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ABSTRACT
The use of Relevance-Based Language Models for top-N rec-
ommendation has become a promising line of research. Pre-
vious works have used collection-based smoothing methods
for this task. However, a recent analysis on RM1 (an estima-
tion of Relevance-Based Language Models) in document re-
trieval showed that this type of smoothing methods demote
the IDF effect in pseudo-relevance feedback. In this paper,
we claim that the IDF effect from retrieval is closely related
to the concept of novelty in recommendation. We perform
an axiomatic analysis of the IDF effect on RM2 conclud-
ing that this kind of smoothing methods also demotes the
IDF effect in recommendation. By axiomatic analysis, we
find that a collection-agnostic method, Additive smoothing,
does not demote this property. Our experiments confirm
that this alternative improves the accuracy, novelty and di-
versity figures of the recommendations.

CCS Concepts
•Human-centered computing → Collaborative filter-
ing; •Information systems→ Recommender systems; Lan-
guage models;

Keywords
Recommender systems, Relevance-Based Language Models,
collaborative filtering

1. INTRODUCTION
Recommender systems are becoming increasingly popu-

lar these days. The enormous growth of data available to
users has changed the way we access information. Users are
becoming more and more demanding: they are eager to re-
ceive personalised contents instead of explicitly stating their
information needs. Therefore, the applicability of recom-
mender systems is undeniable. This technology is designed
for providing relevant items of information by learning from
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the users’ past behaviour. Continuous developments in this
field have been made to meet these high expectations.

We can distinguish multiple approaches to recommenda-
tion [24]. They are often classified in three main categories:
content-based, collaborative filtering and hybrid techniques.
Content-based approaches generate recommendations based
on the item and user descriptions: they suggest items simi-
lar to those liked by the target user [9]. In contrast, collab-
orative filtering methods rely on the interactions (typically
ratings) between users and items in the system [21]. Finally,
there exist hybrid algorithms that combine both collabora-
tive filtering and content-based approaches.

Traditionally, Information Retrieval (IR) has focused on
delivering the information that users demand [1]. On the
other hand, Information Filtering (IF) explores ways of se-
lecting relevant pieces of information from a stream of data
[12]. Recommender systems are active information filters:
these methods learn from the users’ behaviour providing per-
sonalised suggestions. Given the similarities between IR and
IF, some authors have considered them to be sibling fields
or two sides of the same coin [2]. The main difference be-
tween these fields is the way in which the information need
is obtained. Information Retrieval systems usually receive a
query prompted by the user meanwhile Information Filter-
ing systems infer the users’ needs.

Due to the closeness of IR and IF, exploiting Information
Retrieval methods for recommenders systems has become
a fertile area of research [31, 4, 23, 27, 30]. In particu-
lar, in this paper we want to further investigate the use
of Relevance-Based Language Models for recommendation.
Lavrenko and Croft [17] devised the Relevance-Based Lan-
guage Modelling framework for the pseudo-relevance feed-
back task proposing two methods: RM1 and RM2. Later,
Parapar et al. adapted this technique to the collaborative fil-
tering scenario achieving high figures of precision [23]. For
pseudo-relevance feedback, RM1 is the preferred method;
however, RM2 yields better results than RM1 in top-N rec-
ommendation.

To be effective, language models employ smoothed prob-
ability estimates. The selection of the smoothing method
is crucial for the performance of language models both in
Information Retrieval [33] and in recommendation [29]. A
recent study presented an axiomatic analysis of smoothing
methods for different pseudo-relevance feedback techniques
(including RM1) [13]. The authors concluded that the tra-
ditional collection-based methods that have been used for
smoothing language models in the ad hoc retrieval task [33]
are not suitable for performing pseudo-relevance feedback
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because they demote the IDF (inverse document frequency)
effect. Instead, they proposed the use of RM1 with Ad-
ditive smoothing, a collection-agnostic smoothing method.
This choice is supported by their axiomatic analysis and
outperformed traditional alternatives in their experiments.

The IDF is a measure of term specificity [26, 25]. We claim
that this concept is related to novelty in recommender sys-
tems [7]. In this paper, we study the connection between
these two concepts and its implications in recommendation.
Furthermore, we perform an axiomatic analysis of the IDF
effect in RM2 in the context of recommendation. We study
three collection-based smoothing methods (Jelinek-Mercer,
Dirichlet Priors and Absolute Discounting) and a collection-
agnostic method (Additive smoothing). Our goal is to deter-
mine if the application of Additive smoothing to Relevance-
Based Language Models is valuable not only for the pseudo-
relevance feedback task, but also for top-N recommenda-
tion. Our axiomatic analysis proves that the aforemen-
tioned collection-based smoothing methods demote the IDF
effect on RM2 in recommendation as it does on RM1 for
pseudo-relevance feedback. Moreover, we find that Additive
smoothing neither promotes nor demotes the IDF effect on
RM2. Thus, if the IDF heuristic is valuable for recommenda-
tion, Additive smoothing should work better than the other
methods.

To verify this last assumption—the utility of the IDF ef-
fect in recommendation—we test experimentally the quality
of the recommendations generated by RM2 with different
smoothing methods. We use accuracy, diversity and novelty
metrics to cover different aspects of top-N recommendation.
Our experiments show that Additive smoothing provides
better figures of accuracy, diversity and novelty and, at the
same time, it is more stable with respect to the smoothing
parameter than the collection-based smoothing methods.

In summary, the contributions of this paper are (1) an
investigation of the relationship between the IDF effect in
retrieval and novelty in recommendation, (2) an axiomatic
analysis of the IDF effect of RM2 using the three most
popular collection-based smoothing methods and Additive
smoothing and (3) an empirical comparison of the four stud-
ied smoothing methods in terms of accuracy, novelty and
diversity of the recommendations concluding that Additive
smoothing is the method that provides best figures for these
metrics.

2. BACKGROUND
In this section, first, we describe the top-N recommenda-

tion task and the notation. Second, we contextualise the
Relevance-Based Language Modelling approach in its origi-
nal task (i.e., pseudo-relevance feedback) and, then, we de-
scribe its adaptation to top-N recommendation. Finally, we
present different smoothing strategies for language models
in the context of recommendation.

2.1 Top-N Recommendation
Top-N recommendation refers to the task of finding the

top-N most relevant items for a user [8]. This approach con-
trasts with the rating prediction task where a recommender
system is supposed to predict the values of the ratings that
the users will give to the items. Several authors have ar-
gued that the top-N recommendation task is more realistic
than rating prediction [14, 8, 11, 24]. Therefore, this work
is devoted to the top-N recommendation problem.

Recommender systems work with a set of users U and a
set of items I. Collaborative filtering approaches employ
the interactions between users and items to generate recom-
mendations. This work is devoted to explicit feedback col-
laborative filtering techniques which are based on ratings.
A rating from a user u ∈ U to an item i ∈ I is denoted by
r(u, i). Additionally, Iu refers to the set of items rated by
the user u. Finally, the recommendation list for the user u
of length k is represented by Lku.

2.2 Relevance-Based Language Models
Relevance-based Language Models (often abbreviated as

Relevance Models or simply RM) are a state-of-the-art tech-
nique for the pseudo-relevance feedback task in text retrieval
[17]. Nonetheless, this framework has also been adapted to
top-N recommendation with great success [23].

Pseudo-relevance feedback (PRF) is a way of expanding
queries with new terms in a text retrieval system. Since
a standard retrieval system returns a list of documents ac-
cording to the query prompted by the user, the performance
of this process depends fundamentally on the retrieval algo-
rithm and the quality of the user’s query [1]. For this reason,
expanding this query with relevant terms is a way of im-
proving the outcome of a retrieval system. Pseudo-relevance
feedback is an automatic and effective query expansion ap-
proach. In PRF, we assume that the top documents re-
trieved with the original query are relevant (they form the
pseudo-relevant set). PRF methods expand the initial query
with the most relevant terms from the pseudo-relevant set.
Then, the expanded query is used for performing a second
retrieval which provides the results to be presented to the
user.

The PRF approach has been adapted to collaborative fil-
tering recommendation [23] in the following way. Instead
of a query, we have a user whose profile (i.e., the set of
items that the user has rated) has to be expanded with new
relevant items. For doing so, we use a set of neighbours
or similar users. The intuitive idea is that the candidates
for recommendation are those items that are relevant in the
neighbourhood of the user. In this way, users play a dual
role: they act as queries when they are the target user of the
recommendation process but they also act as documents of
the pseudo-relevant set when they are considered as neigh-
bours. On the other hand, items only play the role of terms
in retrieval.

There exists two estimations of Relevance Models—RM1
and RM2—which differ in the probability assumptions they
make [17]. In this work, we employed the latter estimation
because it outperformed the former one in the collaborative
filtering scenario [23]. In RM2, the probability of an item i
under the Relevance Model of the user u is given by:

p(i|Ru) ∝ p(i)
∏
j∈Iu

∑
v∈Vu

p(i|v) p(v)

p(i)
p(j|v) (1)

Recommendations are presented to the user ordered ac-
cording to decreasing relevance, that is, decreasing values of
p(i|Ru). We consider the prior probabilities p(i) and p(v) to
be uniform for the sake of simplicity.

In addition, Vu is the set of neighbours of user u. These
neighbourhoods are computed using a clustering technique.
Following a common practice in the literature, we decided to
use k-NN algorithm [8, 21]. This method consists in finding
the k most similar users to the target user using a pairwise



metric. In this work, we used cosine similarity for this pur-
pose:

cosine(u, v) =

∑
i∈Iu∩Iv r(u, i) r(v, i)√∑

i∈Iu r(u, i)
2
√∑

i∈Iv r(v, i)
2

(2)

Finally, it only remains to describe the estimation of p(i|v)
which is based on the maximum likelihood estimate (MLE)
over a multinomial distribution of positive ratings:

pml(i|u) =
r(u, i)∑

j∈Iu r(u, j)
(3)

The problem of the maximum likelihood estimate stems
from its high sparsity: if a user did not rate an item, the esti-
mate yields a value of zero. For this reason, language models
are smoothed. In text retrieval, the most common practice
is to smooth the MLE with the collection model [33]. Like-
wise, in recommendation, collection-based smoothing meth-
ods have been applied to Relevance Models [29]. Next, we
present the most common collection-based smoothing meth-
ods for addressing the sparsity problem of MLE.

2.3 Collection-Based Smoothing Methods
Using a collection-based smoothing method, the probabil-

ity of an item given a user p(i|u) is calculated by smoothing
the maximum likelihood estimate pml(i|u) with the back-
ground model of the collection p(i|C). This collection model
is given by:

p(i|C) =

∑
v∈U r(v, i)∑

j∈I, v∈U r(v, j)
(4)

For text retrieval, the prominent smoothing methods are
Jelinek-Mercer and Dirichlet Priors [33]. In contrast, it has
been shown that Absolute Discounting works better than
the previous methods when Relevance Models are applied
to collaborative filtering [29].

2.3.1 Jelinek-Mercer (JM)
This method performs a linear interpolation between the

maximum likelihood estimator and the collection model [16]
which is regulated by the parameter λ ∈ [0, 1]:

pλ(i|u) = (1− λ) pml(i|u) + λ p(i|C) (5)

2.3.2 Dirichlet Priors (DP)
DP is derived from a Bayesian analysis using Dirichlet

priors [18]. It has a parameter µ > 0 to control the amount
of smoothing applied:

pµ(i|u) =
r(u, i) + µ p(i|C)
µ+

∑
j∈Iu r(u, j)

(6)

2.3.3 Absolute Discounting (AD)
AD subtracts a value of δ > 0 from the count of the rated

items [20]. This discount is compensated with the back-
ground collection:

pδ(i|u) =
max[r(u, i)− δ, 0] + δ |Iu| p(i|C)∑

j∈Iu r(u, j)
(7)

Collection-based smoothing methods have in common that
they substitute part of the probability mass provided by the
MLE (Eq. 3) with probability mass obtained from the col-
lection model (Eq. 4). This reallocation of probability is

performed to avoid zeroes in non-rated items [33]. However,
this is done in a way that popular items in the collection re-
ceive more probability than those less common. Intuitively,
this type of smoothing may reduce novelty. In fact, previ-
ous studies found that RM2, compared to state-of-the-art
recommenders, do not have very good results of novelty and
diversity [27]. Therefore, in the next section, we explore al-
ternatives to collection-based smoothing in order to improve
novelty figures.

3. IDF EFFECT AND NOVELTY ON RM
Novelty and diversity have been two important aspects in

text retrieval, to the point that several TREC tracks and
tasks have been devoted to them1. However, regarding the
recommendation task, there has been little interest in nov-
elty or diversity until the beginning of the 2000s [7]. Ac-
curacy, particularly measured with error metrics, was the
primary objective of any recommender. For example, the
Netflix Prize goal was to improve the accuracy of Cinematch
(Netflix recommendation system) by 10% [5]. Nowadays, re-
search efforts have moved from the rating prediction task to
the top-N recommendation task [14, 8]. Additionally, there
exist a consensus on the critical importance of measuring dif-
ferent properties of recommenders systems such as diversity
and novelty [14, 15, 7].

On the other hand, in the Information Retrieval commu-
nity, recent criticism has been raised to the use of collection-
based smoothing methods in the context of pseudo-relevance
feedback. Hazimeh and Zhai analysed the effect that this
type of smoothing has on three PRF techniques [13]. In par-
ticular, they found that applying collection-based smooth-
ing methods to RM1 conflicts with the IDF effect—a desired
property of a retrieval system.

We claim that there exists a connection between the con-
cept of novelty from recommendation and the IDF effect
from Information Retrieval. In this section, we describe this
relationship. We start by defining novelty and diversity in
recommendation and, then, we present the IDF effect and
its similarities with novelty.

3.1 Novelty and Diversity
Novelty has been studied in Information Retrieval as the

proportion of relevant documents in the result set that are
unknown to the user [1]. Since this definition is not very
pragmatic when using top-N recommenders in a collabora-
tive filtering scenario, novelty is usually measured as how
unusual the recommended items are [15]. Diversity, on the
other hand, measures whether a recommender systems sug-
gest different items or, on the contrary, it recommends mostly
the same items [7]. Both properties, novelty and diversity,
are closely connected and to some degree complementary [7].

The rationale behind the importance of novelty is that
an accurate recommendation can be useless if the suggested
items are already known by the user. Recommendations
should also try to suggest items that users would not have
discovered by themselves. However, this property, called ser-
endipity, is difficult to measure. Thus, it is usually approx-
imated by novelty and relevance [7]. Somehow, novelty is a
similar concept to serendipity but weaker: novel recommen-
dations provide the users with information about uncommon
items, although these items could have been discovered even-

1http://trec.nist.gov/tracks.html
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tually. Recommendations are considered diverse when they
suggest a great variety of items instead of recommending a
few popular ones.

Recommender systems that strongly focus on accuracy
may give poor results on diversity and novelty metrics and
vice versa. Intuitively, we can see that if we recommend
to the users the most popular items for their similar neigh-
bours, the suggestions will be accurate but diversity and
novelty will suffer. On the contrary, recommending unusual
items can improve novelty and diversity at the risk of making
some mistaken suggestions. This is perhaps the most promi-
nent trade-off in the field of recommender systems [34].

3.2 IDF Effect
In Information Retrieval, the inverse document frequency

(IDF) is a measure of term specificity [26, 25]. It is defined
as the inverse of the number of documents in the collection
that contains the target term. For example, stopwords are
terms that appear in almost every document and they do
not provide much information. In contrast, those terms that
only appear in a few documents are highly informative and
help in discriminating which documents are relevant. Thus,
the IDF effect gives more importance to those query terms
that are more specific (i.e., higher IDF).

IDF was not born from a formal analysis, however it was
considered a useful and robust heuristic [26]. Later, Robert-
son provided a theoretical justification for this term weight-
ing function [25]. Mostly all the text retrieval algorithms
introduce the IDF effect to weight query terms [26]. This
property can be included in the retrieval model either explic-
itly (e.g., the vector space model or BM25 [1]) or implicitly
(e.g., the probabilistic model [26] or language models [33]).

We claim that when adapting the Relevance Modelling
framework to collaborative filtering [23], term specificity is
related to item novelty. The IDF effect promotes specific
terms over popular—and to some extent meaningless—ones.
Since items play the role of terms when using Relevance
Models for recommendation, promoting uncommon terms
will be beneficial for improving novelty figures.

Previous work has explored different estimations of Rele-
vance Models that promote divergent terms with great suc-
cess [6, 22]. Another work in this line of research was the
study of Hazimeh and Zhai [13]. They performed an ax-
iomatic analysis of the IDF effect in several pseudo-relevance
feedback methods. They found that collection-based meth-
ods (those from Sec. 2.3) penalise the IDF effect on RM1.
To overcome this problem, they propose to use Additive
smoothing which does not rely on a background collection
model. Their analysis showed that this type of smoothing
neither promotes nor demotes the IDF effect. However, it
is not clear whether this conclusion is applicable to RM2.
For this reason, we present an axiomatic analysis of the IDF
effect on RM2 for recommender systems.

4. AXIOMATIC ANALYSIS OF RM2
In this section, we study the IDF effect on RM2. We per-

formed an axiomatic analysis of the IDF effect on RM2. Our
goal is to examine if RM2, in the context of top-N recom-
mendation, penalises the IDF effect as RM1 with collection-
based smoothing methods does in the pseudo-relevance feed-
back task [13].

In recommendation, given two items with the same rat-
ings in the neighbourhood, the IDF effect promote the item

that is less popular in the collection (in terms of probability,
see Eq. 4). This property is desirable in order to enhance the
novelty of the recommendations while keeping high accuracy.
This effect does not conflicts with accuracy because uncom-
mon items are preferred over common items only when they
have the same ratings.

Formally, we can define the IDF effect for recommendation
as follows:

Definition (IDF effect). Let u be a user from the set of
users U and Vu be her/his neighbourhood. Given two items
i1 and i2 with the same ratings r(v, i1) = r(v, i2) ∀ v ∈ Vu
and different popularity p(i1|C) < p(i2|C), a recommender
system that outputs p(i1|Ru) > p(i2|Ru) is said to support
the IDF effect.

Now we proceed to analyse axiomatically RM2. If we
assume that i1 and i2 are two items as in the previous defi-
nition, studying the sign of ∆ = p(i1|Ru)− p(i2|Ru) allows
to check whether RM2 supports the IDF effect or not. If
∆ > 0, the recommender system supports this property. On
the contrary, if ∆ < 0, the algorithm violates the definition
of the IDF effect. Finally, ∆ = 0 means that the system
neither promotes nor demotes the IDF effect. Given the
formula of RM2, ∆ is computed as follows:

∆ = p(i1|Ru)− p(i2|Ru)

= p(i)
∏
j∈Iu

∑
v∈Vu

p(i1|v) p(v)

p(i)
p(j|v)

− p(i2)
∏
j∈Iu

∑
v∈Vu

p(i2|v) p(v)

p(i2)
p(j|v) (8)

If we suppose that item priors are uniform, p(i) = |I|−1,
we obtain:

∆ = p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v) p(v)

p(i)
p(i1|v)

− p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v) p(v)

p(i)
p(i2|v) (9)

We can observe that the sign of ∆ depends on the sign of
p(i1|v)−p(i2|v) which may vary among smoothing methods.
Therefore, we need to analyse each smoothing technique one
by one. Next, we examine the three collection-based meth-
ods described Sec. 2.3. Moreover, we present and study Ad-
ditive smoothing, a collection-agnostic method, as a possible
alternative to the traditional ones.

4.1 Analysis of Jelinek-Mercer
Applying Jelinek-Mercer smoothing from Eq. 5 to Eq. 9:

∆ = p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

[
(1− λ)pml(i1|v) + λp(i1|C)

]
− p(i)

∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

[
(1− λ)pml(i2|v) + λp(i2|C)

]
< 0 (10)

we obtain that the difference is negative because λ ∈ [0, 1],
all the probabilities are positive and p(i1|C) < p(i2|C) from
definition. Note that pml(i1|u) = pml(i2|u) because both
items have the same ratings. Thus, Jelinek-Mercer demotes
the IDF effect for RM2 as it does for RM1 in pseudo-relevance
feedback [13].



4.2 Analysis of Dirichlet Priors
Plugging DP smoothing method from Eq. 6 into Eq. 9:

∆ = p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

r(v, i1) + µ p(i1|C)
µ+

∑
k∈Iu r(v, k)

− p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

r(v, i2) + µ p(i2|C)
µ+

∑
k∈Iu r(v, k)

< 0 (11)

we obtain that the difference is also negative because µ > 0,
all the ratings and probabilities are positive and, by defi-
nition, p(i1|C) < p(i2|C). We can conclude that Dirichlet
Priors violates the IDF effect for RM2. This also happens
for RM1 in pseudo-relevance feedback [13].

4.3 Analysis of Absolute Discounting
Absolute Discounting was not studied in the context of

pseudo-relevance feedback; however, since it is the preferred
method in recommendation [29], we analyse if it supports
the IDF effect:

∆ = p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

rδ(v, i1) + δ |Iv| p(i1|C)∑
k∈Iv r(u, k)

− p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

rδ(v, i2) + δ |Iv| p(i2|C)∑
k∈Iv r(u, k)

< 0 (12)

where rδ(v, i) = max[rδ(v, i) − δ, 0]. We can observe that
the difference ∆ is negative taking into account that δ >
0, |Iv| > 0, all the ratings are positive and, by definition,
p(i1|C) < p(i2|C).

We can observe that the three collection-based smoothing
methods demote the IDF effect on RM2 for recommenda-
tion. For this reason, next we also explore Additive smooth-
ing as a collection-agnostic smoothing method.

4.4 Analysis of Additive Smoothing
Additive smoothing (also known as Laplace smoothing) is

a collection-agnostic method. It increases all the ratings by
a parameter γ > 0. If the user u has not rated the item i,
that item will receive a rating value of γ. The probability
estimate with this technique is computed as follows:

pγ(i|u) =
r(u, i) + γ∑

j∈Iu r(u, j) + γ|I| (13)

Since this method is collection-agnostic, it does not rely on
the probability of an item in the collection, p(i|C), which is a
measure of item popularity—opposed to novelty. Applying
the same axiomatic analysis as before:

∆ = p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

r(u, i1) + γ∑
j∈Iu r(u, j) + γ|I|

− p(i)
∏
j∈Iu

∑
v∈Vu

p(j|v)p(v)

p(i)

r(u, i2) + γ∑
j∈Iu r(u, j) + γ|I|

= 0 (14)

we find that this method neither supports nor violates the
IDF effect. This result coincides with the analysis of RM1
for pseudo-relevance feedback [13].

Table 1: Datasets statistics

Dataset Users Items Ratings

MovieLens 100k 943 1,682 100,000
MovieLens 1M 6,040 3,706 1,000,209

5. EXPERIMENTS
Next, we present the empirical evaluation of Relevance

Models with Additive smoothing applied in a collaborative
filtering scenario. We used the MovieLens 100k and Movie-
Lens 1M collections2. These datasets were extracted from
a film recommendation platform. Their statistics are pre-
sented in Table 1.

We used the training/test splits provided by the Movie-
Lens 100k collection. Since the other dataset do not offer a
default partition, we split the dataset in the following man-
ner: 80% of ratings of each user are for training and the rest
for test.

5.1 Evaluation Methodology
Traditionally, Recommenders Systems intended to predict

the ratings of unknown items. Thus, error measures such as
Root Mean Squared Error (RMSE) or Mean Average Er-
ror (MAE) were commonly used to assess the performance
of the recommenders [11]. Acknowledging that evaluating
recommender systems using error metrics does not lead to
better recommenders, several studies proposed the use of
IR metrics for evaluating the rankings of recommendations
(i.e., top-N recommendation) as well as diversity and novelty
metrics [14, 8, 11, 7].

In this work, all the metrics are evaluated at a given cut-
off rank, that is, taking into account only the top k recom-
mendations computed by the recommender. The rationale
for this decision is that users seldom consider more recom-
mendations than the first ones. Thus, we are interested in
studying the quality of the top suggestions generated by the
system.

5.1.1 Accuracy
In contrast with error measures, top-N recommendation

metrics analyse the quality of the recommendation lists. To
apply these metrics, we followed the TestItems approach
described by Belloǵın et al. [3]. For each user, we computed
a ranking composed of all the items having a test rating by
some user and no training rating by the target user. The set
of relevant items for the user u consists of all the items rated
by the user u in the test set that have a rating greater than
or equals to 3. As it has been acknowledged, considering
non-rated items as irrelevant may underestimate the true
metric value; however, it provides a better estimation of the
recommender quality [19].

We used normalised discounted cumulative gain (nDCG)
for measuring the quality of the recommendation list. In
addition, this metric takes into account graded relevance
(i.e., a higher rating is preferred) and position (i.e., relevant
suggestions in the top positions are better than in bottom
places). We used the standard formulation as described in
[32]. Adapted to collaborative filtering, this metric is com-

2http://grouplens.org/datasets/movielens

http://grouplens.org/datasets/movielens


puted as follows:

nDCG@k =
1

|U|
∑
u∈U

DCGu@k

IDCGu@k
(15)

where the Discounted Cumulative Gain is defined as:

DCGu@k =

k∑
i=1

rel(u, Lku[i])

log2(i+ 1)
(16)

and IDCG@k (Ideal DCG at k for user u) refers to the
maximum possible DCG till position k for the user u. It
is computed calculating the DCGu@k of the perfect ranked
list of items that can be recommended to user u. Last,
rel(u, Lku[i]) is the graded relevance, for the user u, of the
item located in the i-th position in the ranking list Lku. We
consider the graded relevance to be equal to the rating if it
is superior or equals to 3; otherwise, the relevance will be
zero.

5.1.2 Diversity
We measured diversity with the Gini index. This coeffi-

cient is commonly used for quantifying wealth distribution
inequalities, but it has also been utilised for measuring rec-
ommendation diversity [10, 11, 7]. Note that we use the com-
plement of this metric for convenience. In this way, when
the index is 0, it indicates that a single item is recommended
for every user which corresponds to the minimum diversity
scenario. On the contrary, a value of 1 means that all the
items are equally recommended across the users. The Gini
index is computed as follows:

Gini@k = 1− 1

|I| − 1

|I|∑
j=1

(2j − |I| − 1) p(ij |rec@k) (17)

where i1, · · · , i|I| is the list of items sorted by increasing
p(ij |rec@k). This term refers to the probability that item
ij is being recommended in some recommendation list of
length k and is given by:

p(i|rec@k) =
|{u ∈ U|i ∈ Lku}|∑

u∈|U| |Lku|
(18)

5.1.3 Novelty
We measured novelty using an Information Theoretic met-

ric. Zhou et al. proposed to use the mean self-information
to quantify the ability of a recommender system to generate
unexpected recommendations [34]. This metric is also called
surprisal because it measures the improbability of an out-
come. We use the concept of popularity in this metric, that
is, the proportion of users that interacted with the item.

MSI@k =
1

|U|
∑
u∈U

∑
i∈Lk

u

log
1

pop(i)
(19)

where the popularity of an item is computed as:

pop(i) =
|{u ∈ U|i ∈ Iu}|

|U| (20)

Please note, that this definition of popularity is equivalent
to the document frequency in Information Retrieval when re-
placing users by documents and items by terms. Therefore,
with this metric we can measure the IDF effect which, as we
argued before, is directly related to novelty.

5.2 Results and Discussion
We tested the four different smoothing methods on the

MovieLens 100k and MovieLens 1M datasets. We tuned
the smoothing parameters γ ∈ {0.001, 0.01, 0.1, 1, 10}, δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, λ ∈ {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and µ ∈ {100, 200, 300, 400, 500,
600, 700, 800, 900, 1000} of the Additive, AD, JM and DP
methods, respectively. We used k-NN algorithm with cosine
similarity for computing neighbourhoods. We set k = 50
for the MovieLens 100k and k = 100 for the MovieLens 1M.
The results in terms of nDCG@10, Gini@10 and MSI@10
are presented in Figs. 1 and 2 for the MovieLens 100k and
1M, respectively.

Smoothing is a crucial aspect of RM2: the choice of the
smoothing method as well as its correct parameter optimi-
sation notably affects the final quality of the recommenda-
tions. Although the absolute values of performance vary,
the trends in both datasets are very similar. This supports
the generalisation of these results to other collections.

Overall, additive smoothing provides the best recommen-
dations in terms of precision, diversity and novelty followed
by Absolute Discounting. Previous work reported that AD
outperformed DP and JM in terms of accuracy [29]. How-
ever, this is the first study that also presents diversity and
novelty figures of these methods.

In recommendation, there is always a trade-off between
accuracy and diversity or novelty [34]. It is possible to im-
prove the diversity or novelty of the recommendations at
the expense of a reduction of accuracy (e.g., recommending
very unpopular items to different users). Therefore, simulta-
neous improvements in accuracy and in novelty or diversity
are highly valuable. Additive smoothing obtains notable
improvements on these three aspects. This confirms the im-
portance of the IDF effect in recommendation.

To further explore this trade-off, we plot the geometric
mean of nDCG@10, Gini@10 and MSI@10. We used the
geometric mean because the arithmetic mean does not ad-
dress different scales properly. Figure 3 shows that Additive
smoothing has the best trade-off among accuracy, diversity
and novelty. In general, we can set γ between 0.001 and 0.01
to obtain good results.

An important property of Additive smoothing is the sta-
bility to the changes in its parameter. We used a logarithmic
scale to visualise very large variations of parameter γ. This
method only showed a small decrease in accuracy, novelty
and diversity when we used enormous values of γ. AD also
showed quite stable results, as stated in previous work [29],
but the method deteriorates with high amount of smoothing.

In contrast, the performance of Jelinek-Mercer and Dirich-
let Priors is far lower than the rest. Additionally, the com-
putational complexity of the three collection-based methods
is the same. Thus, there is no reason to consider using these
smoothing methods with RM2 for recommendation.

Additive smoothing also presents another advantage over
AD (and also over JM and DP): it does not depend on col-
lection statistics. This fact not only preserves the IDF ef-
fect but also reduces the computational resources required
to maintain global statistics of the collection.

6. CONCLUSIONS AND FUTURE WORK
Recommender systems have greatly improved accuracy re-

sults in the last years. Recently, research has focused on
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Figure 1: Values of nDCG@10 (left), Gini@10 (centre) and MSI@10 (right) for RM2 using Additive, Absolute Discounting,
Jelinek-Mercer and Dirichlet Priors methods on the Movielens 100k collection varying the smoothing parameter. Neighbour-
hoods are computed taking the 50 closest users according to cosine similarity.
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Figure 2: Values of nDCG@10 (left), Gini@10 (centre) and MSI@10 (right) for RM2 using Additive, Absolute Discounting,
Jelinek-Mercer and Dirichlet Priors methods on the Movielens 1M collection varying the smoothing parameter. Neighbour-
hoods are computed taking the 100 closest users according to cosine similarity.
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Figure 3: G-measure of nDCG@10 , Gini@10 and MSI@10 for RM2 using Additive, Absolute Discounting, Jelinek-Mercer
and Dirichlet Priors methods on the Movielens 100k (left) and 1M (right) collections varying the smoothing parameter.
Neighbourhoods are computed taking the 50 and 100 closest users according to cosine similarity, respectively for each dataset.

enhancing many other aspects such as novelty and diver-
sity. In the present paper, we study the connection between
the IDF effect from Information Retrieval to the concept of
novelty in recommendation. We analysed axiomatically how
different smoothing methods affect the IDF effect on RM2.
We found that collection-based methods penalise this effect
while Additive smoothing neither promotes nor demotes this
property. Our experiments confirmed that Additive smooth-
ing provides better result than collection-based smoothing
methods improving accuracy, diversity and novelty figures.

As future work, it would be interesting to develop new
smoothing methods that do actively promote the IDF effect

in Relevance Models. Additionally, in this work we consid-
ered only uniform priors; however, it has been shown that
different priors can improve the quality of recommendations
[28]. We think that studying these priors axiomatically may
be worthwhile.
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