
Insights into Entity Recommendation in Web
Search

Nitish Aggarwal†?, Peter Mika◦, Roi Blanco◦, and Paul Buitelaar†

†Insight Centre for Data Analytics
National University of Ireland

Galway, Ireland
firstname.lastname@insight-center.org

◦Yahoo Labs
125 Shaftesbury Ave, WC2H 8HR

London, UK
pmika@yahoo-inc.com, roi@yahoo-inc.com

Abstract. User engagement is a fundamental goal for search engines.
Recommendations of entities that are related to the user’s original search
query can increase engagement by raising interest in these entities and
thereby extending the user’s search session. Related entity recommenda-
tions have thus become a standard feature of the interfaces of modern
search engines. These systems typically combine a large number of indi-
vidual signals (features) extracted from the content and interaction logs
of a variety of sources. Such studies, however, do not reveal the contri-
bution of individual features, their importance and interaction, or the
quality of the sources. In this work, we measure the performance of en-
tity recommendation features individually and by combining them based
on a novel dataset of 4.5K search queries and their related entities, which
have been evaluated by human assessors.

1 Introduction

With the advent of large knowledge bases like DBpedia [5], YAGO [13] and
Freebase [7], search engines have started recommending entities related to web
search queries. Pound et al. [12] reported that around 50% web search queries
pivot around a single entity and can be linked to an entity in the knowledge
bases. Consequently, the task of entity recommendation in the context of web
search can be defined as finding the entities related to the entity appearing in a
web search query. It is very intuitive to get the related entities by obtaining all
the explicitly linked entities to a given entity in the knowledge bases. However,
most of the popular entities have more than 1,000 directly connected entities,
and the knowledge bases mainly cover some specific types of relations. For in-
stance, “Tom Cruise” and “Brad Pitt” are not directly connected in DBpedia
graph with any relation, however, they can be considered related to each other.

? This work was done while the author was visiting Yahoo! Research Labs, Barcelona.



Therefore, to build a system for entity recommendation, there is a need to find
related entities beyond the explicit relations defined in Knowledge bases. Fur-
ther, these related entities require a ranking method to select the most related
ones.

Blanco et al. [6] described the Spark system for related entity recommenda-
tion and suggested that such recommendations are successful at extending users’
search sessions. Microsoft also published a similar system [14] that performs per-
sonalized entity recommendation by analyzing the user click through logs. In this
paper, we focus on exploring the different features in an entity recommendation
system and investigate their effectiveness. Yahoo’s entity recommendation sys-
tem “Spark” utilizes more than 100 different features providing the evidence of
the relevance of an entity. The final relevance scores are calculated by combining
the different features using state-of-the-art learning-to-rank approach. Although,
Blanco et al. presented some experimentation with the Spark system, in partic-
ular by reporting on the importance of the top 10 features, and the evaluation
metrics on different types of entities; further experimentation is required to in-
vestigate the impact of individual features and their different combinations. The
features used in Spark can be divided in five types: co-occurrence based, lin-
ear combination of co-occurrence based features, graph-based, popularity-based,
and type-based features. Co-occurrence based features make use of four different
data sources: query term, user specific query sessions, Flickr tags, and tweets.
In this paper, we explore the impact of the features used in the Spark system by
combining them based on their types and data sources. In order to investigate
the quality of different data sources, we focus extensively on co-occurrence based
features. All of the data sources used to calculate co-occurrence based features
are not publicly accessible. For instance, only major search engines have the
datasets like query terms and query sessions. Therefore, we measure the perfor-
mance of a system that has only co-occurrence based features extracted from
Wikipedia. The data sources like query terms, Flickr tags and tweets can only
capture the presence of an entity. However, Wikipedia articles are long enough
to obtain the associative weight of an entity with a Wikipedia article, which pro-
vides an opportunity to build the distributional semantic model (DSM) [1,4,10]
over Wikipedia concepts. Therefore, in addition to co-occurrence based features
that consider only the presence, we also explore the DSM based feature built
over Wikipedia. We evaluate the performance by adding the Wikipedia-base fea-
tures in the current Spark system, which will be referred as Spark+Wiki in rest
of the paper.

2 Entity recommendation system

This section provides a detailed overview of the Spark system. Section 2.1 de-
scribes the construction of Yahoo’s knowledge graph, part of which is used to
obtain the potential entity candidates. Section 2.2 explains different types of
features and how they are extracted from different data sources. Spark and



Spark+Wiki combines the values obtained from different features, by using a
learning to rank approach, which is explained in Section 2.3.

2.1 Yahoo knowledge graph

In order to retrieve a ranked list of the entities, the system requires a list of
potential entity candidates that can be considered related with the given entity.
These candidates can be obtained from existing knowledge bases like DBpedia or
YAGO. However, such existing knowledge bases may not cover all the relations
that can be defined between the related entities. For instance, “Tom Cruise” can
be considered highly related to “Brad Pitt”, but they are not connected by any
relation in DBpedia graph. Therefore, Spark uses an entity graph extracted from
different structured and unstructured data sources including public data sources
such as DBpedia and Freebase. It also uses a manually constructed ontology
that defines the types of an entity extracted from different resources. In order to
extend the coverage of the defined relations in entity graph, it performs infor-
mation extraction over various unstructured data sources in different domains
like movies, music, TV shows and sports. The subset of the entity graph used in
Spark covers entity-types in media, sports and geography and consisted of over
3.5M entities and 1.4B relations at the time of our experiments (see for more
detail [6]).

2.2 Feature extraction

Spark uses more than 100 different features. These features are divided into
five different categories: co-occurrence based features, linear combination of co-
occurrence based features, graph-based features, popularity-based features, and
type-based features.

Co-occurrence features are derived from the hypothesis that the entities,
which occur often in the same event or context, are more likely to be related to
each other. Spark system uses 11 different types of features which are obtained
by using different co-occurrence measures. Let E1 and E2 are two entities and S
is the set of events, where S = {s1, s2, ...sn} and sn is the nth event. The event is
defined as one observation under consideration for measuring the co-occurrence.
For instance, every query in query logs is an event and entity occurrence is
defined by

∑N
i=0 oi, where oi = 1 if an event si contains the entity E otherwise

oi = 0.

1. Probability (P1, P2) it is calculated by taking the ratio of the number of
events that contain the given entity to the total number of events. P is the
probability of an entity E.

P =

∑N
i=0 oi
N

(1)



where N is the total number of events. The value of P of an entity is inde-
pendent of the other entities, therefore it gives two values P1 and P2 for an
entity pair consisting of E1 and E2.

2. Entropy (Ent1, Ent2) This is the standard entropy of an entity that is
defined by

Ent1 = −P1 ∗ log(P1) (2)

and P is the probability defined in feature 1. Similar to the probability
feature, it gives two values Ent1 and Ent2 for an entity pair.

3. KL divergence (KL1,KL2) It is KL divergence of an entity E. Similar to
the above features, it also gives two values KL1andKL2 for an entity pair.

4. Joint probability (JPSYM) This score is obtained by taking the ratio of
the number of events that contain both the given entities to total number of
events.

JPSYM =

∑N
i=0 coi
N

(3)

where coi = 1 if an event si contains both the entities E1 and E2, otherwise
oi = 0.

5. Joint user probability (PUSYM) This is similar to the feature 4, how-
ever, it calculates the co-occurrence over users rather than the events.

PUSYM =

∑U
i=0 coui

U
(4)

where U is the total number of users and coui = 1 if a user ui contains both
the entities E1andE2, otherwise coui = 0.

6. PMI (SISYM) It computes the point wise mutual information (PMI).

PMI(E1, E2) =
log(P (E1, E2))

P (E1) ∗ P (E2))
(5)

.
7. Cosine similarity (CSSYM) The cosine similarity is calculated as

Cosine(E1, E2) =
P (E1, E2)

P (E1) ∗ P (E2))
(6)

.
8. Conditional probability (CPASYM) It is calculated as the ratio of the

total number of events that contain E1 and E2, to the total number of events
that contain E1.

CPASYM(E1, E2) =

∑N
i=0 coi∑N
i=0 oe1i

(7)

where oe1i = 1 if an event si contains the entity E1, otherwise oe1i = 0.
9. Conditional user probability (CUPASYM) This is similar to the CPASYM

except it computes the score over the users.

CUPASYM(E1, E2) =

∑U
i=0 coui∑U
i=0 oue1i

(8)

where oue1i = 1 if an user ui contains the entity E1, otherwise oue1i = 0.



10. Reverse conditional probability (RCPASYM) It is reverse of the CPASYM.

RCPASYM(E1, E2) =

∑N
i=0 coi∑N
i=0 oe2i

(9)

where oe2i = 1 if an event si contains the entity E2, otherwise oe1i = 0.
11. Reverse conditional user probability (RCUPASYM) It is reverse of

the CUPASYM.

RCUPASYM(E1, E2) =

∑U
i=0 coui∑U
i=0 oue1i

(10)

where oue2i = 1 if an user ui contains the entity E2, otherwise oue1i = 0.

Combined features are the combination of co-occurrence features. The Spark
system uses 8 different types of combined features from every data source. There-
fore it generates a total of 32 different features. These are the following 8 features:

1. CF1 is the combination of conditional user probability and prior probability
of target entity defined by:

CF1 = CUPASYM ∗ P2 (11)

2. CF2 is the combination of conditional user probability and prior probability
of target entity defined by:

CF2 =
CUPASYM

P2
(12)

3. CF3 is the combination of reverse conditional probability and prior proba-
bility of target entity defined by:

CF3 = RCPASYM ∗ P2 (13)

4. CF4 is the combination of reverse conditional probability and entropy of
target entity defined by:

CF4 = RCPASYM ∗ Ent2 (14)

5. CF5 is the combination of joint user probability and prior probability of
target entity defined by:

CF5 = JPUSYM ∗ P2 (15)

6. CF6 is the combination of joint user probability and prior probability of
target entity defined by:

CF6 =
JPUSYM

P2
(16)



7. CF7 is the combination of joint user probability and entropy of target entity
defined by:

CF7 = JPUSYM ∗ E2 (17)

8. CF8 is the combination of joint user probability and entropy of target entity
defined by:

CF8 =
JPUSYM

E2
(18)

Graph-based features use the knowledge graphs like DBpedia and Freebase.
Spark computes 5 different features by using knowledge graphs.

1. Graph similarity (GSCEG) This feature computes the total shared con-
nections between two given entities in Yahoo! knowledge graph.

2. Entity popularity in movies (EPOPUMOVIE) This feature counts the
total number of directly connected nodes in movie specific knowledge graph,
to compute the entity popularity rank.

3. Facet popularity in movies (FPOPUMOVIE) This is facet popularity
rank in movie specific knowledge graph.

4. Entity popularity in all (EPOPUALL) Similar to EPOPUMOVIE it
counts the total number of directly connected nodes in complete Yahoo!
knowledge graph.

5. Facet popularity in all (FPOPUALL) This is facet popularity rank in
the complete knowledge graph.

Popularity-based features

1. Web search citation (WCTHWEB) It counts the total hits in web search
results of Yahoo!.

2. Web deep citation (WCDHWEB) It counts the total number of user
clicks in web search results of Yahoo!.

3. Entity Volume in query(COVQ) It counts the total number of occur-
rence of given entity in query logs.

4. Entity Volume in facet (COVF) Facet volume in query logs.
5. Entity view volume in query (WPOP1,WPOP2) It compute the total

number user clicks for given entity while the entity occur in query.

Entity type features reflect the entity types and relation types present in the
knowledge bases. Spark uses two different entity type features:

1. Entity class type (ET1, ET2) This is the type of an entity defined in the
knowledge base. It provides two different feature values ET1 and ET2 for an
entity pair of the entities E1 and E2.

2. Relation type (RT) This feature defines the relation type between two
given entities. For instance, “Brad Pitt” and “Angelina Jolie” are defined by
relation type “Partner” in DBpedia.



Wikipedia-based features The Spark system does not use Wikipedia to ex-
tract the features. However, in addition to the features reported by Blanco et
al. [6], we experiment with additional Wikipedia-based features that we refer as
Spark+Wiki. Aggarwal et al. [2,3] presented an entity recommendations system
“EnRG” that shows the effectiveness of using only Wikipedia-based features.
Therefore, in this section we explain the additional features.

In order to obtain the Wikipedia-based features, we use Wikipedia as two types
of data sources: collection of textual content and the collection of Wikipedia
hyperlinks. We use 7 types of co-occurrence features from Wikipedia, where 6
out these 7 features types are already defined above: Probability (P1, P2), Joint
Probability (JPSYM), Conditional Probability (CPASYM), Cosine Similarity
(CSSYM), PMI (SISYM) and Reverse Conditional Probability (RCPASYM).
The above described co-occurrence features only consider presence of an entity,
as the events (search queries or tweets) used in Spark are very short in length.
However, Wikipedia articles have long enough content to measure the importance
of an entity to a given article (or an event in this case). Therefore, Wikipedia can
provide the occurrence information of the entities with their importance weights
that can be used to build the distributional vector of the entities. Spark+Wiki
uses Wikipedia-based distributional semantic model (DSM) [4, 9] as an addi-
tional co-occurrence feature. DSM score is calculated by computing the cosine
score between two distributional vectors. The DSM vector is defined by v, where
v =

∑Nw

i=0 ai ∗ ci and ci is ith concept in the Wikipedia concept space, and ai is
the tf-idf weight of the entity e with the concept ci. Here, Nw represents the
total number of Wikipedia concepts. As mentioned above, we use Wikipedia as
a collection of textual content and the collection of Wikipedia hyperlinks, there
are 16 features that compute the values by using Wikipedia.

2.3 Ranking

In order to predict the ranking by combining all the features, Spark uses learning
to rank approach [8] considering all the scores obtained from different features.
As all the learning algorithm requires a training data, Blanco et al. [6] built the
dataset that contains more than four thousand web search queries. Every query
refers to an entity defined in knowledge graph, and contain a list of entity can-
didates. Finally, the dataset consists of 47,623 entity-pairs, which are tagged by
professional experts. The ranking can be defined by learning a ranking function
f(.) that generates a score for an input query entity qi and an entity candidate
ej . Spark makes use of Stochastic Gradient Boosted Decision Trees (GBDT) to
obtain the ranking score to decide the appropriate label for given pairs.

3 Evaluation

This section describes the evaluations of Spark and Spark+Wiki. As explained
above, Spark+Wiki is actually the Spark with additional Wikipedia-based fea-



tures. We evaluate the performance on a dataset that consists of 47,623 query-
entity pairs. As Spark uses GBDT ranking method, we tune the GBDT param-
eters by splitting the dataset in 10 folds. The final parameters are obtained by
performing cross validation. Due to variations in the number of retrieved related
entities for a query, we use Normalized Discounted Cumulative Gain (nDCG) [11]
for the performance metric. nDCGp is defined by the ratio of DCGp to maxi-
mum or ideal DCGp.

nDCGp =
DCGp

IDCGp
. (19)

DCGp is defined by:

DCGp =

p∑
i=1

2g(li) − 1

log2(g(li)) + 1
(20)

g(li) is the gain for the label li. nDCG gives different scores on different values
of p, therefore, we reported the nDCG scores for 1, 5, and 10.

3.1 Datasets

Blanco et al. [6] reported the Spark performance on a dataset that consists
of 4,797 search queries obtained from commercial search engines. Every query
refers to an entity in DBpedia, and contains a list of entity candidates. The entity
candidates are tagged by professional editors on 5 label scales: Excellent, Prefer,
Good, Fair, and Bad. The dataset contains different types of entity candidates
such as person, location, movie, and TV show. Table 1 provides the details about
different types of instances in the dataset. It shows that most of the entities are
of type “location” or “person”. Section 3.3 reports the performance for these
specific types in addition to the overall dataset.

Type Total instance Percentage

Locations 22,062 46.32
People 21,626 45.41
Movies 3,031 6.36

TV shows 280 0.58
Album 563 1.18

Total 47,623 100.00
Table 1. Dataset details

3.2 Experiment

We evaluate the performance of Spark system, and compare it with the model
that was built only over Wikipedia. In order to inspect whether the additional
features generated using Wikipedia can complement Spark performance, we per-
form the experiments with Spark+Wiki. We calculate nDCG@10, nDCG@5, and
nDCG@1 as the evaluation metrics. In addition to perform experiments on the
dataset with all the entity types, we also evaluated the systems for the datasets



including only person type entities or location type entities. Spark combines the
scores that are obtained from different types of features by using GBDT. It con-
tains 112 features in total where 56 features are co-occurrence based, 32 features
are the linear combination of co-occurrence based features, 5 features are graph-
based, 6 features are popularity-based, 3 features are type-based, and the remain-
ing 10 features are of types such as string length and Wikipedia clicks. These
56 co-occurrence based features are built over 4 different data sources: query
term (QT), query session (QS), Flickr tags (FL), and tweets (TW). It means
that there are 14 co-occurrence based features generated from each data source.
Spark+Wiki has additional co-occurrence based features built over Wikipedia.
Spark+Wiki uses the Wikipedia as two types of data sources: collection of doc-
uments with textual content and collection of documents with hyperlinks only.
However, it does not generate 14 co-occurrence based features for both the data
sources. Spark+Wiki uses 8 co-occurrence based features: Probability (P1, P2),
Joint probability (JPSYM), PMI (SYSYM), Cosine similarity (CSSYM), Con-
ditional probability (CPASYM), Reverse conditional probability (RCPASYM),
and Distributional semantic model (DSM) vector. The DSM feature was not
available in Spark as the data sources used in Spark have small documents
(query or tweet). However, Wikipedia characteristics allow us to build the DSM
vector over Wikipedia concepts [4, 9]. As a result, Spark+Wiki consists of 128
features where 16 features are additional to Spark system presented by Blanco
et al. [6].

In order to investigate the importance of the features, we build the ranking
model by taking the features from one category at a time. Therefore, we exam-
ine the performance of all five models: co-occurrence based, linear combination
of co-occurrence based features, graph-based, popularity-based, and type-based.
Further, we perform the experiments with only co-occurrence based features as
they turn out to be most significant features of the system. We calculate the
scores by taking co-occurrence based features and compare the importance of
each data source separately.

Features All Person Location

ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5ndcg@1

Spark 0.9276 0.9038 0.8698 0.9479 0.9337 0.8990 0.8882 0.8507 0.8120
Wiki 0.9173 0.8878 0.8415 0.9432 0.9271 0.8857 0.8795 0.8359 0.7773

Spark+Wiki 0.9325 0.90890.8747 0.9505 0.93610.9032 0.8987 0.86200.8253
Table 2. Retrieval performance on labeled data

3.3 Result and Discussion

This section presents the results obtained from the above described experi-
ments. Table 2 shows the retrieval performance of Spark, and compare it with



All Person Location
Rank Feature Importance Feature Importance Feature Importance

1 RT$ 100 CUPASYMQS 100 P2WT 100
2 CSSYMFL 63.3224 DSMWL 89.6374 P2WL 57.8837
3 P2WT 55.9451 DSMWT 88.5268 DSMWL 56.6901
4 CF7FL 54.7444 RT$ 87.6937 P1WL 56.3085
5 DSMWL 54.0078 CPASYMWL 83.381 P2FL 55.8144
6 CUPASYMQT 45.7274 CPASYMQT 76.5171 CSSYMFL 51.6135
7 DSMWT 42.2918 CUPASYMFL 64.0326 CPASYMFL 51.3306
8 P1WL 39.9875 CF7FL 60.437 CUPASYMFL 48.8751
9 P2FL 38.6405 CPASYMQS 53.7163 EPOPUALL 44.535
10 P2WL 36.2818 E2FL 53.6132 KL2FL 44.3557
11 CUPASYMQS 34.3559 FPOPUALL 53.4569 CF7FL 42.329
12 KL2FL 33.945 MRC2 52.9191 CF4FL 41.5688
13 CPASYMFL 33.062 JPSYMWL 52.5841 E2QT 39.6188
14 FPOPUALL 30.1997 P2WL 49.6414 FPOPUALL 38.6026
15 CF6FL 29.4447 CF8FL 48.7009 E2FL 38.0442
16 CF1FL 28.6009 EPOPUALL 48.1824 CF1QS 35.3637
17 E2FL 27.679 WPDC2 47.3189 CPASYMWT 34.6719
18 CUPASYMFL 27.2086 WPOP1 47.1626 EL2 34.3997
19 CPASYMQS 27.1851 GSCEG 46.3486 CF8FL 34.3575
20 CF8FL 26.9402 CF5QS 45.8869 CF1FL 34.0841

Table 3. Top 20 features sorted by rank according to their importance in Spark+Wiki

Spark+Wiki and the Wikipedia only model. It shows that Wikipedia-based
model achieved comparable results on full dataset and person type entities. How-
ever, it could not cope well for location type entities. The possible reason behind
it could be that most of the locations are too specific which do not have enough
information on Wikipedia. Although, Wikipedia-based model could not outper-
form Spark, the combination of both i.e. Spark+Wiki achieved higher scores for
all the test cases. Wikipedia-based model obtained relatively lower scores for
location type entities, however, it is able to compliment the Spark performance.

In order to inspect the effectiveness of different features, we compute the feature
importance in our learning algorithm. We calculate the reduction in the loss
function for every split of feature variable and then compute the total reduc-
tion in loss function. It provides that how many times the given features was
used in making the final decision by the learning algorithm. Table 3 shows the
importance of top 20 features used in Spark+Wiki. The names of the features
listed in the table correspond to their acronyms explained in section 3.2. The co-
occurrence features have additional suffixes QT, QS, FL, TW, WT, and WL for
query term, query sessions, Flickr tags, tweets, Wikipedia text, and Wikipedia
links, respectively. For instance, the feature CSSYMFL refers to cosine similarity
generated over Flickr tags. Table 3 shows that relation type (RT$) is the most
important feature in Spark+Wiki which is same as reported by Blanco et al. [6].
Further, this table reports the effectiveness of the Wikipedia-based features as



there are 5 Wikipedia based features in the top 10 most effective ones for the full
dataset. It also shows the advantage of using additional DSM features. In partic-
ular, for person type entities, Wikipedia-based DSM feature shows a remarkable
importance. Moreover, Wikipedia turned out to be a useful data source to obtain
the background information about location type entities. The Wikipedia docu-
ment collection created by keeping only hyperlinks, shows more effectiveness than
taking all the textual content for building the DSM model. It shows the con-
stancy of the results with the ones reported by Aggarwal and Buitelaar [4] that
hyperlink-based DSM outperforms the text-based DSM model for entity relat-
edness and ranking. As we performed experiments by categorizing the features

Features All Person Location
types

ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5 ndcg@1

Co-occurrence 0.9305 0.90540.8710 0.9493 0.93530.8983 0.8964 0.85910.81848
Combined 0.9185 0.8908 0.8552 0.9420 0.9261 0.8844 0.8757 0.8330 0.7837

Graph 0.8953 0.8609 0.8051 0.9284 0.9088 0.8524 0.8407 0.7883 0.7157
Popularity 0.8892 0.8505 0.7886 0.9269 0.9068 0.8487 0.8355 0.7780 0.6987

Type 0.8918 0.8571 0.7965 0.9229 0.9027 0.8424 0.8318 0.7760 0.7028
Table 4. Retrieval performance per feature type

Co-occurrence All Person Location
Features

ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5ndcg@1ndcg@10ndcg@5ndcg@1

QT 0.9065 0.8760 0.8312 0.9358 0.9187 0.8768 0.8592 0.8127 0.7655
QS 0.9027 0.8697 0.8215 0.9378 0.9210 0.8740 0.8421 0.7913 0.7308
FL 0.9137 0.8848 0.8477 0.9386 0.9220 0.8753 0.8807 0.84240.8047
TW 0.8910 0.8530 0.7949 0.9266 0.9070 0.8503 0.8306 0.7732 0.6992
Wiki 0.9174 0.88780.8415 0.9439 0.92800.8862 0.8795 0.8359 0.7772

Table 5. Retrieval performance per data source

based on their types, we also evaluate models which are built over the subset of
the features coming from the same category. Table 4 shows the scores obtained
from five different models based on the feature categories: co-occurrence features,
linear combination of co-occurrence features, graph-based features, popularity-
based features, and type-based features. It shows that co-occurrence based fea-
tures are very effective. Although, relation-type feature turned out to be the
most important feature (see table 3), the type-based features are not very effec-
tive without other features. The co-occurrence based features are built by using
5 data sources: query terms, query sessions, Flickr tags, tweets, and Wikipedia.
Therefore, we reported the scores generated by co-occurrence based features over



different data sources in table 5. It shows that Wikipedia is the most effective
resource for all types of entities. However, for location type entities, Flickr tags
perform better than Wikipedia. This shows the usefulness of the Flickr data to
capture the specific and non-popular place names. Table 5 shows that Wikipedia-

All Person Location

Rank Feature Importance Feature Importance Feature Importance

1 P2WT 100 CPASYMWL 100 P2WT 100
2 DSMWL 87.4249 DSMWL 88.5308 P2WL 69.9444
3 DSMWT 79.5389 DSMWT 82.6514 DSMWT 63.4468
4 P2WL 74.1241 P2WL 67.7069 P1WL 53.1977
5 CPASYMWL 56.9432 P2WT 52.8873 CSSYMWT 49.4132
6 P1WL 55.0238 P1WL 52.6258 RCPASYMWT 43.3197
7 CSSYMWT 52.0919 CSSYMWT 52.2352 CPASYMWT 43.0521
8 CPASYMWT 50.898 JPSYMWL 51.948 JPSYMWT 39.9403
9 RCPASYMWL 48.3321 RCPASYMWL 49.7912 DSMWL 38.4436
10 JPSYMWT 43.949 RCPASYMWT 48.1982 P1WT 36.5881
Table 6. Top 10 features sorted by rank according to their importance in OnlyWiki

based features are the most effective ones for building the co-occurrence based
model. Consequently, we further investigate the importance of Wikipedia-based
features. Table 6 shows that the probability obtained from textual content is the
most significant feature. However, the DSM based vectors over textual content
(WT) and hyperlinks (WL) show a good relevance for the model. In all the exper-
iments, DSM over hyperlinks shows more importance than the DSM built over
textual content. The possible reason behind this could be that the DSM vector
over textual content may not capture the appropriate semantics of an ambiguous
entity. On the contrary, the hyperlink-based DSM vector can differentiate be-
tween ambiguous surface forms. For instance, Aggarwal and Buitelaar [4] showed
that the text-based DSM vector of an entity “NeXT”1 may not obtain the rele-
vant dimensions while the hyperlink-based DSM vector obtained all the relevant
Wikipedia articles.

4 Conclusion

In this paper, we presented an extensive evaluation of entity recommendation
system called “Spark”. Spark uses more than 100 features, and produces the
final scores by combining these features using learning to rank algorithm. These
features are built over varying data sources: query term, query session, Flickr
tags, and tweets. Therefore, we investigated the performance of these features
individually and by combining them based on their data source. Most of the data

1 http://en.wikipedia.org/wiki/NeXT



sources used in Spark such as users’ query logs, are not publicly available. How-
ever, Wikipedia is a continuously growing encyclopedia that is publicly available.
Therefore, we showed that the model built only over Wikipedia achieved a com-
parable accuracy to the Spark. Moreover, Spark does not utilize the Wikipedia
to build its features, thus, we also analyzed the effect of using Wikipedia as an
additional resource. We showed that Wikipedia-based features complement the
overall performance of Spark.

5 Acknowledgement

This work is supported by a research grant from Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289 (INSIGHT) and Yahoo! Labs.

References

1. N. Aggarwal, K. Asooja, G. Bordea, and P. Buitelaar. Non-orthogonal explicit
semantic analysis. Lexical and Computational Semantics (* SEM 2015), pages
92–100, 2015.

2. N. Aggarwal, K. Asooja, P. Buitelaar, and G. Vulcu. Is brad pitt related to back-
street boys? exploring related entities. In Semantic Web Challenge ISWC (2014),
2014.

3. N. Aggarwal, K. Asooja, H. Ziad, and P. Buitelaar. Who are the american vegans
related to brad pitt?: Exploring related entities. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion, pages 151–154. International
World Wide Web Conferences Steering Committee, 2015.

4. N. Aggarwal and P. Buitelaar. Wikipedia-based distributional semantics for entity
relatedness. In 2014 AAAI Fall Symposium Series, 2014.

5. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia:
A nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

6. R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity recommendations
in web search. In International Semantic Web Conference (ISWC), 2013.

7. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, pages
1247–1250. ACM, 2008.

8. J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pages 1189–1232, 2001.

9. E. Gabrilovich and S. Markovitch. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Proceedings of the 20th international
joint conference on Artifical intelligence, IJCAI’07, pages 1606–1611, 2007.

10. Z. Harris. Distributional structure. In Word 10 (23), pages 146–162, 1954.
11. K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly relevant

documents. In Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 41–48. ACM, 2000.

12. J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object retrieval in the web of data. In
Proceedings of the 19th international conference on World wide web, pages 771–780.
ACM, 2010.



13. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, pages
697–706. ACM, 2007.

14. X. Yu, H. Ma, B.-J. P. Hsu, and J. Han. On building entity recommender sys-
tems using user click log and freebase knowledge. In Proceedings of the 7th ACM
international conference on Web search and data mining, pages 263–272. ACM,
2014.


