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ABSTRACT
The “Local Ranking Problem” (LRP) is related to the com-
putation of a centrality-like rank on a local graph, where the
scores of the nodes could significantly differ with respect to
the one computed on the global graph. Previous work has
studied LRP on the hyperlink graph but never on the Brow-
seGraph, namely a graph where nodes are webpages and
edges are browsing transitions. Recently, this graph has re-
ceived more and more attention in many different tasks such
as ranking, prediction and recommendation [28, 27]. Howe-
ver, a web-server has only the browsing traffic performed on
its pages (local BrowseGraph) and, as a consequence, the
LRP can lead to estimation errors, despite of its increasing
application in the state of the art. Also, although the diver-
gence between the local and global ranks has been measured,
the possibility of estimating such divergence using only local
knowledge, has been mainly overlooked. These aspects are of
great interest for online service providers who want to gauge
their ability to correctly assess the importance of their re-
sources only based on their local knowledge, and by taking
into account real user browsing fluxes that better capture
the actual user interest than the static hyperlink network.
We study the LRP problem on a BrowseGraph from a large
news provider, considering as subgraphs the aggregations of
browsing traces of users coming from different domains. We
show that the distance between rankings can be accurately
predicted based only on structural information of the local
graph, being able to achieve an average rank correlation as
high as 0.8.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
E.1 [Data Structures]: Graphs and Networks
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1. INTRODUCTION
The ability to identify the online resources that are percei-

ved as important by the users of a website is crucial for online
service providers. Metrics to estimate the importance of the
page from the structure of online links between them are
widely used: algorithms that compute the centrality of the
nodes in a network, such as PageRank [24], HITS [17] and
SALSA [19], have been employed extensively in the last two
decades in a vast variety of applications. Born and spread
in conjunction with the growth of the Web, they can de-
termine a value of importance of a page from the complex
network of links that surrounds it. More recently, centrality
metrics have been applied to browsing graphs, (also referred
to as BrowseGraphs [22, 28, 27]) where nodes are webpages
and edges represent the transitions made by the users who
navigate the links between them. Differently from the hy-
perlinks network, this data source provides to the analyst
a way to study directly the dynamics of the navigational
patterns of users who consume online content. Also, unlike
hyperlinks, browsing traces account for the variation of con-
sumption patterns in time, for instance in the case of online
news were articles tend to become rapidly stale. Compa-
rative studies have shown that centrality-based algorithms
applied over BrowseGraphs provide higher-quality rankings
compared to standard hyperlink graphs [23, 22].

Most centrality measures aim at estimating the impor-
tance of a node, using information coming from the global
knowledge of the graph topology—potentially the addition
of new nodes and edges, can have a cascade effect on the
centrality values of all other nodes in the network. This fact
entails high computational and storage cost for big networ-
ks but, more critically, there are some situations in which a
global computation on the entire graph is unfeasible, e.g., if
the information about the entire network is unavailable or if
only an estimation for specific web pages is required. This is
an important limitation in many real-world scenarios, whe-
re the graphs at hand are often very large (Web scale) and,
most importantly, their topology is not fully known. This
practical issue raises the problem of how well one can esti-
mate the actual centrality value of a node by knowing only
a local portion of the graph. This is known as the Local
Ranking Problem (LRP) [10].

One of the questions behind LRP is whether it is possi-
ble to estimate efficiently the PageRank score of a web page
using only a small subgraph of the entire Web [9]. In other
words, if one starts from a small graph around a page of
interest and extends it with external nodes and arcs (i.e.,
those belonging to the whole graph), how fast will one ob-



serve the computed scores converging to the real values of
PageRank?

We extend this line of work in the context of browsing
graphs. For the first time we study the LRP on the Brow-
seGraph and shed some light on the bias that PageRank
incurs, in when estimating the centrality score of nodes in a
BrowseGraph, when only partial information about the gra-
ph is available. To do this, we need local and global browsing
graphs but because we do not have the global Web graph,
we monitor the browsing traffic of the news portal and we
extract different browsing subgraphs induced by the brow-
sing traces of users coming from different domains, such as
search engines (e.g., Google, Yahoo, Bing) and social netwo-
rks (e.g., Facebook, Twitter, Reddit). In this way, the local
BrowseGraphs are the subgraphs induced by the different
domains, and the global BrowseGraph is the one built using
indistinctly all the navigation logs of the news portal. In a
first experiment we describe and evaluate models that tell
apart a subgraph from the others just by looking at the be-
havior of a random surfer that navigates through their links.
The results show how it is possible to recognize the graph
using only the very few nodes visited by the users, because
the graphs are very different among them (even if they are
extracted from the same big log of the news portal). This
experiment is two-fold: first it highlights how navigation
patters of the users differ among these subgraphs. Second,
since every user’s domain of origin is not always available
(e.g., clients of Facebook, Twitter, Mail, or also URL shor-
tening services like Bit.ly), being able to infer it from the
first browsing steps allows to apply the state of the art te-
chniques also in these cases. For example, to obtain initial
description of the user [12], optimize web sites [31], estimate
user engagement [18], or to perform recommendation tasks
also in cold-start cases [27].

Once we show that the subgraphs are different enough,
we proceed to perform more involved experiments that we
called “Growing Balls”, which examine the behavior of the
PageRank computed on the local and the global graphs. In
order to study how the local PageRank convergences to the
global one, we apply some strategies of incremental addition
(“growing”) of external nodes to these subgraphs (“balls”).

Finally, we build on these findings a final prediction expe-
riment that, for the first time, tackles the task of estimating
how much the local PageRank diverges from the global one
using only structural features of the local graph, usually
available to the local service provider. Predicting the error
of the local PageRank scores, in terms of distance from the
global one, provides useful estimation to the provider about
the reliability PageRank computed locally.
In summary, the main contributions of this work are the
following:

• We study the LRP on a large-scale BrowseGraph built
from a very popular news website. To the best of our
knowledge we are the first to tackle this problem on
the increasingly popular BrowseGraph. We present an
analysis of the convergence of the PageRank scores of
the local graph, that we expand at each step with its
neighbors, to the ones computed on the global one.

• We tackle the problem of discovering the referrer do-
main of a user session, when this information is mis-
sing or hidden. We show that this is possible using
a random surfer model, that is able to tell the refer-

rer domain with high accuracy, just after the very first
browsing transitions.

• We show that an accurate estimation of the distance
between the local and global PageRank, can be obtai-
ned looking at the structural properties of the local
graph, such as degree distribution or assortativity.

The remainder of the paper is organized as follows. In §2,
we overview relevant prior work in the area and, in § 3 we
describe our dataset and the extraction of the browsing gra-
phs. In §4 we analyze the (sub-)graphs and we perform an
experiment to highlight their difference. In §5 we study the
LRP problem on the BrowseGraph and compare the appro-
ximation accuracy of different graph expansion strategies.
In §6 we present the prediction experiment of the PageRank
errors of the local graph. In §7 we wrap up and highlight
possible extensions to the work.

2. RELATED WORK
This work encompasses two main different research areas

that we introduce shortly. The main focus is the Local Ran-
king Problem but it also relates to previous work on browsing
log data, especially the ones that investigate or make use of
centrality-based algorithms.

Local Ranking Problem
The Local Ranking Problem (LRP) was first introduced by
Chen et al. [10] in 2004, who addressed the problem to ap-
proximate/update the PageRank of individual nodes, wi-
thout performing a large-scale computation on the entire
graph. They proposed an approach that can tackle this pro-
blem by including a moderate number of nodes in the local
neighborhood of the original nodes. Furthermore, Davis and
Dhillon [14] estimated the global PageRank values of a local
network using a method that scales linearly with the size
of the local domain. Their goal was to rank webpages in
order to optimize their crawling order, something similar to
what was done by Cho et al. [13] who instead selected the
top-ranked pages first. However, this latter strategy results
to be in contrast with Boldi et al. [6], as they found that
crawling first pages with highest global PageRank actually
perform worse, if the purpose is fast convergence to the real
(global) rank values. In this work, we partial expand the
local graph with the neighbors nodes with highest (local)
PageRank showing an initial improvement on the conver-
gence speed. In 2008 the problem was reconsidered by Bar-
Yossef and Mashiach [3], where they simplified the problem
calculating a local Reverse PageRank proving that it is more
feasible and computationally cheaper, as the reverse natural
graphs tend to have low in-degree maintaining a fast Pa-
geRank convergence. Bressan and Pretto [9] proved that a
general, efficient local ranking algorithm does not exist, and
in order to compute a correct ranking it is necessary to visit
at least a number of nodes linear in the size of the input gra-
ph. They also raised some of the research questions tackled
in our paper that we discuss in Section 6.1. They reinforce
their findings in later work [8], where they summarized two
key factors necessary for efficient local PageRank computa-
tions: exploring the graph non-locally and accepting a small
probability error. These two constraints are also considered
in this paper in order to perform our experiments on the
browsing graphs. When one wants to estimate PageRank



in a local graph, the problem of the information missing is
tackled in various ways. In [3, 9] for example, the authors
make use of a model called link server (also known as remote
connectivity server [5]), that responds to any query about a
given node with all the in-coming and out-going edges and
relative nodes. This approach, with the knowledge about
the LRP, allows to estimate the PageRank ranking, or even
the score, with the relative costs. A similar problem was stu-
died by Andersen et al. [2], where their goal was to compute
the PageRank contributions in a local graph motivated by
the problem of detecting link-spam: given a page, its Page-
Rank contributors are the pages that contribute most to its
rank; contributors are used for spam detection since you can
quickly identify the set of pages that contribute significantly
to the PageRank of a suspicious page.

The problem we consider here is different and largely une-
xplored, because we are studying the PageRank of the dif-
ferent subgraphs based on user browsing patterns.

BrowseGraph
In recent years a large number of studies of user browsing
traces have been conducted. Specifically, in the last years
there was a surge of interest in the BrowseGraph, a graph
where the nodes are web pages and the edges represent the
transition from one page to another made by the navigation
of the users. Characterizing the browsing behavior of users
is a valuable source of information for a different number of
tasks, ranging from understanding how people’s search be-
haviors differ [32], ranking webpages through search trails [1,
33] or recommending content items using past history [29].
A comparison between the standard hyperlink graph, based
on the structure of the network, with the browse graph built
by the users’ navigation patterns, has been made by Liu et
al. [22, 23]. They compared centrality-based algorithms li-
ke PageRank [24], TrustRank [15], and BrowseRank [22],
on both types of graphs. The results agree on the higher
quality of ranking based on the browse graph, because it
is a more reliable source; they also tried out a combina-
tion of the two graphs with very interesting outcomes. The
user browsing graph and related PageRank-like algorithms
have been exploited to rank different types of items inclu-
ding images [28, 12], photostreams [11], and predicting users
demographic [16] or optimizing web crawling [21]. Trevi-
siol et al. [28] made a comparison between different ranking
techniques applied to the Flickr BrowseGraph. Chiarandi-
ni et al. [12] found strong correlations between the type of
user’s navigation and the type of external Referrer URL. Hu
et al. [16] have shown that demographic information of the
users, e.g., age and gender can be identified from their brow-
sing traces with good accuracy. The BrowseGraph has been
used also for recommending sequences of photos that users
often like to navigate in succession, following a collaborati-
ve filtering approach [11]. In order to perform an efficient
news recommender the user’s taste have to be considered
as they might change over time. Indeed, studying the users
browsing patterns, Liu et al. [20] shown that more recent
clicks have a considerably higher value to predict future ac-
tions that the historical browsing record. Finally, Trevisiol
et al. [27] exploited the BrowseGraph in order to build so-
me user models in the news domain, and recommend the
next article the user is going to visit. They introduced the
concept of ReferrerGraph, that is a BrowseGraph built with
sessions that are generated by the same referrer domain. In

our work we use the same Yahoo News dataset and we con-
struct in the same way the ReferrerGraphs, but with a very
different purpose.

To the best of our knowledge there is no work in the sta-
te of the art that tackles the Local Ranking Problem on a
browsing graphs with the prediction task that we perform
and describe in this paper.

3. DATASET
For the purpose of this study, we took a sample of Yahoo

News network’s1 user-anonymized log data collected in 2013.
The dataset used in this work has been extracted from the
data built in [27], that was used with the purpose to study
the news consumption with respect to the referrer URL. In
this section we summarize the way to construct the dataset
and the graphs, but the reader may refer to the aforemen-
tioned paper for further details. The data is comprised by
a large number of pageviews, which are represented as plain
text files that contain a line for each HTTP request satisfied
by the Web server. For each pageview in the dataset, we
gathered the following fields:

〈BCookie, T ime, referrerURL,CurrentURL,UserAgent〉

The BCookie is an anonymized identifier computed from the
browser cookie. This information allowed us to re-construct
the navigation session of the different users. CurrentURL
and referrer URL represent, respectively, the current page
the user is visiting and the page the user visited before ar-
riving at the destination page. Note that the referrer URL
could belong to any domain, e.g., it may be external to the
Yahoo News network. The User-Agent identifies the user’s
browser, an information that we used to filter out Web craw-
lers, and Timestamp indicates when the page was visited.
All the data were anonymized and aggregated prior to buil-
ding the browsing graphs. After applying the filtering steps
described above, our sample contains approximately 3.8M
unique pageviews and 1.88B user transitions.

3.1 Session Identification and Characteristics
The BrowseGraph is a graph whose nodes are web pages,

and whose edges are the browsing transitions made by the
users. To build it we extract from the data, transitions of
users from page to page, and in order to preserve the user
behavior (that could vary over time), we group pageviews
into sessions. We split the activity of a single user, taking
the BCookie as an identifier, into different sessions when
either of these two conditions holds:

• Timeout: the inactivity between two pageviews is
longer than 25 minutes.

• External URL: if a user leaves the news platform and
returns from an external domain, the current session
ends even if previous visits are within the 25 minute
threshold.

Moreover, each news article of the dataset is annotated with
an high-level category manually assigned by the editors.

3.2 Subgraphs Based on Session referrer URL
1We considered a number of different subdomains like Yahoo
news, finance, sports, movies, travel, celebrity, etc.



Subgraphs Nodes Edges Density %GCC

Google 142, 646 779, 185 3.8 · 10−5 0.93
Yahoo 101, 116 404, 378 3.9 · 10−5 0.95
Bing 61, 531 255, 464 6.7 · 10−5 0.91
Homepage 60, 287 335, 836 9.2 · 10−5 0.99
Facebook 21, 060 70, 266 1.5 · 10−4 0.95
Twitter 4, 206 7, 080 4.0 · 10−4 0.87
Reddit 2, 445 4, 868 8.1 · 10−4 0.95

Table 1: Size of the extracted subgraphs. Note that there
is not a strict relation between the size of the subgraph and
the amount of browsing traffic generated in it.

We aim to compare the PageRank scores of the nodes be-
tween the full BrowseGraph, computed with all the Yahoo
News logs, and a subgraph that represent the local graph.
This is a way to simulate a real case scenario in which a
service provider knowns only the users navigation logs insi-
de its network (subgraph) while the external navigations are
unknown (full BrowseGraph). Since it is not possible to use
the full Web browsing log, we perform a simulation using
different subgraphs extracted from the same BrowseGraph
that represent the local graphs of different providers. In
order to do that, we extract from the BrowseGraph of the
Yahoo News dataset various sub-graph built with sessions
of users generated by the same referrer URL. It has been
proved [27] that the obtained BrowseGraphs contain very
different users sessions in terms of content consumed (nodes
visited). In particular we consider users accessing the news
portal directly from the homepage, that is the main entry
point for regular news consumption, and in addition, from a
number of domains that fall outside the Yahoo News netwo-
rk: search engines (Google, Yahoo, Bing), and social netwo-
rks (Facebook, Twitter, Reddit). For each source domain we
extract a subgraph from the overall BrowseGraph, by consi-
dering only the browsing sessions whose initial referrer URL
matches that domain. For example, if a user clicks on a link
referring to our network that has been posted on Twitter,
her referrer URL will be the Twitter page where she found
the link. Next, we consider all the following pageviews be-
longing to the same session of the user, as being a part of the
twitter-subgraph, given that all of them have been reached
through Twitter. We applied the same procedure for all the
sources defined before, and finally, we obtained a weighted
graph for each different external URL, where the Weight ac-
counts for the number of times a user has navigated from the
source page to the destination page. On Table 1 a summary
with the size of the graphs (in terms of number of nodes and
edges) and with their structure is shown. It is interesting to
see that all the graphs, even presenting very different size,
are very well connected (%GCC between 0.87 and 0.99).

4. REFERRERGRAPHS ANALYSIS
In this section we describe some analysis on these Re-

ferrerGraphs, proving in addition to what has been showed
by [27] that they are consistently different not only in term
of nodes and content but also in term of navigation patterns
of the users. We also propose an experiment to understand
how much the graphs are distinguishable.

4.1 Subgraphs comparison
We consider the seven subgraphs extracted from the main

news portal graph with the procedure discussed in §3. Brow-
sing patterns generated by different types of audiences, can
lead to different pieces of news pages to emerge as the most
central ones in the browsing graph. To check that, we ran
the PageRank algorithm on each of the (weighted) subgra-
phs, and for every pair of subgraphs we compared the scores
obtained on their common nodes, using Kendall’s τ distan-
ce. The intersection between the node sets of the networks
is always large enough to allow us to compute the τ on the
intersection only (> 1000 nodes in the case with less over-
lap). The main idea is to compute the local ranking of nodes
on each subgraph: Kendall’s τ will provide a clear measure
of how much the importance of the same set of nodes va-
ries among different subgraphs. Therefore, if the ranking
between two subgraphs differs greatly (i.e., it has a very low
Kendall’s τ), this fact can be interpreted as an indication
that they either show different content (i.e., webpages) or
anyway that their content has a very different order or im-
portance. Table 2 reports on the cross-distance among the
subgraphs and also with respect to the full graph using Ken-
dall’s τ . Interestingly, most of the similarity values tend to
be very low (<0.3), confirming the hypothesis that the user’s
interests are tightly related to the domain where they come
from. Some of these similarities, however, are considerably
higher, remarkably the ones between the three subgraphs
that are originated from search engines traffic, i.e., Bing,
Google and Yahoo, which yield the most similar rankings of
pages (>0.5). However, for the purpose of this work we ex-
pect to find a difference among the subgraphs in order to use
them as local BrowseGraph and study the LRP with the full
graph (i.e., BrowseGraph made with the entire news log).

4.2 Random Surfer
In §4.1 we showed how users coming from different sources

(i.e., referrer domains) behave differently in terms of content
discovery and, as a consequence, the importance of the news
articles vary significantly among the different BrowseGra-
ph. It has been showed how the referrer domain might be
extremely useful to characterize the user’s sessions [12], to
estimate the user engagement [18] or to perform cold-start
recommendation [27]. However, the user’s referrer URL is
not always visible and, in many cases, it is hidden or ma-
sked by services or clients. For instance, any Twitter or mail
client (i.e., third-party application) shows an empty referrer
URL in the web logs, this is because the users come directly
from the client, and this is a very common behavior. A simi-
lar situation happens with the widespread URL-shortening
services (e.g., Bitly.com), that mask the original Web page
the user is coming from. Nonetheless, in all these cases, a
provider could make use of her knowledge of the user’s trail,
to identify automatically the source where the user started
her navigation in the local graph. As we have shown, the
referrer URL might be useful to characterize the interest of
the users, especially in the case where the users are unknown
(i.e., the user profile is not available). Thus, being able to
identify the referrer URL when it is not available, translates
into an advantage for the content provider. In this section
we want to understand if it is feasible to detect the referrer
URL of origin automatically and, in case, how many steps
are required. Moreover, if we find that the user sessions
are easily distinguishable, it means that the subgraphs are



Full Facebook Google Bing Yahoo Reddit Homepage Twitter

Full 1.0000 0.1791 0.3931 0.3278 0.3548 0.0656 0.2797 0.0764
Facebook 0.1791 1.0000 0.3146 0.4111 0.3430 0.2616 0.4070 0.3026
Google 0.3931 0.3146 1.0000 0.5815 0.5860 0.1088 0.4217 0.1297
Bing 0.3278 0.4111 0.5815 1.0000 0.6624 0.1469 0.5238 0.1688
Yahoo 0.3548 0.3430 0.5860 0.6624 1.0000 0.1245 0.4632 0.1386
Reddit 0.0656 0.2616 0.1088 0.1469 0.1245 1.0000 0.1534 0.2309
Homepage 0.2797 0.4070 0.4217 0.5238 0.4632 0.1534 1.0000 0.1523
Twitter 0.0764 0.3026 0.1297 0.1688 0.1386 0.2309 0.1523 1.0000

Table 2: Kendall’s τ correlations between PageRank values (α = 0.85) between the common nodes of the subgraphs.

Algorithm 1: RandomSurfer(k, α, steps, G)

logPr ← initialize vector with size Gk.length();
n ← total number of nodes;
xj ← choose (random) starting node ∈ Gk;

/* For each step, compute a random walk in Gk, and
compare the probability to be in all the other G */
for s← 1 to steps do

/* Pick the next node of Gk with random walk */
xk = next node( Gk, xj );

for i← 0 to G.length() do
〈kout〉 ← get_outdegree(np);
if 〈kout〉 == 0 then

logPr[ i ] ← logPr[ i ] + log(1/n);
else

pi(x) = (1− α)/n;
Pdxj ← get_prob_distribution(Gi, xj);

Sxj ← get_successors(Gi, xj);

if xk ∈ Sxj then
pi(x)← pi(x) + α ∗ Pdxj (xk);

logPr[ i ] ← logPr[ i ] + log(pi(x));

return logPr

enough different to be consider, in our experiment, as local
BrowseGraphs of different service providers.

Therefore, we decided to consider the following scenario:
a content provider is observing a user surfing the pages of its
web service, but she is unaware of the user’s referrer URL. In
terms of our experimental dataset, this scenario maps into
the problem of observing a browsing trace left by a random
surfer on one of the referrer-based subgraphs, and having to
identify which graph it is. Intuitively, the larger the number
of page visits (or steps) the surfer will make, the more di-
stinctive its trace will be, and the easier the identification of
the graph. Algorithm 1 shows the pseudocode that describes
the process to compute the random surfer experiment.

Formally, observing the sequence of the surfer’s visited
nodes x = (x1, x2, . . . , xs) and computing the probability
pi(x) that the surfer has gone through them given that it is
surfing Gi, we need to deduce what is Gi (e.g., by maximum
log-likelihood). With this aim in mind, we sort the indices
of the subgraphs i1, i2, . . . so that pi1(x) ≥ pi2(x) ≥ . . . and
stop as soon as the gap between log pi1(x) and log pi2(x) is
large enough (e.g., log pi1(x) − log pi2(x) ≥ log 2), with a
maximum of 20 steps that we consider as a representation
of a long user session.

0
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Figure 1: Random Surfer Experiment. On the y-axis: log-
ratio of the probabilities (as explained in the text). X-axis:
number of browsing steps performed by the surfer.

In this set of experiments, we considered the seven URL-
referral subgraphs G1, . . . , G7, one at a time. For each
subgraph Gi, we simulated a random surfer moving around
in Gi (i.e., calling the function RandomSurfer(i, α, steps,
G)), computing at each step (i.e., page visited) the probabi-
lity of the surfer to navigate in each subgraph G1, . . .G7: we
expect that the probability corresponding to Gi will increase
at each step, and will eventually dominate all the others.

In order to estimate the number of steps required to iden-
tify correctly the graph that the surfer is browsing, we mea-
sure the difference between log-probabilities for the correct
graph Gi and for the graph with the largest log-probability
among the other ones. As with PageRank we introduced
a certain damping factor (α = 0.85); this is necessary to
avoid being stuck in terminal components of the graph. Re-
call that α is the balancing parameter that determines the
probability of following in the random walk, instead of te-
leporting. The results are shown in Figure 1, averaged over
100 executions. The values on the y-axis represent the dif-
ference between the log-probabilities (i.e., the logarithm of
their ratio): in general, we can observe that the very firsts
steps are enough to understand correctly (and with a huge



margin) in which graph the surfer is moving. The inset of
Figure 1 displays the first 20 steps and the relative proba-
bility to identify the correct graph. Almost all the referrer
domains are recognizable at the first step. This translates
in a strong advantage for the service provider as it can iden-
tify from where the users are coming from, even if they use
clients or services that masquerade it. With this informa-
tion the service provider can personalize the content of the
web pages for any users with respect to the referrer.

Interestingly, the plot reveals a different fact, namely that
some surfers are easier to single out than others; we read
this as yet another confirmation that the subgraphs have
a distinguished structural difference, or (if you prefer) that
users have a markedly different behavior depending on where
they come from. This experiment does not only showed that
is possible to detect from which referrer domain the surfer
is coming from, but that the graphs are quite different and
that they can be used for our study.

5. PAGERANK ON THE BROWSEGRAPH
In this section we study the convergence of the PageRank

ranking between the local BrowseGraphs (ReferrerGraphs)
and the full BrowseGraph. We want to understand how dif-
ferent are the ranking computed using less or more know-
ledge of the full graph. We present an experiment, called
“Growing Balls”, that compute the distance between the ra-
nkings expanding at each step the known nodes (and edges)
with the neighbors of the subgraphs.

5.1 “Growing Balls” Experiment
We first focus on the study of the Local Ranking Problem

on browsing graphs. An important question related to this
problem is how much the PageRank node values vary, when
new nodes and edges are added to the local graph. A natural
way to determine this is to expand incrementally the graph
by adding new nodes and edges in a Breadth-First Search
(BFS) fashion, and comparing the PageRank computed on
the expanded graph with the one on the global graph.

More formally, given a graph H which is a subgraph of the
full graph G, we simulate a growth sequence H0, H1 . . . Hn

in the following way:

• H0 ←− H;

• VHk+1 ←− {Γout(VH) ∪ VH}, with Vx being the set of
vertices of a graph, and Γ being the vertex neighbo-
rhood function;

• EHk+1 ←− {(v1, v2)|v1 ∈ VHk+1 ∧ v2 ∈ VHk+1}, with
Ex being the set of edges of a graph.

Using the standard graph terminology, we refer to the va-
rious steps of this expansion as “balls”, where the ball H0 is
the initial subgraph and subsequent balls are obtained by ad-
ding all the outgoing arcs, that depart from the nodes in the
current ball and end in nodes that are not in the set of nodes
of that ball. Observe that, depending on how it is built, H0

may not be an induced subgraph of G, but H1, · · · , Hn are
always induced by definition of the expansion algorithm.

Using the Kendall’s τ function, we measure the difference
between the local PageRank computed for each ball Hi, and
the global PageRank computed on G. The main objective
is to understand how much the ranking gets close the global
one at each consecutive step, and whether the ranking values

are able to converge even if we just consider a piece of the
information contained in the whole graph.

To check the dependency of results from the initial graph
selected, we consider three different sets of initial subgraphs,
that we will study in separation. We describe them next.

• Referrer-based (RB). The seven browsing subgra-
phs built by referrer URL: Facebook, Twitter, Reddit,
Homepage, Yahoo, Google and Bing;

• Same size referrer-based (SRB). To measure how
much the different sizes of the graphs impact on the ob-
served behavior, we fix a number of nodes and extract
a portion of each subgraph in order to obtain exactly
the same size. The selection is performed with several
attempts of BFS expansion, starting from a random
node in each graph, until the resulting graphs have
very similar size (±9.4%): other ways of selecting sub-
graphs would end up with disconnected samples, which
of course would void the purpose of this experiment.
doing so, we are able to compare the graphs on equal
grounds and at the same time control for the effect of
size (about 3K nodes and 20K edges).

• Random (R). To check whether the observed beha-
vior has to do with the user behavior underlying the
graph under examination (e.g., the particular struc-
ture of the graph determined by the sessions of users
coming from Twitter), we take a set of seven random
graphs each of them reflecting the size of each of the
referrer-based subgraphs. Thus, we can explore the be-
havior of browsing graphs, that preserve the size of the
graphs originated by specific types of users, but that
are “artificial” in the sense that destroy any connection
with the behavior connected to a particular user class.
To make sure that the size is the same, we start from a
BFS exploration and we prune the last level to match
exactly the size we need.

The results related to the RB case are shown in Figure 2
(left). The convergence happens relatively quickly, as the
value τ approaches 1 in the first 3 iterations. The curves re-
lated to different subgraphs are shifted with respect to each
other, apparently mainly due to their different size, the big-
gest networks starting from higher τ values and converging
faster than the smaller ones. To determine the dependency
on the graph size, we repeat the same experiment for the
SRB case. The results for this case are shown in Figure 2
(center). Even if the curves resulted to be more flattened
(confirming that the initial size has indeed a role in the con-
vergence), we still observe noticeable differences between the
curves for the first two expansion levels. This means that
different subgraphs are substantially different from one ano-
ther in terms of their structure: even after forcing them to
have the same size, the convergence rates observed on the
different graphs varies. At the first iteration, for instance,
all the subgraphs in SRB have Kendall’s τ between 0.3 and
0.5, whereas the ones in RB are between 0.4 and 0.6. Mo-
reover in SRB the biggest networks starting from higher τ
values are not converging faster. This intuition is confirmed
by repeating the experiment on graphs selected with the R
startegy. Results, displayed in Figure 2 (right), show that
convergence in this case is much slower and the difference
between the curves is less prominent.
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Figure 2: Growing Balls experiment on: (left) original subgraphs built based on the referrer URL, (center) seven subsubgraphs
with very similar size, (right) eigth subgraphs random selected from the full graph, where each of them has the same size of
one of the original.

Summarizing, with the previous experiment, we show that
the Growing Balls on random subgraphs behave differen-
tly, especially when considering the number of iterations
required in order to converge.

5.2 Growing Balls with Selection of Nodes
Besides the selection of the initial graph, the rank conver-

gence depends also on the way the growing balls are built
at each iteration. How does the expansion influence con-
vergence if only few more representative nodes are selected?
To what extent a higher volume of selected nodes helps a
quicker convergence or adds more noise? At a first glance,
one may argue that using all the nodes mean injects all the
available information, so the convergence to the values of
PageRank computed on the full graph G should be faster.
On the other hand, instead, one may observe that we are in-
troducing a huge number of nodes in each iteration (as the
growth is at each step larger), adding also the ones that are
less important and this can induce an incorrect PageRank
for some time, until all the graph becomes known. In order
to shed light on this aspect, we introduce a variant in the
growing-balls expansion algorithm, and we select only the
nodes with highest PageRank.

More formally, consideringHk as the subgraph at iteration
k and VHk its set of nodes, we select all the external nodes
in Y = {VG VHk}, that are connected through outgoing arcs
from the nodes in VHk . We then compute the PageRank
values on the subgraph Hk extended with the nodes Y , and
obtain a ranked list of nodes. Among all the nodes in Y
we select the top n% with largest PageRank value, and only
those ones will be added to Hk in order to build Hk+1 and
advance to the next iteration.

We conducted experiments with this partial expansion at
different percentages: 5%, 10%, 30%, 50%, and 100%, and
then we computed the average Kendall’s τ value for each
one of the percentages. The results are shown in Figure 3.
Remarkably, the figure highlights how expanding the gra-
ph by adding fewer nodes, although the most representative
ones, leads to PageRank values that are closer to the global

ones in the first iterations. Since we are expanding the lo-
cal graph with a small (highly-central) number of nodes, we
could argue that they initially help to boost the local Pa-
geRank scores. However, given that we keep on expanding
using a few nodes at each iteration, the nodes that have not
been added before exclude a large number of nodes among
which there might also be highly central ones. This might
explain why in the first iteration(s) the convergence rate is
high, but on the limit the final convergence values result in
a low Kendall’s τ . Contrarily, in the long run, expansions
that include the highest number of nodes present convergen-
ce values closer to 1. This is somehow expected, given that
at each iteration any subgraph H closer in size to the full
graph G, will include almost every node and arc.

Nonetheless, the main significant outcome of this experi-
ment is that it is possible to obtain a yet satisfactory Page-
Rank convergence, with few but very representative nodes.
Considering situations in which including additional pieces
of information, in terms of node/arc insertions, implies a
non-negligible cost; requesting just a little amount of well-
selected information allows to obtain good approximations
while minimizing the costs.

6. PAGERANK PREDICTION
In the previous section we have shown how the approxi-

mation to the global PageRank varies with the expansion
of the initial subgraph. The ranking of the nodes conver-
ges quite fast on all the subgraphs: they differ in terms of
their content, although they are similar in terms of structu-
re in that all of them are built based on users’ navigational
patterns. Building upon the findings about how local and
global PageRank computed on the BrowseGraphs relate to
each other, we designed an experiment to assess how well a
learned model could perform in predicting this relationship.

We address the problem of predicting the Kendall’s τ be-
tween the local and the global PageRank, only considering
information available on the local graph such as topologi-
cal features. This is an extremely common situation given
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Figure 3: Growing Balls using only the nodes with hig-
hest PageRank. The plot shows the average values of the
Kendall-τ at each step computed for all the subgraph.

that, in general, the information pertaining the local gra-
ph is the only one that is readily available, and usually of
a limited size. Computing this distance accurately has a
high value for service providers, since it translates directly
into a estimation of the reliability of the PageRank scores
computed on their local subgraphs. As a direct consequence
one can apply, with different levels of confidence, methods
for optimizing web sites [31], studying user engagement [18],
characterizing user’s session [12] or recommending contents
to newcomers [27].

6.1 Prediction of Kendall τ Distance
We have seen that the deviation of the local PageRank wi-

th respect to the global one can be relevant, depending on
factors such as the size of the local graph and the different
behavior of the users who browse it (see §5.1 and particularly
Figure 2). Recall that we compute the distance comparing
the rankings with the Kendall’s τ , since we are interested in
obtaining a ranking as closest as possible to the one compu-
ted on the entire graph. Although we have previously shown
how to expand the view on the local graphs with nodes re-
siding at the border, this practice might not always possible
in a real-world case, since service providers often can have
access only to the browsing data within their domain.

Previous work on local ranking on graphs raised several
questions related to this scenario, highlighting practical ap-
plications of the local rank estimation non only for web pa-
ges but also in social networks [9]. Critically, so far it is
not clear whether there are some topological properties of
the local graph that make the local ranking problem easier
or harder, and if these properties can be exploited by lo-
cal algorithms to improve the quality of the local ranking.
We explore this research direction, by studying a fundamen-
tal aspect that is at the base of the open questions in this
area, namely the possibility of estimating the deviation of

the local PageRank from the global one, using the structural
information of the local network. The intuition is that, some
structural properties of the graph could be good proxies for
the τ value difference, computed between local and global
ranks. Being able to estimate the Kendall’s τ distance be-
tween the subgraph available to the service provider and the
global graph, implies the ability to estimate the reliability
of the current ranking using only information of the local
subgraph.

To verify this hypothesis we resort to regression analysis.
Starting from the seven subgraphs in the dataset, we build
a training set using the jackknife approach, by removing
nodes in bulks (1%, 5%, 10%, 20%) and computing the τ
value between the full subgraph and their reduced versions.
Then, for each instance in the training set, we compute 62
structural graph metrics [30, 4] belonging to the following
categories:

• Size and connectivity (S). Statistics on the size and
basic wiring properties, such as number of nodes and
edges, graph density, reciprocity, number of connected
components, relative size of the biggest component.

• Assortativity (A). The tendency of node with a cer-
tain degree, to be linked with nodes with similar de-
gree. We computed different combinations that take
into account the in/out/full degree of the target no-
de vs. the in/out/full degree of the nodes that are
connected with it.

• Degree (D). Statistics (average, median, standard
deviation, etc.) on the degree distribution of nodes.

• Weighted degree (W). Same as degree, but con-
sidering the weight on edges, that usually referred as
node strength. As the edges are the transitions made
by the users during the navigation, the weight stand
for the number of times the users have navigated the
transition.

• Local Pagerank (P). Statistics on the distribution
of the PageRank values computed on the local graph.

• Closeness centralization (C). Statistics on the di-
stances (number of hops), that separate a node to
the others in the graph, in the spirit of the closeness
centralization [30].

We employed different regression algorithms, although we
report the performance using random forests [7], which per-
formed better in this scenario than other approaches like
support vector regression [25]. We computed the mean squa-
re error (MSE) across all examples in all sampled subgra-
phs. The random forest regression has been computed over
a five-fold cross validation averaged over 10 iterations. The
mean square residuals that we obtained is very low, around
2.4 · 10−6. Results, computed for the full set of features
and for each category separately, are given in Table 3. The
most predictive feature category is the weighted degree, whi-
ch yields a performance that is better (or comparable) than
the model using all the features, whereas the assortativi-
ty features seem to be the ones that have the less predictive
power on their own. This might be due to the fact the model
with 62 features is too complex for the amount of training
data available. On the other hand, the weighted degree that



Feature Class No. Features MSE

weighted degree 15 2.2 · 10−6

degree 15 2.9 · 10−6

local PageRank 10 3.3 · 10−6

size and connectivity 9 3.4 · 10−6

closeness 5 4.1 · 10−6

assortativity 8 9.3 · 10−6

ALL features 62 2.4 · 10−6

Table 3: MSE of cross validation. Average differences are
statistically significant with respect to weighted degree and
ALL features (t-test, p<0.01).
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Figure 4: The 15 features of weighted degree, the most pre-
dictive class, sorted by importance. Note that some of them
do not have any contribution to the Kendall-τ prediction,
therefore just few features are necessary in order to estimate
the distance.

is the best performant class of features, contains the stati-
stics of the degree distribution on the weighted edges. In
Figure 4 the features included in weighted degree are ranked
by their discriminative power in predicting the Kendall τ
distance using the permutation test proposed by Strobl et
al. [26]. These features, which are based on the distribution
of the out- and in-degree of the nodes, are straightforward
to compute from the local graph—a very affordable task for
service providers.

We then use the learned model to predict the τ values of
the seven subgraphs. When we applied the predictive mo-
dels learned in the subsamples to regressing the full graphs,
the MSE, is less than 0.026 on average, which, even if relati-
vely low, it is higher than the cross-validated performance in
the sub-samples. However, the model was able to rank the
seven different subgraphs by their Kendall’s τ almost perfec-
tly. When using all the features the Spearman’s correlation
coefficient between the true order and the predicted one is
0.85 (high correlation), and when we used the most predicti-
ve features (weighted degree) the correlation was as high as
0.80 (moderate high correlation). Overall, the final rankings
are just one swap away (Kendall’s τ is over 0.70 in this case).

This kind of information can be very helpful when compa-
ring different local sub-domains to determine which one has
pages that better estimate the global PageRank.

7. CONCLUSION
In this paper we tackled the Local Ranking Problem, i.e.,

how to estimate the PageRank values of nodes when a por-
tion of the graph is not available, which arises commonly in
real use cases of PageRank. We investigated this problem
for a novel environment, namely estimating PageRank on a
large user-generated browsing graph from a large news pro-
vider. The peculiar characteristic of this graph is that it
is built from user’s navigation patterns, where nodes repre-
sent web pages and edges are the transitions made by the
users themselves. Moreover, the information about the do-
main of origin of the users (namely the referrer URL of their
sessions), is also available.

We built a set of ReferrerGraphsincluding the browsing
subgraphs based on different referrer URL, and then we stu-
died their difference in terms of user navigation patterns. We
found that all of the browsing patterns initiated from diffe-
rent domains exhibit remarkable differences in terms of whi-
ch pages users visited next. The referrer URL (or domain)
has been found to be extremely useful for characterizing the
user behavior [12] or for recommendation of content [27].
With this observation in mind and motivated by the cases
where the domain from where the user is coming from is
not available, such as Facebook and Twitter clients or URL
shortening services, we performed a series of experiments
with the aim of predicting from which referrer URL the user
joined the network, i.e., if a model can predict reliably where
the user is entering our network. In general, just a few steps
(i.e., visited pages) suffice to recognize the referrer URL cor-
rectly because the surfing behavior is very distinctive of the
domain the user is coming from.

Then, using the ReferrerGraphs, we performed several ex-
periments using a very large network of sites (with almost
two billions of user transitions) to assess to what extent
the browsing patterns information can be generalized, if one
is only provided with information from smaller subgraphs.
First, we computed the PageRank of the subgraphs and on
their step-by-step BFS expansion, measuring the distance in
terms of Kendall’s τ with the PageRank computed on the
full graph. To control for the subgraph size and type, and
to study the impact of the expansion strategy on the Pa-
geRank convergence, we used two flavors of BFS and three
different sets of initial subgraphs. We found that expanding
the local graph with few nodes of largest value of PageRank
leads to a faster (74% at the first expansion step), althou-
gh less accurate convergence in the long run. On the other
hand, adding more nodes lead to a slower converge rate in
the first steps (65%). Therefore, in all the cases where a
strong convergence with the values of the global PageRank
is not required, selecting few specific nodes is enough to si-
gnificantly improve the PageRank values of the local nodes,
without having to request and process a larger amount of
data.

Finally, we considered the case of a service provider that
wants to estimate the reliability of the scores of PageRa-
nk computed on its local BrowseGraph, with respect to the
ones computed on the global graph. Therefore, we perfor-
med another experiment trying to predict the value of the
Kendall’s τ between the local and the global PageRank, on-



ly considering information available on the local graph. We
explored six different sets of topological and structural fea-
tures of the browse graph, namely size and connectivity,
assortativity, degree, weighted degree, local PageRank and
closeness. Then we computed those features on a training
set that we obtained by applying a jackknife sampling of our
subgraphs, and we ran a regression on the Kendall’s τ of the
PageRank of the full subgraph and the various samplings.
We found that a random forest ensemble built on weighted
degree, outperforms all the other in terms of mean square er-
ror. When applying the regression to the task of predicting
the τ value of the global graph with the eight subgraphs at
hand, we were able to reproduce quite well the ranking of
their estimated τ values with their actual ranking, up to a
Spearman’s coefficient of 0.8.

Future Work. We envision different routes worth being
taken into consideration for future work. One line of re-
search we plan to investigate deals with the problem of user
browsing prediction. In other words, what extent it may be
possible to identify what are the most common patterns of
topical behavior in the network and also, to build per-user
browsing models to predict what would be the page to be
visited next. Further, motivated by real use case scenarios,
we considered subgraphs determined by the referrer URL of
user sessions; we believe that interesting analytical results
could be found, when considering other types of subgraphs,
such as networks induced by nodes that belong to the same
topical area.
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