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ABSTRACT
To cope with ambiguous and/or underspecified queries, search
result diversification (SRD) is a key technique that has at-
tracted a lot of attention. This paper focuses on implicit
SRD, where the possible subtopics underlying a query are
unknown beforehand. We formulate implicit SRD as a pro-
cess of selecting and ranking k exemplar documents that
utilizes integer linear programming (ILP). Unlike the com-
mon practice of relying on approximate methods, this for-
mulation enables us to obtain the optimal solution of the ob-
jective function. Based on four benchmark collections, our
extensive empirical experiments reveal that: (1) The factors,
such as different initial runs, the number of input documents,
query types and the ways of computing document similarity
significantly affect the performance of diversification mod-
els. Careful examinations of these factors are highly recom-
mended in the development of implicit SRD methods. (2)
The proposed method can achieve substantially improved
performance over the state-of-the-art unsupervised methods
for implicit SRD.
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1. INTRODUCTION
Accurately and efficiently providing desired information

to search engine users is a problem far from being resolved.
A key issue is that users often submit short queries that
are ambiguous and/or underspecified. Take, for example,
the common query Harry Potter. It may actually refer to a
book or a movie. For the movie, a user may be interested in
any of many possible aspects including the main characters,
movie reviews and so on. However, correctly identifying
users’ preferences is still quite difficult and prone to errors.
As a remedy, one possible solution is to apply search result
diversification (SRD), which is characterized as providing a
diversified result to maximize the likelihood that an average
user can find documents relevant to her specific need. Par-
ticularly, considering the above example of Harry Potter,
such solution should generate an optimized result list that
covers the possible aspects like book or movie. According
to whether the subtopics (i.e., different information needs)
underlying a query are given beforehand or not, the task of
SRD can be differentiated into implicit SRD and explicit
SRD. For implicit SRD, the possible subtopics underlying
a query are unknown. In fact, finding a group of subtopic
strings that covers well the possible underlying information
needs of a query is a challenging issue. Most of the time,
the explicit subtopics are not available, neither the train-
ing data for supervised methods (e.g., [2, 3, 33, 22, 37]). In
such scenarios, the technique of implicit SRD is used for sat-
isfying users’ search intents. Accordingly, in this work, we
do not investigate methods for explicit SRD nor supervised
methods for result diversification, but, instead, we focus on
implicit methods.

The state-of-the-art methods for implicit SRD differ mainly
in the following aspects: (1) how to represent diversity; (2)
how to balance relevance and diversity and (3) how to gen-
erate the result list. For example, the Maximal Marginal
Relevance (MMR) model [4] measures the diversity of a doc-
ument di based on the maximum similarity between di and
the previously selected documents. In order to balance the
relevance and diversity, most of the methods use a trade-off
parameter λ. Finally, for generating the desired result list,
the common practice is using the greedy strategy that follows
a heuristic criterion of making the locally optimal choice at
each round [4, 28, 7, 40]. Despite the success achieved by
the state-of-the-art methods, the key underlying drawback
is that the commonly used greedy strategy works well on the



premise that the preceding choices are optimal or close to
the optimal solution. However, in most cases, this strategy
fails to guarantee the optimal solution. A natural question
arises then: to what extent does the greedy solution affect the
performance of implicit SRD? Moreover, when conducting
experimental analysis, a single weighting model (say lan-
guage model with Dirichlet smoothing [38]) is commonly
adopted to perform the initial retrieval. Since the initially
retrieved documents (e.g., top-m documents) are then fur-
ther used to test diversification models, the impact of differ-
ent initial runs on these diversification models is important.
Furthermore, the effect of m (i.e., the number of used doc-
uments) and query types on the performance of a diversifi-
cation model is also crucial. Unfortunately, these key points
are not well investigated in most of the previous studies on
implicit SRD.

The aforementioned drawbacks motivate us to approach
implicit SRD in a novel way. In this paper, we propose
a concise integer linear programming (ILP) formulation for
implicit SRD. Based on this formulation, the exactly op-
timal solution can be obtained and validated. We then
compare the effectiveness of the proposed method, called
ILP4ID, against the state-of-the-art algorithms using the
standard TREC diversity collections. The experimental re-
sults prove that ILP4ID can improve performance over the
baseline methods in terms of standard diversity metrics.

The main contributions of this paper are as follows:

1. We present a concise ILP formulation for implicit SRD
which allows for the exact solution of the objective
function (Eq. 6) to be obtained. On the one hand,
the proposed method can lead to substantially im-
proved performance than the sate-of-the-art unsuper-
vised methods. The experimental results also demon-
strate how much accuracy has been lost due to the us-
age of an approximation method (e.g., compared with
the method [40]). On the other hand, the flexibility of
the proposed formulation allows for further extensions
by simply changing the constraints.

2. Different from prior studies, we thoroughly investigate
the effects of a series of factors on the performance of
a diversification model. Our main finding is that the
factors, such as different initial runs, the number of in-
put documents, query types and the ways of computing
document similarity greatly affect the effectiveness of
diversification models for implicit SRD.

The reminder of the paper is structured as follows. In the
next section, we first survey the well-known approaches for
search result diversification. In Section 3, we formulate im-
plicit SRD as an ILP problem, then ILP4ID method is pro-
posed. A series of experiments are conducted and discussed
in Section 4. Finally, we conclude the paper in Section 5.

2. RELATED WORK
This work is connected to two different research areas:

data clustering and cluster-based information retrieval (IR).
In this section, we first provide a short description of the
popular Affinity Propagation (AP) algorithm for exemplar-
based clustering, which lays the groundwork for the pro-
posed method. Then, we concisely survey the typical ap-
proaches for cluster-based IR and implicit SRD. Due to
space constraints, for a detailed review of AP, we refer the

reader to the work [9, 11], and to [16, 29] for an overview of
cluster-based IR and search result diversification.

2.1 Affinity Propagation for Clustering
The AP algorithm [9] has been deployed and extended in

many research fields, such as detecting drug sensitivity [10],
image categorization [31], image segmentation [34], and so
on. Under the AP algorithm, clustering is viewed as identi-
fying a subset of exemplars (i.e., representative items) given
m items. The input is a symmetric matrix U representing
the pairwise similarity of each pair of items where the diago-
nal values of U denote the prior beliefs of the m items in how
likely each item is to be selected as an exemplar. In particu-
lar, AP assigns each non-exemplar item to an exemplar item.
The objective is to maximize the sum of similarities between
non-exemplar items and their assigned exemplar items. To
this end, the technique of belief propagation is used, and the
solution is generated through exchanging two types of real-
valued messages. However, AP does not guarantee to find
the optimal solution.

Inspired by AP, we formulate the implicit SRD as a pro-
cess of selecting and ranking exemplar documents, and we
use the bound-and-branch method to obtain the optimal solu-
tion. We have empirically found that using message-passing
algorithm like AP for solving the objective (Eq. 6) suf-
fers considerably from convergence issues. On the other
hand, our proposed method can be used as a complemen-
tary method for solving data clustering problems, where the
exact solution is to be expected.

2.2 Cluster-based IR and Implicit SRD
We begin by introducing some notations that are used

throughout this paper. For a given query q, D = {d1, ..., dm}
represents the top-m documents of an initial retrieval run.
r(q, di) denotes the relevance score of a document di w.r.t.
q. The similarity between two documents di and dj is de-
noted as s(di, dj).

A large body of work on cluster-based approaches for IR
build upon the cluster hypothesis [24], which states that
“closely associated documents tend to be relevant to the
same requests”. Some cluster-based methods rely on doc-
ument clusters created offline by using the entire corpus [19,
17]. The methods utilizing query-specific document clusters
are more popular, where the clusters are generated from
documents by an initial retrieval performed in response to a
query. For example, [20, 15] propose to enhance the ad-hoc
retrieval performance, where document clusters are used to
smooth documents’ representations (e.g., language models).
Recently, the cluster-based retrieval paradigm has been ex-
plored in the context of search result diversification, such as
[14] and [23]. Raiber and Kurland [23] studied how to in-
corporate various types of cluster-related information based
on Markov Random Fields.

Regarding implicit SRD, in order to obtain the optimal
ranked list L∗, the most intuitive way is to apply the greedy
best first strategy. At the beginning, this strategy initializes
L with the most relevant document d∗1, and then it selects
the subsequent documents one by one via a specific heuristic
criterion:

d∗j = argmax
dj∈D\Lj−1

{λr(q, dj) + (1− λ)W (dj , Lj−1)} (1)

where Lj−1 = {d∗1, ..., d∗j−1}, W (dj , Lj−1) measures how far



dj disperses w.r.t. Lj−1. At every round, it involves examin-
ing each document that has not been selected, computing a
gain using the above heuristic criterion, and selecting the one
with the maximum gain. A typical instance of this strategy
is the MMR model [4], in which W (dj , Lj−1) is defined as
- max
di∈Lj−1

s(di, dj). In other words, the diversity under MMR

is measured through the maximum similarity between dj
and the previously selected documents. Furthermore, Guo
and Sanner [13] present a probabilistic latent view of MMR,
where the need of manually tuning λ is removed. Later on,
the greedy optimization of Exp-1-call@k [27] for implicit
SRD was proposed. The well-known Modern Portfolio The-
ory (MPT) [30] model takes into account the expected rele-
vance and relevance variance of a document, and the corre-
lations with the already selected documents. It sequentially
selects documents that maximize the following criterion

E(dk)− b · wk · σ2
k − 2b

k−1∑
i=1

wi · σi · σk · ρik (2)

where E(dk) is the expected relevance of dk, and σk is the
standard deviation, w denotes the rank-specific weigh, and
ρik denotes the correlation coefficient between di and dk.

Another line of studies (referred to as top-k retrieval in
[40, 12, 14]) for implicit SRD perform a two-step process.
The first step is to select an optimal subset S ⊂ D of k
documents according to a specific objective function. At
the second step, the selected documents in S are ordered
in a particular way, e.g., in a decreasing order of relevance.
Moreover, Gollapudi and Sharma [12] propose a set of natu-
ral axioms analyzing the properties of a diversification func-
tion. A more general model (referred to as Desirable Facility
Placement DFP) by Zuccon et al. [40] is given as:

S∗ = argmax
S⊂D,|S|=k

λ · R(S) + (1− λ) · D(S) (3)

R(S) =
∑
d∈S

r(d) (4)

D(S) =
∑

d
′∈D\S

max
d∈S

{s(d, d
′
)} (5)

where R(S) denotes the overall relevance. D(S) denotes the
diversity of the selected documents, which is captured by
measuring the representativeness of the selected documents
w.r.t. the non-selected ones, λ ∈ [0, 1] is a trade-off param-
eter. To obtain S∗, they use the greedy best k strategy. It
initializes S with an arbitrary solution (e.g., the k most rele-
vant documents), and then iteratively refines S by swapping
a document in S with another one in D \S. At each round,
interchanges are made only when the current solution can
be improved. The process terminates after convergence or
after a fixed number of iterations.

Our work is a further endeavor to the cluster-based re-
trieval paradigm. The studies most related to ours are [35,
40, 14, 23]. However, the ILP formulation by Yu and Ren
[35] is proposed to perform explicit SRD, which requires
pre-collected subtopics as the input. For implicit SRD, the
methods [40, 14, 23] appeal to approximate methods for gen-
erating clusters. Our formulation of implicit SRD based on
ILP allows to obtain the optimal solution, which makes it
possible to investigate how much accuracy has been lost due
to approximations (e.g., compared with DFP).

3. PROPOSED METHOD
In this section, we first describe the method ILP4ID pro-

posed for implicit SRD. We then discuss the differences and
connections between ILP4ID and the previous approaches.

3.1 ILP Formulation for Implicit SRD
In this section, we formulate the task of implicit SRD as

a process of selecting and ranking k exemplar documents
from the top-m documents of an initial retrieval. We call a
document as exemplar if it is selected to represent a group
of documents based on some measure of similarity. On the
one hand, we expect to maximize the overall relevance of the
k exemplar documents w.r.t. a query. On the other hand,
we wish to maximize the representativeness of the exemplar
documents w.r.t. the non-selected documents. This motiva-
tion follows the aforesaid cluster hypothesis [24]. Intuitively,
if the selected exemplars concisely represent the entire set
of documents, the novelty and diversity will naturally arise.

To clearly describe the way of identifying the expected k
exemplar documents, we introduce the binary square ma-
trix x = [xij ]m×m such that m = |D|, xii indicates whether
document di is selected as an exemplar or not, and xij:i̸=j

indicates whether document di “chooses” document dj as its
exemplar. The process of selecting k exemplar documents is
then expressed as the following ILP problem:

max
x

λ · (m-k) · R
′
(x) + (1-λ) · k · D

′
(x) (6)

R
′
(x) =

m∑
i=1

xii · r(q, di) (7)

D
′
(x) =

m∑
i=1

m∑
j=1:j ̸=i

xij · s(di, dj) (8)

s.t. xij ∈ {0, 1}, i ∈ {1, ...,m}, j ∈ {1, ...,m} (9)
m∑
i=1

xii = k (10)

m∑
j=1

xij = 1, i ∈ {1, ...,m} (11)

xjj − xij ≥ 0, i ∈ {1, ...,m}, j ∈ {1, ...,m} (12)

In particular, the restriction given by Eq. 10 guarantees
that k documents are selected. The restriction by Eq. 11
means that each document must have only one represen-
tative exemplar. The constraint given by Eq. 12 enforces
that if there is one document di selecting dj as its exemplar
(i.e., xij = 1), then dj must be an exemplar (i.e., xjj = 1).

R
′
(x) depicts the overall relevance of the selected exem-

plar documents. D
′
(x) denotes diversity. In other words,

the diversity is expressed through selecting documents that
represent the intrinsic diverse information revealed by the
input documents. In view of the fact that there are k num-

bers (each number is in [0, 1]) in the relevance part R
′
(x),

and m-k numbers (each number is in [0, 1]) in the diversity

part D
′
(x), the coefficients m-k and k are added in order

to avoid possible skewness issues, especially when m ≫ k.
Finally, the two parts are combined through the parame-
ter λ as shown in Eq. 6. Once the k exemplar documents
are selected, they are further ranked in the decreasing order
of their respective contributions to objective function given
by Eq. 6. We denote the proposed approach as ILP4ID,



namely, a concise integer linear programming approach for
implicit SRD.

A number of successful ILP formulations have been devel-
oped for natural language processing tasks, such as semantic
role labelling [26], syntactic parsing [21] and summarisation
[32]. Yet, the ILP formulation we present is, to the best of
our knowledge, the first one for implicit SRD. In fact, the
above ILP formulation is quite flexible, and different vari-
ants can be derived by simply changing the constraints. For
example, when removing the constraint by Eq. 10, the rele-
vance expression (by Eq. 7) and the coefficients m-k and k
in Eq. 6, the above formulation boils down to an equivalent
ILP formulation of AP. It would be interesting to make an
in-depth comparison between AP and its ILP formulation in
the future, which helps to know to what extent AP diverges
from the optimal solution.

3.2 Connections with Prior Models
Looking back at the model DFP given by Eqs. 3, 4 and

5, if we view S as the set of exemplar documents, and D \S
as the complementary set of non-selected documents, calcu-

lating maxd∈S{s(d, d
′
)} can be then interpreted as selecting

the most representative exemplar d ∈ S for d
′
∈ D\S. Thus

D(S) is essentially equivalent to D
′
(x). In addition, R(S)

is also equivalent to R
′
(x). Therefore, DFP can be viewed

as a special case of ILP4ID when the coefficients m-k and
k are not used. Since ILP4ID is able to obtain the exact
solution w.r.t. the formulated objective function, its perfor-
mance can be regarded as the upper-bound of formulations
of this kind.

Moreover, the study by Zuccon et al. [40] also shows that
there are close connections between DFP and the models
like MMR [4], MPT [30] and Quantum Probability Ranking
Principle (QPRP) [39]. Namely, MMR, MPT and QPRP
can be rewritten as different variants of DFP (the reader
can refer to [40] for detailed derivation). Analogously, MMR,
MPT and QPRP can also be rewritten as different variants
of ILP4ID. The detailed derivation can be obtained based
on the work [40]. However, it should be noted that: the
space of feasible solutions for ILP4ID and DFP is different
from the one for MMR or MPT or QPRP. This is because
both ILP4ID and DFP rely on a two-step diversification,
while MMR, MPT and QPRP directly generate the ranked
list of documents in a greedy manner.

4. EXPERIMENTS
In this section we report a series of experiments conducted

to evaluate the performance of the proposed method by com-
paring it to the state-of-the-art implicit diversification ap-
proaches. In the following, we first detail the test collec-
tions and the topics as well as the evaluation metrics used
in the experiments. We then describe the configuration of
each method to be evaluated, including the parameter set-
ting and the ways of computing relevance scores, document
similarity, etc. Finally, we describe the experimental results.

4.1 Test Collections and Metrics
Four standard test collections released in the diversity

tasks of TREC Web Track from 2009 to 2012 are adopted for
the experiments (50 queries per each year). Each query is
structured as a set of a representative subtopics. Moreover,
each query is further categorized as either “faceted” or “am-

biguous” [5]. Queries numbered 95 and 100 in TREC 2010
are discarded due to the lack of judgment data, resulting
in 198 queries being finally used. The evaluation metrics we
adopt are nERR-IA (normalized Intent-Aware Expected Re-
ciprocal Rank) [1] and α-nDCG (novelty-biased Discounted
Cumulative Gain) [6], where nERR-IA is used as the main
effectiveness measure in this study same as in TREC Web
Track. In particular, the performance is evaluated using the
top-20 ranked documents and the officially released script
ndeval with the default settings.

The ClueWeb09 Category B collection is indexed with
the Terrier 4.0 platform1. Two ad-hoc weighting models
are deployed for investigating the effect of initial runs, i.e.,
language model with Dirichlet smoothing [38] (denoted as
DLM ) and BM25 [25] based on the default setting of Ter-
rier 4.0.

4.2 Baselines and Model Configuration
The models MMR [4], MPT [30], 1-call@k [27] and DFP

[40] introduced in Section 2 are used as baseline methods.
Similar to 1-call@k, He et al. [14] have also used the La-
tent Dirichlet Allocation (LDA) topic model for document
clustering, while Raiber and Kurland [23] have utilized a
supervised method (i.e., SVMrank) to utilize the cluster in-
formation. Due to these reasons, [14] and [23] are not com-
pared in this study. When it comes to 1-call@k, we follow
the same setting as in [27]. The LDA model (α=2.0, β=0.5)
is trained based on the top-m results for each query and the
obtained subtopic distributions are used for the similarity
and diversity computation. In particular, the topic number
is set to: 15 (when m ≤ 100), 20 (when 100< m ≤ 300),
25 (when 300< m ≤ 500) and 40 (when 500< m ≤ 1000).
For MPT, the relevance variance between two documents is
approximated by the variance with respect to their term oc-
currences. For DFP (the iteration threshold is 1, 000) and
the proposed model ILP4ID, the k is set to 20.

For MMR, DFP and ILP4ID, we calculate the similarity
between a pair of documents in two ways. One is the Jensen-
Shannon Divergence (denoted as JSD) between document
language models (e.g., DLM ), which is a symmetric and
smoothed version of KL divergence. The other is the cosine
similarity based on tf-idf weight vectors (denoted as COS).
The relevance values returned by DLM and BM25 are then
normalized to the range [0, 1] using the MinMax normal-
ization [18]. Using the same methods to compute both the
relevance score and the document-to-document similarity in
all the studied approaches enables us to conduct a fair com-
parison when investigating the impact of a specific compo-
nent (e.g., the adopted optimization strategy) on the per-
formance.

4.3 Experimental Evaluation
In the following experiments, we first compare the opti-

mization effectiveness betweenDFP and ILP4ID. We then
describe the differences of the used initial runs by DLM and
BM25. Later, we investigate the models from different per-
spectives, including the effectiveness and efficiency.

4.3.1 Optimization Effectiveness
Before investigating the effectiveness of the aforementioned

methods in performing implicit SRD, we first validate the

1http://terrier.org/



superiority of ILP4ID over DFP when solving the formu-
lated objective function (Eq. 3 and Eq. 6). In particular,
we set λ = 0 for both DFP and ILP4ID, and remove the
coefficient k for ILP4ID. Thanks to this, DFP and ILP4ID
are enforced to work in the same way, namely by select-
ing k exemplar documents without ranking. For a specific
topic, we then compute the representativeness (denoted as
D) of the subset S of k exemplar documents, which is de-
fined as D(S) in Eq. 5. The higher the representativeness
is, the more effective the adopted algorithm is. Finally, for
each topic, we compute the difference between DILP4ID and
DDFP that is the difference between the representativeness
by ILP4ID and the one by DFP. As an illustration, we use
the top-50, 100 and 500 documents of the initial retrieval by
BM25, respectively. Fig. 1 shows the performance of DFP
and ILP4ID in finding the best k exemplars, where the x-
axis represents the 198 queries, and the y-axis represents the
difference of the representativeness (i.e., DILP4ID −DDFP ).
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(c) Using top-500 documents.

Figure 1: Optimization effectiveness comparison be-
tween DFP and ILP4ID.

From Fig. 1, we can clearly observe that regardless of
how many documents are used, DILP4ID − DDFP ≥ 0 for
all the queries. When the number of documents increases,
so does the representativeness difference values. Specifically,
the total sum of difference values in Fig. 1(a) is 24.73, the
total sum in Fig. 1(b) is 228.36 and the total sum in Fig.
1(c) is 2, 499.28. Thus, it is reasonable to say that DFP is
feasible for small tasks. But for a moderately larger task,
the solution obtained by DFP significantly diverges from the
optimal solution w.r.t. the objective formulation. This is be-
cause DFP obtains the solution based on an approximation
algorithm (i.e., the hill climbing algorithm), while ILP4ID
finds the exact solution based on the branch-and-bound al-
gorithm. ILP4ID always returns the exact solution, while
DFP can not guarantee to find the optimal solution. Fig. 1
shows us that DFP commonly finds a sub-optimal solution.
Since the process of selecting exemplar documents plays a
fundamental role for implicit SRD, the effectiveness of DFP
is therefore greatly impacted, which is shown in Sections
4.3.3, 4.3.4 and 4.3.5.

4.3.2 Analysis of Initial Runs
Since the diversification models take the initially retrieved

documents by either DLM or BM25 as input, a thorough
exploration of the results by DLM and BM25 is necessary
in order to understand the effectiveness of each diversifi-
cation model. Table 1 shows the performance in terms of
nERR-IA@20 and α-nDCG@20, where the superscript ∗ in-
dicates statistically significant differences when compared to
the best result based on the Wilcoxon signed-rank test with
p < 0.05.

Table 1: Performance of the initial retrieval. For
each measure, the best result is indicted in bold.

Initial retrieval model nERR-IA@20 α-nDCG@20
DLM 0.1596∗ 0.2235∗

BM25 0.2168 0.2784

From Table 1, we can observe that BM25 has significantly
better performance than DLM. To examine how many rel-
evant documents there are in each initial run, we can look
at Fig. 2, which shows the averaged number of documents
that provide information relevant to at least one subtopic
in the initial run. The x-axis denotes the cutoff values (i.e.,
the top-m documents to be used).

Fig. 2 demonstrates that the results by BM25 provide
more relevant documents than that of DLM. At the same
time, Fig. 2 also indicates to what extent the noisy docu-
ments will be mixed when we increase the number of used
documents.

In the following experiments, the results of DLM and
BM25 are also used as naive baselines without diversifica-
tion, which helps to show the positive/negative effects of
deploying a diversification model. Using different ad-hoc
weighting models, we can investigate the effect of an initial
run. In particular, the experiments over the retrieval with
BM25 will allow to study the effect of using a high-quality
initial run, while the ones with DLM will let us analyze the
effect of providing a poor quality initial retrieval.

4.3.3 Implicit SRD Performance
In this section, we examine how the diversification models

vary when we change the initial runs (i.e., DLM and BM25 ),
the number of input documents (i.e., m ∈ {50, 100, 200, 300,
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(b) Initial run: DLM ; document similarity: JSD.
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(c) Initial run: BM25 ; document similarity: COS.
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(d) Initial run: BM25 ; document similarity: JSD.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ

0

0.05

0.1

0.15

0.2

0.25

0.3

nE
RR

-IA
@

20

MMR(BM25-100)
DFP(BM25-100)
ILP4ID(BM25-100)
MMR(BM25-500)
DFP(BM25-500)
ILP4ID(BM25-500)

(e) Comparison with a uniform λ setting.
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(f) Performance variation of MPT w.r.t. b.

Figure 3: Cross-validation performance for implicit SRD (Figs 3(a)-3(d)), where the x-axis indicates the
number of used documents. Per-λ comparison (Fig. 3(e)). Per-b performance of MPT (Fig. 3(f)).

Table 2: Performance of different models w.r.t. faceted and ambiguous queries. The best result of each
setting is indicted in bold. The superscript † indicates statistically significant difference when compared to
the best result based on the Wilcoxon signed-rank test with p < 0.05.

Data Model Type
nERR− IA@20 α− nDCG@20

top-100 top-300 top-1000 top-100 top-300 top-1000

Faceted: 141
Ambiguous: 57

BM25
Faceted 0.2515 0.2515 0.2515 0.316 0.316† 0.316†

Ambiguous 0.131† 0.131† 0.131† 0.1852† 0.1852† 0.1852†

MMR
Faceted 0.2622 0.269 0.2659 0.3294 0.337 0.3337

Ambiguous 0.1421 0.137† 0.1389† 0.2009 0.2005† 0.1981†

MPT
Faceted 0.1898† 0.1578† 0.151† 0.2302† 0.1704† 0.1496†

Ambiguous 0.1024† 0.0789† 0.0492† 0.1448† 0.1081† 0.0532†

DFP
Faceted 0.2666† 0.2264† 0.1679† 0.3321 0.3007† 0.2383†

Ambiguous 0.1726 0.1756† 0.1079† 0.2254 0.2238 0.1601†

1− call@k
Faceted 0.1779† 0.1287† 0.0847† 0.2326† 0.1755† 0.1133†

Ambiguous 0.0959† 0.0922† 0.0565† 0.1482† 0.1343† 0.0877†

ILP4ID
Faceted 0.2832 0.2804 0.2914 0.3455 0.349 0.358

Ambiguous 0.176 0.2116 0.1971 0.2194† 0.2492 0.2423
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Figure 2: The statistics of the average number of
relevant documents within the adopted initial runs.

400, 500, 1000} on the x-axis) and the ways for computing
document similarity (i.e., COS and JSD).

We use 10-fold cross-validation to tune the trade-off pa-
rameters, namely b for MPT and λ for MMR, DFP and
ILP4ID. Particularly, we explore the optimal results ofMMR,
DFP and ILP4ID by varying λ in the range [0, 1] with a step
of 0.1. We tune the b parameter of MPT with the range
[−10, 10], and a step of 1. The metric nERRIA@20 is used
to determine the best results. Finally, the results are illus-
trated in Figs. 3(a)-3(d).

In Figs. 3(a) and 3(b), we note that the λ value of MMR
determined via cross-validation is 1.0. Thus MMR fails to
diversify the results (cf. Eq. 1). This is also why the per-
formance curves of MMR overlap with those of DLM and
BM25. The effect of tuning λ is detailed in Section 4.3.4.

At first glance, Figs. 3(a) and 3(b) based on DLM re-
veal that all the diversification models except MMR exhibit
positive effectiveness when using the smaller number of doc-
uments (top-50 documents). We also see that DFP and
ILP4ID which belong to the cluster-based diversification
paradigm are more effective than other formulations, such as
MPT and 1-call@k. This observation is consistent with the
previous reports [40]. However, when we increase the initial
number of retrieved documents, MPT, DFP, 1-call@k and
ILP4ID consistently show decreased performance. In par-
ticular, when the number of used documents is quite large,
these models can not even improve over the naive-baseline
results with DLM . The plausible reason is that more noisy
documents are included in larger document sets. This is ac-
tually supported by Fig. 2 which shows that relatively more
non-relevant documents are included with the increase of the
threshold of used documents.

A closer look at Figs. 3(a) and 3(b) reveals that the ways
of computing document similarity also affects the perfor-
mance of both DFP and ILP4ID, where the performance
of MPT and 1-call@k can be used as a static reference
since they do not rely on either COS or JSD. Sometimes,
DFP can lead to better results than ILP4ID, e.g., using top-
100/200 documents in Fig. 3(b). This may result from the
second ranking procedure after the k exemplar documents
have been selected. This is also where ILP4ID should be
further improved.

When changing the initial run, i.e., using a better one such
as BM25, Figs. 3(c)-3(d) demonstrate that the diversifica-

tion models have quite different performances. Specifically,
all the models tend to show better performance than the
one based on the initial run with DLM . MPT, DFP and
1-call@k are characterized by the decreased performance
when we increase the number of used documents. However,
MMR and ILP4ID always demonstrate a positive diversifi-
cation performance that does not degrade when increasing
the number of documents. ILP4ID outperforms the other
models in most reference comparisons.

Now we investigate the possible reasons for the above find-
ings. Even though 1-call@k does not require to fine-tune the
trade-off parameter λ, the experimental results show that
1-call@k is not as competitive as the methods like MPT,
DFP and ILP4ID. The most possible explanation is that
the top-m documents are directly used to train a latent
subtopic model. As Fig. 2 shows, a large portion of doc-
uments are non-relevant, thus this method greatly suffers
from the noisy information. Another awkward factor that
may affect 1-call@k is that the topic number of the subtopic
model has to be fine-tuned, otherwise the representation of
each document as a subtopic vector would not be sufficiently
precise.

Both MMR and MPT rely on the best first strategy, the
advantage of which is that it is simple and computation-
ally efficient (cf. Fig. 4). However, at a particular round,
the document with the maximum gain via a specific heuris-
tic criterion (i.e., Eq.1 of MMR and Eq.2 of MPT ) may
incur error propagation. For example, a long and relevant
document may also include some noisy information. Once
noisy information is included in the algorithm process, the
diversity score of a document measured with respect to the
previously selected documents would not be correct. This
largely explains why both MMR and MPT underperform
DFP and ILP4ID that globally select documents.

DFP can alleviate the aforesaid problem (i.e., error propa-
gation) based on the swapping process as it iteratively refines
S by swapping a document in S with another unselected
document whenever the current solution can be improved.
However, DFP is based on the hill climbing algorithm. A po-
tential problem is that hill climbing may not necessarily find
the global maximum, but may instead converge to a local
maximum. In contrast, ILP4ID casts the process of select-
ing exemplar documents as an ILP problem. Thanks to this,
ILP4ID is able to simultaneously consider all the candidate
documents and to globally identify the optimal subset. The
potential issue of error propagation is then avoided, making
ILP4ID more robust to the noisy documents and letting it
outperform the other models.

To summarize, DFP and ILP4ID which belong to the
cluster-based diversification paradigm are more effective than
MMR, MPT and 1-call@k. This echoes the findings in the
previous work on cluster-based IR [40, 14, 23]. Benefit-
ing from the advantage of obtaining the optimal solution,
ILP4ID substantially outperforms the baseline methods in
most reference comparisons. Furthermore, for implicit SRD,
the factors like different initial runs, the number of input
documents, and the ways of computing document similarity
greatly affect the performance of a specific model.

4.3.4 Effects of Trade-off Parameters
To clearly show the effect of the trade-off parameters λ

and b for balancing relevance and diversity, we investigate
how MMR, MPT, DFP and ILP4ID vary per-λ or per-b.



Specifically, the top-100, 500 documents of the initial run
with BM25 are used, respectively. All the 198 queries are
tested. λ is set in the range [0, 1] with a step of 0.1, and b is
set in the range [−10, 10] with a step of 1. In particular, for
MMR, DFP and ILP4ID, λ ∈ (0, 1) implies that the rank-
ing process relies on both the relevance part and diversity
part. The closer λ is to 1, the less effect the diversity part
has. With λ = 1, MMR, DFP and ILP4ID simply rely only
on the relevance of documents, hence, they have the same
performance as the initial run. With λ = 0, the performance
of a model merely depends on the ability of selecting the rep-
resentative documents. Regarding the effect of b on MPT
(cf. Eq. 2), a positive b indicates that MPT performs a risk-
aversion ranking, namely an unreliably-estimated document
(with high variance) should be ranked at lower positions.
The smaller b is, the less risk-averse the ranking.

In terms of ERR-IA@20, Fig. 3(e) shows how MMR, DFP
and ILP4ID vary with a uniform λ setting, and Fig. 3(f)
demonstrates how MPT varies per-b.

From Fig. 3(e), we see that tuning λ has a large effect
in the performance. This indicates that λ needs to be fine-
tuned to achieve an optimal performance. The performance
of MPT is slightly enhanced when b is close to 10. When
b is set using smaller values, the effect is not quite obvi-
ous. Moreover, a closer look at Figs. 3(e)-3(f) reveals that
ILP4ID outperforms the baseline methods across most λ
settings (and b for MPT ), even though different numbers of
documents of the initial run are used. This again clearly
attests the potential merits of the proposed method for im-
plicit SRD.

4.3.5 Effectiveness w.r.t. Query Types
The adopted dataset contains 141 faceted queries and 57

ambiguous queries. We now investigate the effectiveness of
the different methods with resect to their type, either faceted
or ambiguous. In particular, the comparison is conducted
based on the initial retrieval with BM25 by using the top-
100, 300 and 1, 000 documents, separately. Table 2 shows
the results obtained for MMR, MPT, DFP, 1-call@k and
ILP4ID on faceted and ambiguous queries, respectively.

At first glance, Table 2 shows that all models perform
worse in terms of both nERR-IA@20 and α-nDCG@20 on
ambiguous queries than they do on faceted queries. This
reveals that it is relatively harder to select diverse relevant
documents for ambiguous queries. Such situation mainly
results from the intrinsic difference between faceted queries
and ambiguous queries. The TREC assumption [5] goes like
this: For an ambiguous query that has diverse interpreta-
tions, users are assumed to be interested in only one of these
interpretations. For a faceted query that reflects an under-
specified subtopic of interest, the users are assumed to be
interested in one subtopic, but they may still be interested in
others as well. That is, heterogeneous documents providing
more divergently relevant information are required for am-
biguous queries. We examined the distribution of relevant
documents based on the ground-truth files. For each query
type, we computed the average number of relevant docu-
ments and the average number of relevant documents that
are relevant to at least 2 subtopics (termed multi-relevant
documents). For faceted queries, these numbers are 112.42
and 47.27 whereas for ambiguous queries they are 109.35
and 19.6, respectively. These results, especially the average
number of multi-relevant documents, demonstrate that it is

relatively easy to retrieve some relevant documents to satisfy
the subtopics of faceted queries, thus higher nERR-IA@20
and α-nDCG@20 scores are observed in Table 2.

In terms of both nERR-IA@20 and α-nDCG@20, ILP4ID
outperforms the baseline methods in most reference com-
parisons for both the types of queries. Quite a few of the
improvements are statistically significant.

4.4 Efficiency
Common formulations of search result diversification (say,

MPT, DFP and ILP4ID) are NP-hard (cf. [8, 29] for de-
tailed analysis), thus approximate methods are generally
adopted to find the solution. Although solving arbitrary
ILPs is also an NP-hard problem, various efficient branch-
and-bound algorithms have been developed. In fact, modern
ILP solvers (e.g., GLPK, CPLEX and Gurobi) can find the
optimal solution for moderately large optimization problems
in a reasonable amount of time. In this paper we use the
Gurobi solver.

In our study, we have also evaluated the overhead ofMMR,
MPT, DFP, 1-call@k and ILP4ID by measuring the average
run-time per query when generating the diversified results.
All the experiments are conducted using Java (JRE 1.8.0 31)
on an IMac (Intel Core i7, 4GHz, 32 GB of RAM). Based on
the initial run by BM25, Fig. 4 plots the run-time of each
model (i.e., y-axis) versus the number of input documents
(i.e., x-axis).
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Figure 4: Average runtime per-query (msec).

From Fig. 4, we see that although both MMR and MPT
rank documents sequentially, MPT requires less time when
dealing with a small number of documents (say less than 400
documents). However, when the amount of documents in-
creases, MPT requires more time than MMR and DFP. The
main overhead is incurred by the calculation of relevance
variance based on term occurrences (the time complexity is
O(m2 · |W |), where W denotes the number of unique terms
within the top-m documents). Although the formulations of
DFP and ILP4ID are similar, ILP4ID has a higher compu-
tational cost. This is not surprising given the deployment of
a branch-and-bound algorithm in order to obtain the opti-
mal solution. Moreover, 1-call@k is the most computation-
ally expensive. In fact, the time overhead is mostly caused
by training the LDA subtopic model. We note that these re-
sults should be considered as indicative only as it is possible
to optimize the codes of each method, which is beyond the
scope of this paper (for example, using the highly-efficient
algorithm [36] for topic modeling, distributed algorithms for
solving ILP problems2, etc.)

2http://www.gurobi.com/products/distributed-



5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel model to solve the prob-

lem of implicit SRD. The key idea is to formulate implicit
SRD as a process of selecting and ranking k exemplar docu-
ments from the top-m documents of an initial retrieval. By
relying on the ILP formulation, we are able to obtain the
optimal solution of the target formulation. We have shown
that the proposed method ILP4ID leads to substantially
improved performance when compared to state-of-the-art
baseline methods, which helps to demonstrate the impact
of optimization strategy on implicit SRD. Since problems
analogous to implicit SRD arise in a variety of applications,
e.g., recommender systems, we believe that our method pro-
vides a new perspective for addressing problems of this kind.

Even though we addressed the problem of obtaining the
optimal set of exemplar documents for implicit SRD, the
following practical issues have not been explored well in this
work. First, the optimal k of ILP4ID essentially differs from
query to query. The effect of tuning k on ILP4ID is then
worthy to be investigated in the future. Second, given the
optimal set of exemplar documents, the documents have
been essentially clustered. However, the following infor-
mation, such as the internal correlations among documents
within the same cluster and the external correlations among
clusters, has not been well utilized. For future work, we also
plan to study how to induce a high-quality ranking of doc-
uments by taking into account the aforesaid information.
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