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ABSTRACT
Concurrently processing thousands of web queries, each with
a response time under a fraction of a second, necessitates
maintaining and operating massive data centers. For large-
scale web search engines, this translates into high energy
consumption and a huge electric bill. This work takes the
challenge to reduce the electric bill of commercial web search
engines operating on data centers that are geographically
far apart. Based on the observation that energy prices and
query workloads show high spatio-temporal variation, we
propose a technique that dynamically shifts the query work-
load of a search engine between its data centers to reduce
the electric bill. Experiments on real-life query workloads
obtained from a commercial search engine show that signif-
icant financial savings can be achieved by this technique.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Algorithms, Economics, Experimentation, Performance

Keywords
Web search engine, data center, query processing, energy

1. INTRODUCTION
A major challenge in front of web search engines is to cope

with the growth of the Web and the increase in user query
traffic volumes while maintaining query response times un-
der a fraction of a second. The efficiency becomes an even
more critical issue as user expectations about the quality of
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search results and the competitive nature of the search mar-
ket enforce the use of more sophisticated and costly process-
ing techniques. Consequently, satisfying the efficiency con-
straints in web search necessitates the use of large compute
infrastructures as well as highly efficient software platforms.

The current solution to the efficiency problem is to carry
out the web search business over massive data centers, con-
taining tens of thousands of computers [3]. Due to space and
power requirements, large-scale search engines spread their
infrastructures and operations across several, geographically
distant data centers. The key operations in a search engine
involve web crawling, indexing, and query processing. In
practice, a very large index is built over the crawled web doc-
uments. Each data center maintains a replica of the most
recent version of this index. Queries issued by users are
processed on the index replica in the closest available data
center, yielding reductions in query response latencies.

As a consequence of their massive scale, search data cen-
ters incur significant financial overheads in the forms of de-
preciation costs, maintenance overheads, and operational ex-
penses, taking away a large slice of the profit made through
sponsored search. Among the operational expenses, an im-
portant cost is due to high energy consumption [2]. Most
standard search engine tasks (e.g., query processing, crawl-
ing, indexing, text processing, link mining) are parallelized
on many computers, consuming lots of energy. This, in turn,
implies high electric bills for search engine companies.

In this work, we make an early attempt to reduce the
electric bills of large-scale, multi-center search engines. Our
work is mainly motivated by the following two observations:
• Energy prices show high spatio-temporal variation,

i.e., they differ across countries and change in time [15].
• Query workloads of search data centers show spatio-

temporal variation as well, i.e., the workload of a data
center varies during the day [6] and some data centers
may be under high traffic while others are mostly idle.

Based on these observations, we develop a technique that
shifts the query workload from search data centers with
higher energy prices to those with lower prices, to reduce
the total energy cost. Although the idea of shifting the
workload between data centers is simple, there are two con-
straints that complicate the problem in the context of web
search engines. First, in practice, each data center has a
fixed amount of hardware resources, i.e., a data center can
handle only a certain amount of query volume, at any given
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Figure 1: Electric prices in a rep-
resentative set of countries in the
world (source: Wikipedia).
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Figure 2: Hourly prices obtained
over 15 different zones in the East
Coast of the US (source: NYSIO).
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Figure 3: Hourly query traffic vol-
umes observed on search front-ends
of a commercial search engine.

time. Hence, it is not always feasible to redirect the entire
search traffic volume to the data center with the cheapest
electricity. Second, in web search, query response times are
bounded. Hence, a query can be transferred from one data
center to another only if the network latency between the
data centers does not violate a query response time con-
straint. Our problem formulation captures both constraints.

The following summarizes our contributions. We discuss
the energy-price-driven query processing problem in the con-
text of multi-center web search engines. As a solution, we
propose a probabilistic algorithm that dynamically shifts
query workloads between data centers. We evaluate the pro-
posed algorithm via simulations over a realistic search engine
setting, using user queries obtained from a commercial web
search engine, actual search front-ends, a large Web index,
and real-life electric price data. Our results indicate signifi-
cant financial savings for large-scale web search engines.

The rest of the paper is organized as follows. Section 2 mo-
tivates the idea of query workload shifting. In Section 3, we
present the energy-price-driven query processing problem,
together with the involved issues and performance metrics.
The proposed solution is described in Section 4. We discuss,
in Section 5, the details of our experimental setup. Section 6
provides the experimental results. A discussion on further
issues is available in Section 7. Related literature is surveyed
in Section 8. Finally, Section 9 concludes the paper.

2. MOTIVATION
Search data centers. Multi-center web search engines

are known to have advantages over centralized search engines
in terms of scalability and performance [7]. In practice, to
further increase these benefits, the number and location of
data centers should be carefully selected. The decision about
data center locations is influenced by many factors, such as
branding, user bases, energy prices and availability, climate,
tax rates, and the political stability of countries. An impor-
tant factor among these is industrial energy prices. A typi-
cal commercial web search data center consumes significant
amounts of energy, which translates to an electric bill with
many zeros for the search engine company.1 Hence, there

1Some back-of-the-envelope calculations in a recent work es-
timate Google’s annual electric bill to be $38 million [15].

is a tendency to build data centers in countries where the
energy is cheap (without completely ignoring other factors).

Variation in electric prices. Electric prices vary de-
pending on geographical location. Fig. 1 shows the electric
prices in a representative set of countries.2 According to
the figure, there is no apparent correlation between energy
prices and the spatial distribution of countries. The price ra-
tio between the most expensive (Denmark) and the cheapest
(Canada) countries is about seven. Even if data center loca-
tions are restricted to the five cheapest countries, the price
ratio is about 1.5. These numbers demonstrate the poten-
tial for financial savings in shifting query workloads from
locations having high electric prices to cheaper locations.

Electric prices also vary in time, depending on factors such
as supply/demand, capacity of transmission lines, and sea-
sonal effects. The reader may refer to [15] for an analysis on
the temporal behavior of electric prices in a wide range of
markets in the US. Herein, we restrict our focus to hourly
price variation within a day. As an illustrative case, we ob-
tain the hourly electric prices from the day-ahead market of
a power supplier, serving 15 zones in the East Coast of the
US, and compute the hourly prices, averaged over all zones,
for seven consecutive days in a week of December 2010.3

Fig. 2 shows the hourly electric prices for the cheapest and
most expensive days, together with the average prices of the
week. In general, there is high correlation across the days
in terms of hourly price distribution. Prices make a peak
early in the morning and late in the afternoon. Although
web queries are online tasks, i.e., the processing of a user
query cannot be delayed until the prices fall, temporal price
variation provides further flexibility for workload shifting.

Variation in query traffic. The spatio-temporal varia-
tion in the query traffic volume provides another motivation
to shift query workloads of data centers. Due to differences
in time zones, some search data centers may operate under
heavy workloads while others are underutilized. Moreover,
the query traffic volume fluctuates throughout the day [6].

Fig. 3 shows the hourly query traffic volumes observed
on five different front-ends of a commercial search engine,

2Wikipedia – Electricity pricing, visited on Dec. 28, 2010:
http://en.wikipedia.org/wiki/Electricity_pricing.
3New York Independent System Operator, visited on Dec.
28, 2010: http://www.nyiso.com/public/index.jsp.
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Figure 4: A sample query workload (left) is shifted between data centers to reduce the electric cost (right).

during the same 24-hour period. Query traffic volumes are
observed to correlate with the local time. Typically, the vol-
umes are higher during the day and lower during the night.
As the time zone difference between two front-ends increases,
the difference in their query volumes tends to increase.

Example. We informally describe our problem over the
multi-center search engine setting depicted in Fig. 4. The
example involves three data centers (A, B, and C), located
in time zones that are sufficiently far apart. Data centers
are connected through a wide area network. For simplicity,
we assume that each data center maintains a number of ho-
mogeneous search clusters having the same compute power.
In our example, data centers A, B, and C possess processing
powers to concurrently process 5, 3, and 4 queries, respec-
tively. In the figure, small triangles, circles, and squares
represent queries issued to individual data centers at a par-
ticular instant in time. To further simplify the scenario, we
assume that queries are either cheap or expensive, consum-
ing 1 or 2 units of electricity, respectively. We also assume
that expensive queries cannot be transferred between data
centers due to the high overhead of network transfer, with-
out exceeding a given hard limit on query response time.
Finally, we assume that, at the instant of our example, each
data center is charged a fixed cost for consuming one unit
of electricity ($3, $2, and $1 for A, B, and C, respectively).

Given these assumptions, the initial setup on the left,
where queries are processed in their local data centers, re-
sults in an electric cost of $26. By finding a better query-to-
center mapping, this cost can be reduced. For example, in
one extreme, if all queries are processed in C, which has the
cheapest electricity, the total cost becomes $11. However,
this is not feasible as the processing capacity of C can handle
at most four concurrent queries. In practice, excess work-
load may cause intolerable delays in response time. Hence,
in our work, we use data center capacities as a constraint.
Moreover, we constrain response times of queries. A query
is forwarded to a non-local data center only if its processing
can be completed under a given time bound. In our exam-
ple (on the right), two queries (one from A and one from B)
are forwarded to C, and A further forwards one of its queries
to B. However, although B has the capacity to process one
more query, A cannot forward one of its expensive queries
to B. The query-to-center mapping on the right yields the
lowest possible cost ($22), without violating the constraints.

3. PROBLEM FORMULATION
The objective of the energy-price-driven query processing

problem is to find a query-to-center mapping that minimizes
the total electric cost incurred by a stream of web search
queries. Our constraints are to keep query response times
under a given time bound and to keep workloads of data
centers under their capacities. Before formally specifying
our problem, we introduce some notation and definitions.

Definitions. We are given a set D={D1, . . . , Dm} of m
data centers, a set Q={q1, . . . , qn} of n queries, and a con-
tinuous timeline T . Each data center Dk ∈D is associated
with a fixed query processing capacity Ck, which denotes
the highest constant query traffic rate under which Dk can
continue to process its queries before its waiting query queue
starts infinitely growing, i.e., the capacity refers to the peak
query processing throughput that can be sustained by the
data center. Each query qi ∈ Q is associated with a local

data center D̂i∈D, a time point ti∈T at which qi is issued
by the user, its processing time ci, and the amount of energy
ei consumed while processing the query in a data center.4

We are given a response time limit r that sets an upper
bound on the response time of a query, i.e., r is the maxi-
mum response time that can be tolerated by users. We are
also given a function `uD : Q×D→R, where `uD(qi, Dk) de-
notes the network latency between data center Dk and the
user who issued query qi, and a function `DD : D×D→R,
where `DD(Dk, Dk′) denotes the network latency between
data centers Dk and Dk′ .5 Moreover, we define an energy
price function π : D×T → R, where π(Dk, t) denotes the
financial cost of consuming a unit of energy in data center
Dk at time point t. We also define a mapping Φ : Q→D
that assigns each query qi to a unique data center Dk∈D.

We now give three definitions that are used in our problem
specification. First, we define the financial cost ψ(qi, Dk) of
a query qi processed in a data center Dk (at time t) as

ψ(qi, Dk) = ei π(Dk, t). (1)

Second, the response time %(qi, Dk) for a query qi that is
eventually processed on data center Dk is estimated as

%(qi, Dk) = 2× (`uD(qi, D̂i) + `DD(D̂i, Dk)) + ci. (2)

4We assume that processing a query over the full web index
consumes the same amount of energy in all data centers.
5Note that `DD(Dk, Dk′)=0 if and only if Dk =Dk′ .
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Finally, the workload ω(Dk, t,Φ) of a data center Dk (at
time t) for a given query-to-center mapping Φ is defined as

ω(Dk, t,Φ) = |{qi : Φ(qi) = Dk, t ∈ [sik, sik+ci]}|, (3)

where sik denotes the time point that qi is received by the

data center Dk, i.e., sik = ti+`uD(qi, D̂i)+`DD(D̂i, Dk).
Problem definition. The energy-price-driven query

processing problem is to find a query-to-center mapping Φ
that minimizes the total energy cost χ(Φ) incurred when
processing a stream Q of queries under the mapping im-
posed by Φ, without violating performance constraints, i.e.,
to minimize

χ(Φ) =
∑
qi∈Q

ψ(qi,Φ(qi)) (4)

while maintaining the response time of each query qi below
the given upper-bound r on query response time, i.e.,

%(qi,Φ(qi)) ≤ r, (5)

and enforcing that the workload of no data center Dk ex-
ceeds its capacity Ck at no time point t∈T , i.e.,

ω(Dk, t,Φ) ≤ Ck. (6)

Issues. There are three issues that complicate finding a
solution to our problem. First, the estimated query response
time % of some queries may exceed the response time limit
r, i.e., it may not be possible to find a feasible solution to
the problem for any given input query stream. In practice,
search engines have the freedom to fully process their queries
or terminate their processing early so that the response time
does not exceed r. While the first approach may lead to
response times not tolerable by users, the second approach
may yield degraded (low quality) search results [6]. Herein,
we adopt the second approach and limit the query response
time to r for all queries. This way, we can always satisfy the
constraint in (5) at the expense of some degraded queries.

Second, search engines do not have a control on the in-
coming query traffic rate, i.e., the workload of a data center
is an external, uncontrollable parameter. This may prevent
finding a feasible solution to our problem, as the constraint
in (6) may be violated. In practice, when the user query traf-
fic rate exceeds the peak sustainable throughput rate of the
search engine, a fraction of user queries (herein, referred to
as overflow queries) are dropped without any processing or
processed in degraded mode, spending little time.6 Herein,
we adopt a practical scenario and assume that the overflow
queries are not processed by the search engine. This way,
the constraint in (6) is always satisfied at the expense of
some queries that are dropped without being processed.

Third, the query stream is not available from the start.
Hence, an online algorithm is required to solve the problem
at hand. This implies that the decisions made by the algo-
rithm at some point may later turn out to be suboptimal.

Metrics. We have three different performance metrics.
The first metric is the objective function given in (4), i.e.,
the total energy cost incurred by the query mapping Φ. This
is our primary metric for evaluating the quality of a solution.
The second metric is the rate Rd of queries that are degraded
to prevent the violation of the constraint in (5), i.e.,

Rd(Φ) =
|{qi∈Q : %(qi,Φ)>r}|

|Q| . (7)

6Note that forwarding of queries may lead to constraint vio-
lations as well. We will take this into account in our solution.

Algorithm 1 MapQueryToDataCenter(qi, t)

Require: A user query qi
Require: Time t at which the mapping decision is made

1: W ← EstimateWorkloads(t)
2: P ← GenerateProbabilities(W, qi, t)
3: Select Dk ∈ D with probability pk ∈ P
4: Φ(qi)← Dk

5: if %(qi,Φ(qi)) > r then

6: Φ(qi)← D̂i

7: end if

The third metric is the rate Ro of overflow queries that are
dropped to prevent the violation of the constraint in (6), i.e.,

Ro(Φ) =
|{qi∈Q : |w′(sik, Dk,Φ)| ≥ Ck}|

|Q| , (8)

where w′(t,Dk,Φ) represents the set of queries being pro-
cessed on data center Dk at time instant t, i.e., the set
{qi ∈Q : Φ(qi) =Dk, t ∈ (sik, sik +ci], w

′(sik, Dk,Φ)<Ck},
where overflow queries are not included in the workload.

4. WORKLOAD SHIFTING ALGORITHM
Overview. In this section, we present an online algo-

rithm to solve our problem, taking into account the issues
mentioned in Section 3. For every given query qi, the algo-
rithm decides on the data center Φ(qi) at which qi should be
processed. Steps of the algorithm are as follows. First, the
query workload of each data center is estimated by the local
data center, at time t. Second, estimated data center work-
loads are used to compute a set P of probabilities, where pk
denotes the probability with which qi should be processed
on Dk. Finally, the data center Φ(qi), which will process qi,
is selected based on the discrete probability distribution im-
plied by P. If the estimated query response time exceeds the
response time limit, the query is mapped to the local data
center. Algorithm 1 provides an overview of these steps.

Estimating workloads. We assume that data centers
exchange messages at regular time intervals to let others
know about their current workloads. We approximate the
workload of a non-local data center at a certain time by
using past workload values, sampled over a period of time,
from its recent workload history. In Algorithm 1,W denotes
the set of data center workloads estimated at time t. We as-
sume that workloads and electric prices do not significantly
vary while queries are being forwarded. Hence, the workload
estimated for a data center is a close approximation for the
workload the data center actually has while it processes qi.

Generating probabilities. The basic idea is to forward
queries to data centers that consume cheaper electricity with
higher probability, also taking the capacities and current
workloads of data centers into account. We note that, in
practice, it is difficult to accurately determine the actual
data center workloads when deciding whether to forward a
given query or not. Hence, we resort to a probabilistic ap-
proach that spreads queries across data centers to prevent
workload concentration in a single data center. Given a
query qi and the set W of estimated data center workloads,
a local data center computes (at time t) the forwarding prob-
abilities among all data centers as follows (see Algorithm 2).
Initially, for every data center Dk, the current workload Lk

of Dk is set to its estimated workload Wk. The algorithm

986



Algorithm 2 GenerateProbabilities(W, qi, t)

Require: Set W of estimated data center workloads
Require: A user query qi
Require: Time t at which the mapping decision is made

1: for each Dk ∈ D do
2: Lk ←Wk

3: pk ← 0
4: end for
5: for each Dk ∈ D in increasing order of π(Dk, t) do

6: if Dk = D̂i then
7: pk ← L̂i/ Ŵi

8: return P={pk : Dk ∈ D}
9: end if

10: if Lk < Ck then
11: D′ ← {D` : π(D`, t) > π(Dk, t)}
12: while D′ 6= ∅ do
13: `← arg minp {Lp : Dp ∈ D′}
14: s← min {L`, (Ck − Lk)/|D′|}
15: Lk ← Lk + s
16: L` ← L` − s
17: D′ ← D′ − {D`}
18: if D` = D̂i then
19: pk ← s/Ŵi

20: end if
21: end while
22: end if
23: end for

then iterates on all data centers where the unit energy con-

sumption cost is lower than that of the local data center D̂i

(in increasing order of prices). At each iteration, the algo-
rithm picks a data center Dk and simulates forwarding deci-
sions from remaining data centers to Dk. First, the current
workload Lk of Dk is compared with its capacity Ck to make
sure that there is available capacity for additional queries.
If there is unused capacity, a set D′ of data centers whose
unit energy consumption costs are higher than that of Dk is
constructed. Then, until D′ becomes empty, the data center
D` ∈ D′ with the lowest workload is picked and removed
from D′. At each iteration on D′, the available capacity of
Dk is evenly shared among the data centers remaining in D′.
Hence, the forwarding rate s, from D` to Dk, is computed
as the minimum of the current workload L` of D` and an
even share of the available capacity at Dk. Subsequently,
current workloads of Dk and D` are updated. If the picked

data center is the local data center D̂i, the probability pk of
forwarding to Dk is set to the ratio of the forwarding rate

s to the estimated workload Ŵi. The probability that qi is
locally processed is computed as the ratio of the remaining

workload L̂i of D̂i to the estimated workload Ŵi.
The probability generation algorithm satisfies two invari-

ants. First, the sum of the probabilities in P equals to one
(line 8), i.e., there is at least one data center with non-zero
probability. Second, if data centers conservatively estimate
the workloads of others, then no data center becomes over-
loaded due to forwarded queries. When simulating work-
loads (lines 10–22), every data center conservatively assumes
that the unused capacity of a candidate center will be evenly
shared among centers with higher energy prices (line 14) and
only forwards as many queries as its share allows.
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Figure 5: Electric price configurations used in the
experiments: universal (PC-U), spatial (PC-S), tempo-
ral (PC-T), and spatio-temporal (PC-ST).

5. EXPERIMENTAL SETUP
Search data centers. We simulate a web search engine

with five data centers, denoted as DC-A, DC-B, DC-C, DC-D,
and DC-E. Data centers are assumed to be located in capi-
tal cities of five geographically distant countries, which are
not disclosed due to the risk of revealing financially sensitive
information about query traffic volumes. Network latencies
between data centers as well as those between users and
data centers are estimated by applying the technique de-
scribed in [8]. We assume that the building blocks of data
centers are identical, homogeneous search clusters. In our
simulations, we determine the number of nodes in a search
cluster such that each node serves about three million web
documents. The number of search clusters in a data center
is determined based on the query traffic volume received by
the data center, i.e., each data center is associated with a
separate peak sustainable query throughput value.

Result caching. We assume the presence of a query re-
sult cache with infinite capacity [6] in every data center. The
result cache of a data center maintains results of queries is-
sued by users as well as results of queries forwarded by other
data centers. A time-to-live mechanism is not implemented
as the performance is evaluated on a single day of queries.
We assume that the time cost and energy consumption of
looking up queries in the result cache are both negligible.

Electric price configurations. We generate four differ-
ent price configurations (Fig. 5) based on the daily electric
price distribution given in Fig. 2 and the mean of that dis-
tribution (about $120): universal (PC-U), temporal (PC-T),
spatial (PC-S), and spatio-temporal (PC-ST). PC-U assumes
that the price of electricity is fixed during the day and across
all data center locations. In this configuration, all queries
are locally processed since no cost saving can be achieved by
workload shifting. PC-T assumes that prices vary during the
day but not across data centers. Price distributions of data

987



centers are identical to those in PC-U (but, they are shifted
in time). PC-S assumes that prices do not vary during the
day. However, there is spatial variability based on loca-
tion. We obtain the spatial price variability by shifting the
mean of the original price distribution by the real-life elec-
tric prices in the countries where data centers are located
(using the data in Fig. 1). PC-ST is the most diverse, yet re-
alistic configuration, where price distributions are computed
by assuming both spatial and temporal price variations.

Data. We sample about 38 million queries from five dif-
ferent front-ends of the Yahoo! web search engine during four
consecutive days (query sets S1, S2, S3, and S4). Queries in S4
are used to evaluate our workload shifting algorithm. Those
in S2 and S3 are used for parameter tuning purposes (see
Section 6). Each set Si is used to warm up the result cache
before an experiment using the query set of day i+1. As
the document collection, we obtain 200 million pages sam-
pled from the Web. To prevent a mismatch between queries
and the collection, we use only the documents whose pre-
dicted region matches one of the five data center locations.
A proprietary region classifier is used to filter the pages.

Parameters. Each query is associated with a fixed pre-
processing cost (e.g., query rewriting, spell checking), set to
20 ms. Queries are assumed to be processed over the full
web index. Our algorithm is independent of the underlying
ranking technique and has no impact on the search quality.
The processing cost of a query is assumed to be correlated
with the sum of its terms’ inverted list sizes (i.e., the total
number of postings) [11]. The total time needed to pro-
cess a query is estimated by multiplying this cost with a
per posting processing cost of 200 ns, which is an empirical
value obtained from the Terrier search engine [14]. We try to
keep the overflow query rate under a satisfactory value, set
to 0.005 in our work (this requires the tuning described in
the next section). As the query response time limit, we try
several different values (r∈{100, 200, 400, 800,∞}, in ms).

Baseline. Our baseline is the scenario in which all queries
are processed in their local data centers, i.e., no query work-
load is shifted between data centers. We assume that a query
is forwarded to non-local data center only if some reduction
in the electric cost is forecasted. Ideally, some workload
could have been shifted to reduce the overflow query rate
even though there is no cost saving. We refrain from this
kind of shifting as the primary objective of our work is to
reduce the electric cost, not the overflow query rate.

6. EXPERIMENTAL RESULTS
Tuning data center capacities. In practice, data cen-

ters are given fixed compute resources, based on the query
traffic volumes they receive. If the compute capacity of a
data center is not carefully tuned, it may be underutilized
or the overflow query rate may be too high. Hence, herein,
we first perform such a tuning and assign each data center
compute resources proportional with the peak query traffic
volume it typically receives. When tuning, we assume that
queries are not forwarded. In particular, we assign to a data
center the least amount of compute resources sufficient to
keep the overflow query traffic volume below a threshold.

In our setup, as shown in Fig. 6 (obtained with S2), as
data centers are given more resources, i.e., their peak sus-
tainable throughput (PST) is increased, the overflow query
rate almost linearly decreases. In our simulations, we set the
PST values of a data center to the lowest value at which the

overflow query rate remains below a threshold of 0.005. At
this rate, the PST values we obtain are 31, 39, 34, 47, and
35 queries/sec, for the five data centers (listed in alphabeti-
cal order). In the presence of a result cache, the PST values
we obtain are 13, 14, 14, 16, and 12 queries/sec. Note that
lower PST values are sufficient in the latter case because a
large fraction of queries are served by the cache. We use
these two sets of PST values in the rest of our experiments.

Estimating data center workloads. A critical issue is
to accurately estimate workloads of non-local data centers.
We assume that each data center sends messages (every sec-
ond) to other data centers to inform them about its current
workload. The workload of a data center at a certain time is
estimated by using its most recent workload history over a
period of time, referred to as the window. In particular, we
approximate the workload of a data center by the maximum
observed workload value in its window. Note that taking the
average is less conservative than using the maximum of sam-
ple workload values as it results in relatively lower workload
estimates and thus higher overflow query rates. Hence, our
choice of using the maximum sample value is reasonable.

In practice, the window size should be selected such that
the workload estimates are as accurate as possible. Small
windows may not have enough sample data while large win-
dows may not capture the recent query traffic behavior, re-
sulting in over-estimated workloads and hence low forward-
ing rates. In our work, we set the window size to the min-
imum possible value at which the total overflow query rate
observed on the training query set (S3) remains under the
threshold we set before (i.e., 0.005). As shown in Fig. 7,
when the window size is less than 10 seconds, overflow query
rates are high as too many queries are forwarded to highly
loaded data centers due to inaccurate workload estimates.
In remaining experiments, for all data centers, we set the
window size to 10 seconds for PC-T and to 16 seconds for
PC-S and PC-ST. When caching is considered, we use 6, 7,
and 7 seconds for PC-T, PC-S, and PC-ST, respectively.

Dissection of queries. We classify queries under de-
graded, overflow, non-local, and local classes. Degraded
queries are those whose processing is early terminated due
to the query response time limit. Overflow queries are those
that are dropped as the data center does not have enough
capacity. Non-local and local queries are processed in non-
degraded mode at non-local or local data centers, respec-
tively. This and remaining experiments use the test set S4.

As seen in Fig. 8, the response time limit has a strong
impact on the degraded query rate. Reasonable degraded
query rates are obtained when the response time limit is
larger than 400 ms. We note that the degraded query rate
is independent of forwarding and is the same for all price
configurations. The overflow query rate, on the other hand,
is affected by these factors. However, due to the careful
resource tuning mentioned before, this rate is kept under a
satisfactory value in all possible scenarios (typically, 0.005,
which is the permitted overflow query rate). Since the query
response time limit is relaxed, there is more opportunity to
forward queries between data centers. As mentioned before,
no queries can be forwarded in the PC-U setup.

Impact of result caching. On aggregate, about 63% of
the query traffic volume is served by the result cache. Fig. 9
shows the dissection of queries for the “miss” query traf-
fic volume hitting the backend search systems. In general,
caching reduces the degraded query rate. However, since
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Figure 6: Overflow query rate
versus peak sustainable query
throughput of data centers.
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Figure 7: Overflow query rate as
the window size varies.
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Figure 8: Degraded, forwarded,
and overflow query rates (without
result caching).
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Figure 9: Degraded, forwarded,
and overflow query rates (with re-
sult caching).
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Figure 10: The rate of forwarded
queries as the user query traffic
volume varies (r=800).
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Figure 11: The rate of queries
that are responded beyond a cer-
tain time delay (r=∞).

data center capacities are separately tuned for the caching
scenario, it has no impact on the overflow query rate, which
remains around 0.005. In the rest of our experiments, we
consider only the case in which a result cache is present.

Query forwarding rates. Fig. 10 shows the aggregate
hourly query forwarding rate of data centers for different
price setups and the variation of the hourly user query traf-
fic volume (w.r.t. GMT+0). The reported forwarding rates
are relative to the total user query traffic volume and include
overflow queries, which may also be forwarded to non-local
data centers. Intuitively, having more user queries implies
a higher query forwarding rate. Interestingly, however, we
observe that forwarding rates may drop as the user query
traffic volume increases. This is because data centers have
increased workloads and hence the solution space of our
workload shifting algorithm is restricted. In general, the
forwarding rate is more stable for the PC-T setup as price
variation is lower relative to PC-S and PC-ST. We also ob-
serve that PC-ST highly correlates with PC-S, as forwarding
decisions depend on the ordinal ranking of data centers ac-
cording to their unit energy consumption costs, instead of
the actual costs, and as electric price differences across coun-
tries are more dominant than intra-day price volatility.

Query response times. Fig. 11 shows the fraction of
queries that cannot be answered under a specific amount
of time, assuming there is no bound on the response time
limit. According to the figure, almost all queries can be
processed under 800 ms. In general, the PC-T, PC-S, and
PC-ST scenarios result in higher query response times (on
average, 109 ms, 103 ms, and 105 ms, respectively), relative
to the average response time of the PC-U scenario (66 ms),
where all queries are processed in their local data centers.
Nevertheless, around only 5% of the query volume cannot
be processed under 400 ms, which is a satisfactory result for
the web search engine standards. This implies that, despite
the large network latencies between data centers, forwarding
of queries and hence reduction in electric costs is possible.

Saving in the electric cost. Fig. 12 shows our most
striking result. Depending on the price setup, significant
savings are achieved in electric costs relative to the respec-
tive baselines in which no workload is shifted. The largest
saving (about 35% when r=∞) is possible with the PC-ST

scenario, which has the largest variation in electric prices.
Temporal effects. In general, the saving in the electric

cost due to workload shifting is affected by the forwarding
rate, which depends on the query traffic volume and electric
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Figure 12: Saving in electric costs
for different price configurations.
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Figure 14: Spatial distribution of
the cost saving (PC-S).

prices. Fig. 13 shows the distribution of the saving for the
PC-T price setup, as the query forwarding rates and electric
prices vary (for r=800 and w.r.t the local time of the data
center where the query is processed). As seen in the figure,
there is a high correlation between the query forwarding rate
and the saving. This implies a negative correlation between
the electric price and cost saving, i.e., fewer queries are for-
warded when electric prices are high. It is interesting to note
that, at 17:00 PM, the query forwarding rate falls to zero.
At this hour of the day, the price of electricity consumed
by data centers reaches the global maximum and no queries
can be forwarded to a data center operating at this hour.

Spatial effects. Fig. 14 shows the distribution of the sav-
ing for the PC-S setup, as the query forwarding rate varies
(the x axis shows the network latencies between data center
pairs, for all possible pairs). Although not very strong, we
observe some positive correlation between query forwarding
rates and network latencies between data centers. This is
somewhat surprising as one may expect more queries to be
forwarded when the latency between two data centers is low.
In practice, however, data centers with low latencies tend
to be located in nearby time zones. This implies that their
hourly query traffic volumes follow a similar pattern, render-
ing forwarding of queries more difficult. The price of elec-
tricity consumed by data centers forms another factor. As
an example, consider data centers DC-D and DC-A, which con-
sume the most expensive electricity (see Fig. 5). Although
they are geographically very close (the network latency is 81
ms, in Fig. 14), these two data centers almost never forward
queries to each other, as they prefer forwarding their queries
to other data centers. We note that, in the PC-S setup, the
entire forwarded query traffic volume between two data cen-
ters is generated by the data center that consumes cheaper
energy, whereas forwarding of queries can be bidirectional
in the PC-T and PC-ST setups. In general, most of the sav-
ing is obtained from data centers located in far-away time
zones with a large difference in electric prices. Finally, we
note that, although the network latency is not dominantly
decisive in query forwarding rates, it becomes more decisive
as the response time limit is reduced. In Fig. 14, we observe
that, when r= 800, a significant fraction of the cost saving
is achieved due to forwarding of queries between far apart
data centers. When r=400, however, some distant pairs of
data centers are unable to exchange their workloads.

7. DISCUSSION
Impact of server utilization. The energy consump-

tion of modern servers depends on their utilization level [4].
Shifting query workloads between data centers may have an
impact on the utilization of compute servers in data centers
and, in turn, affect their energy consumption. In our setup,
the utilization distribution we observe when no queries are
forwarded (see Fig. 15) is comparable to that reported for
Google servers [5, p. 55]. However, when the workload is
shifted, we obtain a quite different distribution (shown in
the figure for the PC-ST scenario). We observe that data
centers now have significantly more idle cycles and, in the
mean time, their utilization is shifted towards higher levels.

We analyze the impact of this shift in utilization levels
on the cost saving, analytically, via representative functions
that map a utilization level u to a value c, indicating the
energy consumption at level u relative to the consumption
at peak utilization. Following [5], we evaluate functions of
the form c(u, p) = (1+up)/2, where p is a free parameter
(p∈{0.25, 0.5, 1, 2, 4}). Here, increasing values of p increase
the energy-efficiency of compute resources running at low
utilization levels. For convenience, the evaluated functions
are plotted in Fig. 16.7 The linear function c(u, 1) is typical
for today’s servers while the rest are hypothetical.

In Fig. 17, we report the respective cost savings for the
above-mentioned functions. For r = 800, we observe that
workload shifting highly benefits from increasing energy ef-
ficiency of servers. We note that the increase in idle cycles
lets workload shifting benefit from power saving techniques
(e.g., shutting down servers or putting them in sleep mode).

Unified cost model. Shifting workloads is not only use-
ful for reducing the energy cost, but also for increasing data
centers’ availability, performance, and service quality. Ide-
ally, all these factors should be combined under a unified
cost model. In the particular case of search engines, finan-
cial implications of search result quality and search efficiency
should be quantified and incorporated into this cost model.

Electric prices. We assumed that the amount of work-
load shifted is not significant enough to alter electric prices.
However, given that important financial savings are possible,

7Ideally, servers would consume no energy in the absence of
load. Modern servers, however, draw an idle power that is
about 50% of the peak consumption [4].
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Figure 15: Fraction of time data
centers run at a certain utilization
level (PC-ST, r=800).
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Figure 17: Saving in the electric
cost for functions with varying p
values (PC-ST).

many large-scale Internet services can be expected to start
using similar workload shifting techniques. This may lead
to an increase in prices at energy-cheap locations and vice
versa, eventually converging prices to an equilibrium, which
may render the technique less profitable. We also assumed a
fixed electric cost model and a passive market participation
strategy. A different approach is direct renegotiation of the
electric price, rather than reacting to price-spotting. The
reaction time to price changes has an influence on the final
savings [15]. A few works [15, 17, 18] try to spot the electric
price at a certain time in different electricity markets.

Environmental impact. The electric price model used
by our work is rather general, allowing for different cost
functions. As pointed out in [15] and [12], we may aim
at reducing the environmental impact of data centers. In
practice, this implies modeling the impact as a cost function
(e.g., the carbon footprint of the energy the data center con-
sumes) so that the system could decide to shift its workload
to places that use renewable energy. The cost function may
be time-dependent, i.e., seasonal, weekly, or even hourly.

Energy consumption. Data centers need adequate en-
ergy elasticity to achieve high cost savings when shifting
their workload to data centers with cheaper energy. Some
ongoing proposals to build more energy-elastic compute clus-
ters include energy-proportional servers [4] and dynamic
server provisioning techniques [13]. Another factor that
might influence energy consumption is weather differentials.
Cooling systems account for a significant fraction of the to-
tal energy consumption of data centers [5]. The energy con-
sumption of chillers can be drastically reduced when the
ambient temperature is low. This implies that the workload
can be shifted to cooler regions that might reduce not only
the energy price but also the consumption, as it is easier to
cool down the heat dissipated from data centers.

8. RELATED WORK
Multi-center web search. A few works investigate the

performance of multi-center web search engines [1, 7, 8].
Cambazoglu et al. [7] try to quantify performance benefits
of such search engines. Baeza-Yates et al. [1] describe a
multi-site search engine architecture, where the index is par-
titioned among data centers, also allowing partial replication
of documents. Their work provides an algorithm for for-

warding queries between data centers to maintain the qual-
ity of search results, relative to that of a centralized system.
Cambazoglu et al. [8] propose an improved query forward-
ing algorithm, using linear programming. Both works have
indirect consequences on reducing the energy cost, as they
reduce the number of data centers involved in query pro-
cessing. However, they do not directly tackle the financial
aspect of the problem as they do not consider energy prices.

Workload shifting. Wang et al. [20] explore strategies
to balance the load and locality in distributed systems, find-
ing that, although algorithms that shift the workload across
data centers are imperfect, using a content distribution net-
work may provide capacity increases ranging from 60% to
90%. Along the same line, Ranjan et al. [16] show that redi-
recting requests to geographically distant but lightly loaded
centers can reduce the response time to about a half.

Minimizing the energy cost. Wang et al. [21] try to
optimize the workload, power, and cooling management of
a single data center. Shah and Krishnan [19] perform an
in-depth analysis of environmental and economic costs of a
large-scale technology warehouse and the potential energy
saving achievable when the workload is distributed across
data centers. They optimize thermal workloads based on
local weather, showing that the environmental burden can
be reduced by up to 30%. Due to space limitations, for more
related work on the topic, we refer the reader to [5]. Herein,
we discuss two works that are more related to ours [12, 15].

Qureshi et al. [15] characterize the variation in electric
prices and argue that data centers could exploit this for
economic gains. They quantify possible gains via simula-
tions using workloads obtained from a content provider. Our
work differs from [15] in three ways. First, we provide a for-
mal optimization framework specific to web search engines
(more suitable to throughput-intensive tasks), whereas [15]
provides an informal study for general-purpose Internet ser-
vices (more suitable to compute-intensive tasks). Second,
the algorithm in [15] is deterministic and greedy, i.e., it does
not consider the issues that motivate our probabilistic ap-
proach. Third, their problem employs a bandwidth con-
straint, whereas ours have a query response time constraint.

Le et al. [12] propose an optimization framework for
green-aware Internet services. They try to cap the brown-
energy consumption via a linear-programming-based algo-
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rithm, trying to incur the least increase in costs while satisfy-
ing some service-level agreements. Our work differs from [12]
in three ways. First, our optimization problem is to directly
reduce the electric bill, rather than reducing financial losses
since some energy caps are respected. Second, we consider
the problem in a search engine setting, taking into account
degraded and overflow query rates, and propose a proba-
bilistic solution. Third, we use a detailed setup with realistic
price data, real-life query workloads, real search front-ends,
result caching, a large web index, and network latencies.

9. CONCLUSION
We have provided an optimization framework and a prac-

tical algorithm, based on shifting query workloads between
search data centers, in order to reduce the electric bills of
multi-center web search engines. We evaluated potential
savings via realistic simulations. The results demonstrate
that, depending on electric price distribution, electric costs
of search engines can be significantly reduced by shifting
their query workloads to energy-cheap data centers.

We note that, when computing the savings in electric cost,
we were quite conservative in some of our assumptions. We
assumed very tight capacities for data centers [10], estimated
based on past query traffic volumes. In practice, data cen-
ters allow for a certain amount of slackness in their capacities
(typically, about 20%), which may allow more queries to be
forwarded. Moreover, we assumed that user queries are for-
warded between data centers. In practice, however, search
engines make use of geographically scattered request sched-
ulers [9], which may directly identify the best data centers
to contact. This may result in lower query response laten-
cies, which implies more forwarded queries. These practical
aspects should be considered as a part of future work.

Finally, we emphasize that our work has implications for
many other tasks in multi-center web search engines. Pri-
marily, electric cost optimization frameworks similar to ours
should be developed for multi-site web crawling and dis-
tributed indexing tasks. In particular, it may be interesting
to devise an energy-price-aware result caching framework,
where invalidation predictions are made for stale cache en-
tries based on a combination of parameters (e.g., energy cost,
backend workload, age and degradedness of search results)
so that the financial cost of cache misses is reduced.
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