Figures 1a and 1b show the different configurations considered with the time-
outs of 60 and 300 seconds, respectively.

In the low difficulty benchmarks, best results are achieved by the configura-
tions in which exploitation prevails over exploration (large LSS), while the worst
are yielded by those that perform less iterations of the local search heuristics
(small LSS, scope better than mean). However, notice the best solutions are
found by the configuration with a medium population size (NP=30), which indi-
cates that it is also important to simultaneously explore several promising areas
of the search space. The chosen configurations are: for 60s timeout (NP=30,
LSS=0.05, hscope all) and for 300s timeout (NP=30, LSS=0.1, hscope all).

In the medium difficulty instances, time restrictions begins to matter (you
can see how score decreases as NP increases in the 60s timeout). Thus, the high-
est score is achieved by a configuration with the smallest population size (5).
In the 300s however, the best solutions are reached by the configuration with
the largest LSS value but which does not apply the heuristics to all individuals.
Consequently, the chosen configurations are: for 60s timeout (NP=5, LSS=0.025,
hscope all) and for 300s timeout (NP=10, LSS=0.1, hscope better than mean).

Finally, in the high difficulty instances, time is the foremost factor. The
best configurations are those that perform more generations, giving enough time
to optimize the solutions. This means reducing the population size (NP) and
applying the heuristics to less individuals (hscope). Therefore, the chosen con-
figurations are: for 60s timeout (NP=5, LSS=0.025, hscope better than mean

and for 300s timeout (NP=5, LSS=0.075, hscope better than mean). DeMaxSAT
uses one of these configurations depending on benchmark difficulty and timeout.



8 Manuel Framil, Pedro Cabalar, and José Santos

(a) Timeout = 60s

(b) Timeout = 300s

Fig. 1: Average score with different values for NP and LSS , and for the 3 groups
of instances. Both DeMaxSAT scopes (all and better than mean) are used.

5 Results

In this section, the DeMaxSAT solver is compared to other state-of-the-art incom-
plete MaxSAT solvers, all of which were presented in the 2021 MSE. These solvers
are TT-Open-WBO-Inc-21 [18], Satlike [15], StableResolver [20], Loandra-2020
[4] and Open-WBO-Inc [13]. Satlike has two versions (satlike-c and satlike-ck),
and so it does Open-WBO-Inc (inc-bmo-jb and inc-bmo-complete). Notice that
some of these solvers have not undergone any change since the previous eval-
uation in 2020. Specifically Loandra-2020, StableResolver and both versions
of Open-WBO-Inc were previously presented in the 2020 MSE. The tests have
been run with the same benchmark set as in the previous section, with both
60 and 300 second timeouts. As many of the chosen solvers have a stochas-



DeMaxSAT Solver 9

tic component, the results of every solver are averaged over 10 independent
runs, for both timeouts. Specifically, the non-deterministic solvers are Satlike,
Open-WBO-Inc, TT-Open-WBO-Inc-21 (those last two include SATLike in their
algorithm), StableResolver and, naturally, DeMaxSAT. The result displayed for
each solver corresponds to the MSE score (1).

Solver 60s 300s

TT-Open-WBO-Inc-21 0.9698 0.9706
satlike-c 0.9703 0.9703
satlike-ck 0.9703 0.9703
StableResolver 0.9406 0.9588
DeMaxSAT 0.9298 0.9433
Loandra-2020 0.8561 0.8713
inc-bmo-jb 0.8523 0.8727
inc-bmo-complete 0.8238 0.8694

Table 1: Average scores of the solvers in the whole benchmark set.

Table 1 shows the average results over the whole set of benchmarks con-
sidered. Taking the average score of the entire benchmark set, DeMaxSAT out-
performs three state-of-the-art solvers. Moreover, to get a more precise view of
DeMaxSAT performance, Figure 2 shows a breakdown of the scores obtained by
the solver on each benchmark instance, individually. The y-axis represents the
score (given by Equation 1) and the x -axis the instances. The latter are sorted
by their SAT-Ratio (from lower to higher), which measures the similarity of a
MaxSAT instance to a SAT instance, according to the best solution ever found.
The SAT-Ratio is computed as follows:

SAT-Ratio = 1− Best solution found (Sum of weights of the unsatisfied clauses)

Sum of weights of all clauses
(2)

Thus, when the best solution found satisfies all clauses, the SAT-Ratio has value
1. In the dataset used for this work, the average SAT-Ratio is 0.92. As shown
in Figure 2, DeMaxSAT has an excellent performance on the leftmost instances,
with lower SAT-Ratio. The three rightmost instances, where DeMaxSAT gets its
worst scores, actually correspond to those with a SAT-Ratio above 0.999, which
means they are very close to being an instance of SAT. These results are far
from unexpected, as long as DeMaxSAT does not integrate any SAT solver, unlike
the rest of the solvers considered.

Figure 2 also shows that, in most of the instances, DeMaxSAT outperforms
the three solvers inc-bmo-complete, inc-bmo-jb and Loandra-2020, the ones
that threw a worse average score for the benchmarks in the study. Moreover,
except those three tools, DeMaxSAT coincides with the rest of the solvers in get-
ting the maximum score in most of the instances with low SAT-Ratio. Although,
as said before, DeMaxSAT has low score values in the 3 instances with the high-
est SAT-Ratio, it maintains a good overall ranking stability, even as the SAT-
ratio increases. In the 3 most difficult instances (regarding difficulty D), whose
names are highlighted in bold in Figure 2, DeMaxSAT is only outperformed by



10 Manuel Framil, Pedro Cabalar, and José Santos

satlike-c and TT-Open-WBO-Inc-21, which are the solvers with the best aver-
age performance in the different instances. However, DeMaxSAT beats satlike-c
and TT-Open-WBO-Inc-21 (both) in 5 instances, and it ties them in 25 instances
(rounding scores to 2 decimal places), within the 60s timeout, whereas DeMaxSAT
beats both solvers again in 5 instances, and it ties them in 28 instances, within
the 300s timeout.

Fig. 2: Scores obtained by each solver in the individual benchmarks, sorted by
their SAT-Ratio.

The three solvers with the highest scores rely on algorithms that follow a
similar methodology: (1) They start by generating an initial model µ for the hard
clauses (if any) with a SAT solver; (2) Then, µ is refined using a local search
algorithm (they use SATLike, an algorithm that won the incomplete category in
2020); (3) Finally, they switch to a SAT-based algorithm, where µ is used as the
initial model. Given this common structure, the solvers differ on the conditions
they set to go from step (2) to (3) and in the SAT solver they use.

The most important exception to DeMaxSAT good performance is the MSE
benchmark family SeanSafarPour that, as explained before, has been removed
from the current comparison. This family consists of 10 instances with the highest
SAT-ratio (all of them above 0.9999) and a huge number of clauses: the smallest
instance deals with more than 690K clauses, and the best known solution leaves
only 54 of them unsatisfied. This means that, even though these instances are still
non-partial, they have the highest resemblance to a regular SAT problem by far.
Given the problem size, timeouts of 60s and 300s do not suffice, and DeMaxSAT

cannot run a sufficient number of generations for an adequate quality evolution.



DeMaxSAT Solver 11

In fact, in some cases, DeMaxSAT is unable to run a single generation step within
the timeout, so the algorithm is actually never applied - thus, comparing its 0
score here with other algorithms does not make much sense. To analyze DeMaxSAT
on these benchmarks, longer timeouts would be needed, but we postpone that
study for future improvements including calls to a regular SAT solver.

6 Conclusions

In this work, an incomplete MaxSAT solver, called DeMaxSAT, has been im-
plemented. It uses the Differential Evolution evolutionary algorithm, combined
with two MaxSAT-specific local search heuristics, GSAT and RandomWalk, to
define a memetic hybridization. The solver has been tested in non-partial MSE
instances and measured against other incomplete state-of-the-art solvers pre-
sented at the MSE 2021 in a competitive environment, outperforming three of
the solvers and reaching a comparable performance to the top tools in most of
the benchmark instances. However, with the largest MSE instances (considering
the number of variables and clauses), within the time limits of 60s and 300s, the
memetic algorithm was not able to run for a sufficient number of generations, so
higher time limits would be needed to obtain a good solution. Yet, the obtained
results are especially remarkable due to the simplicity of the base differential
evolution algorithm, with an easy parameterization and adaptability, and which
does not rely on a backend SAT solver, like the other tools.

As a first future improvement, other heuristics could be extracted from the
different solvers, to embed them in DeMaxSAT. Second, if we face a real ap-
plication, DE parameters could be automatically tuned using self-adaptation
mechanisms as in modern DE versions [8], so they would be adjusted not only
to general features of the instance and timeout, but also to the specific domain
to be solved. Finally, the application to partial benchmark instances must be
explored by devising mechanisms that guarantee genetic variability in the popu-
lation, since the EA will tend to satisfy first the hard clauses with larger weight.

Acknowledgments Partially funded by the Xunta de Galicia and the European
Union (European Regional Development Fund - Galicia 2014-2020 Program),
with grants CITIC (ED431G 2019/01) and GPC ED431B 2022/33, and by the
Spanish Ministry of Science and Innovation (grant PID2020-116201GB-I00).

References

1. DeMaxSAT Solver (2021), https://github.com/Manuframil/DEMaxSatSolver
2. Ali, H.M., Mitchell, D., Lee, D.C.: MAX-SAT problem using evolutionary algo-

rithms. In: 2014 IEEE Symposium on Swarm Intelligence. pp. 1–8 (2014)
3. Bacchus, F., Järvisalo, M., Berg, J., Martins, R.: MaxSAT evaluation (2021), https:

//maxsat-evaluations.github.io/2021/
4. Berg, J., Demirovic, E., Stuckey, P.: Loandra in the 2020 MaxSAT evaluation

(2020), https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf

https://github.com/Manuframil/DEMaxSatSolver
https://maxsat-evaluations.github.io/2021/
https://maxsat-evaluations.github.io/2021/
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf


12 Manuel Framil, Pedro Cabalar, and José Santos

5. Bhattacharjee, A., Chauhan, P.: Solving the SAT problem using genetic algorithm.
Advances in Science, Tech. and Engineering Systems Journal 2(4), 115–120 (2017)

6. Boughaci, D., Benhamou, B., Drias, H.: Scatter search and genetic algorithms for
MAX-SAT problems. J Math Model Algor 7, 101–124 (2008)

7. Chen, W., Whitley, D., Tinós, R., Chicano, F.: Tunneling between plateaus: im-
proving on a state-of-the-art MAXSAT solver using partition crossover. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018,
Kyoto, Japan, July 15-19, 2018. Kyoto, Japan (2018)

8. Das, S., Mullick, S., Suganthan, P.: Recent advances in differential evolution – an
updated survey. Swarm and Evolutionary Computation 27, 1–30 (2016)

9. Djenouri, Y., Habbas, Z., Djenouri, D., Fournier-Viger, P.: Bee swarm optimization
for solving the MAXSAT problem using prior knowledge. Soft Computing 23,
3095–3112 (2019)

10. Doerr, B., Zheng, W.: Working principles of binary differential evolution. Theoret-
ical Computer Science 801, 110–142 (2020)

11. Doush, I.A., Quran, A.L., Al-Betar, M.A., Awadallah, M.A.: MAX-SAT problem
using hybrid harmony search algorithm. Journal of Intelligent Systems 27(4), 643–
658 (2018)

12. Fu, H., Xu, Y., Wu, G., Jia, H., Zhang, W., Hu, R.: An improved adaptive genetic
algorithm for solving 3-SAT problems based on effective restart and greedy strat-
egy. Intl. Journal of Computational Intelligence Systems 11(1), 402–413 (2018)

13. Joshi, S., Kumar, P., Rao, S., Martins, R.: Open-WBO-Inc in MaxSAT
evaluation 2020 (2020), https://helda.helsinki.fi/bitstream/handle/10138/333649/
mse21proc.pdf

14. Lardeux, F., Saubion, F., Hao, J.K.: GASAT: A genetic local search algorithm for
the satisfiability problem. Evolutionary computation 14, 223–53 (2006)

15. Lei, Z., Cai, S., Geng, F., Wang, D., Peng, Y., Wan, D., Deng, Y., Lu, P.:
SATLike-c: solver description (2021), https://helda.helsinki.fi/bitstream/handle/
10138/333649/mse21proc.pdf

16. Lov́ı̌sková, J.: Solving the 3-SAT problem using genetic algorithms. In: INES 2015
- IEEE 19th International Conference on Intelligent Engineering Systems (2015)

17. Menai, M., Batouche, M.: Efficient initial solution to extremal optimization algo-
rithm for weighted MAXSAT problem. vol. 2718, pp. 592–603 (2003)

18. Nadel, A.: TT-Open-WBO-Inc-21: an anytime MaxSAT solver entering MSE’21
(2020), https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf

19. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation 2, 1–14 (2012)

20. Reisch, J., Großmann, P.: Stable Resolving (2020), https://helda.helsinki.fi/
bitstream/handle/10138/333649/mse21proc.pdf

21. Selman, B., Kautz, H.A.: Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In: PROC. IJCAI-93. pp. 290–295 (1993)

22. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Proc. of the AAAI Conference. p. 440–446. AAAI Press (1992)

23. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization 11,
341–359 (1997)

https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf
https://helda.helsinki.fi/bitstream/handle/10138/333649/mse21proc.pdf

	A MaxSAT Solver based on Differential Evolution (preliminary report) 

