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ABSTRACT
A Web search engine must update its index periodically
to incorporate changes to the Web. We argue in this pa-
per that index updates fundamentally impact the design of
search engine result caches, a performance-critical compo-
nent of modern search engines. Index updates lead to the
problem of cache invalidation: invalidating cached entries
of queries whose results have changed. Näıve approaches,
such as flushing the entire cache upon every index update,
lead to poor performance and in fact, render caching futile
when the frequency of updates is high. Solving the invalida-
tion problem efficiently corresponds to predicting accurately
which queries will produce different results if re-evaluated,
given the actual changes to the index.

To obtain this property, we propose a framework for de-
veloping invalidation predictors and define metrics to eval-
uate invalidation schemes. We describe concrete predictors
using this framework and compare them against a baseline
that uses a cache invalidation scheme based on time-to-live
(TTL). Evaluation over Wikipedia documents using a query
log from the Yahoo! search engine shows that selective in-
validation of cached search results can lower the number of
unnecessary query evaluations by as much as 30% compared
to a baseline scheme, while returning results of similar fresh-
ness. In general, our predictors enable fewer unnecessary in-
validations and fewer stale results compared to a TTL-only
scheme for similar freshness of results.
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Search and Retrieval
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1. INTRODUCTION
Search engines are often described in the literature as

building indices in batch mode. This means that the phases
of crawling, indexing and serving queries occur in genera-
tions, with generation n+1 being prepared in a staging area
while generation n is live. When generation n + 1 is ready,
it replaces generation n. The length of each crawl cycle is
measured in weeks, implying that the index may represent
data that is several weeks stale [8, 9].

In reality, modern search engines try to keep at least some
portions of their index relatively up to date, with latency
measured in hours. News search engines, e-commerce sites
and enterprise search systems all strive to surface docu-
ments in search results within minutes of acquiring those
documents (by crawling or ingesting feeds). This is realized
by modifying the live index (mostly by append operations)
rather than replacing it with the next generation. Such en-
gines are said to have incremental indices.

Caching of search results has long been recognized as an
important optimization step in search engines. Its setting is
as follows. The engine dedicates some fixed-size fast mem-
ory cache that can store up to k search result pages. For
each query in the stream of user-submitted search queries,
the engine first looks it up in the cache, and if results for
that query are stored in the cache - a cache hit - it quickly
returns the cached results to the user. Upon a cache miss
- when the query’s results are not cached - the engine eval-
uates the query and computes its results. The results are
returned to the user, and are also forwarded to the cache.
When the cache is not full, it caches the newly computed re-
sults. Otherwise, the cache’s replacement policy may decide
to evict some currently cached set of results to make room
for the newly computed set.

An underlying assumption of caching applications is that
the same request, when repeated, will result in the same
response that was previously computed. Hence returning
the cached entry does not degrade the application. This
does not hold in incremental indexing situations, where the
searchable corpus is constantly being updated and thus the
results of any query can potentially change at any time. In
such cases, the engine must decide whether to re-evaluate re-
peated queries, thereby reducing the effectiveness of caching
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their results, or to save computational resources at the risk
of returning stale (outdated) cached entries. Existing search
applications apply simple solutions to this dilemma, rang-
ing from performing no caching of search results at all to
applying time-to-live (TTL) policies on cached entries so as
to ensure worst-case bounds on staleness of results.

Contributions. This paper studies the problem of search
results caching over incremental indices. Our goal is to se-
lectively invalidate the cached results only of those queries
whose results are actually affected by the updates to the un-
derlying index. Cached results of queries that are unaffected
by the index changes will continue to be served. We formu-
late this as a prediction problem, in which a component that
is aware of both the new content being indexed and the con-
tents of the cache, invalidates cached entries it estimates
that have become stale. We define metrics by which to mea-
sure the performance of these predictions, propose a realiz-
ing architecture for incorporating such predictors into search
engines, and measure the performance of several prediction
policies. Our results indicate that selective invalidation of
cached search results can lower the number of queries invali-
dated unnecessarily by roughly 30% compared to a baseline
scheme, while returning results of equal freshness.

Roadmap. The remainder of this paper is organized as
follows. Section 2 surveys related work on search results
caching and incremental indexing. Section 3 defines the ref-
erence architecture on which this work is based. Section 4
presents schemes for selectively invalidating cached search
results as the search index ingests new content. We also
discuss in this section the metrics we use to evaluate cache
invalidation schemes. Section 5 describes the experimental
setup and reports our results. We conclude in Section 6.

2. RELATED WORK
Caching of search results was noted as an optimization

technique of search engines in the late 1990s by Brin and
Page [5]. The first to publish an in-depth study of search re-
sults caching was Markatos, in 2001 [17]. He applied classical
cache replacement policies (e.g. LRU and variants) on a log
of queries submitted to the Excite search engine, and com-
pared the resulting hit-ratios, which peaked around 30%.
PDC (Probability Driven Caching) [14] and SDC (Static
Dynamic Caching) [10] are caching algorithms specifically
tailored to the locality of reference present in search engine
query streams, both proposed originally in 2003. PDC di-
vides the cache between an SLRU segment that caches top-n
queries, and a priority queue that caches deeper result pages
(e.g., results 11-20 of queries). The priority queue estimates
the probability of each deep result page to be queried in the
near future, and evicts the page least likely to be queried.
SDC also divides its cache into two areas, where the first is
a read-only (static) cache of results for “head” (perpetually
popular) queries, while the second area dynamically caches
results for other queries using any replacement policy (e.g.
LRU or PDC).

The AC scheme was proposed by Baeza-Yates et al. in
2007 [3]. It applies a predictor that estimates the “repeata-
bility” of each query. Several predictors and the features
they rely on were evaluated, showing that this technique is
able to outperform SDC.

Gan and Suel [12] study a weighted version of search re-
sults caching that optimizes the work involved in evaluating

the cache misses rather than the hit ratios. They argue that
different queries incur different computational costs.

Lempel and Moran studied the problem of caching search
engine results in the theoretical framework of competitive
analysis [15]. For a certain stochastic model of search en-
gine query streams, they showed an online caching algorithm
whose expected number of cache misses is no worse than four
times that of any online algorithm.

Search results are not the only data cached in search en-
gines. Saraiva et al. [19] proposed a two-level caching scheme
that combines caching of search results with the caching of
frequently accessed postings lists. Long and Suel extend
this idea to also caching intersections of postings lists of
pairs of terms that are often co-used in queries[16]. Baeza-
Yates et al. investigate trade-offs between result and post-
ing list caches, and propose a new algorithm for statically
caching posting lists that outperform previous ones [2]. It
should be noted, however, that in the massively distributed
systems that comprise Web search engines, caching of post-
ings lists and caching of search results may not necessarily
compete on the RAM resources of the same machine. The
work of Skobeltsyn et al. describes the ResIn architecture,
which lines up a cache of results and a pruned index [20].
They show that the cache of results shapes the query traffic
in ways that impact the performance of previous techniques
for index pruning, so assessing such mechanisms in isolation
may lead to poor performance for search engines.

The above works do not address what happens to the
cached results when the underlying index, over which queries
are evaluated, is updated. To this effect, one should distin-
guish between incremental indexing techniques, that incor-
porate updates into the “live” index as it is serving queries,
and non-incremental settings. Starting with the latter case,
we note that large scale systems may choose to not incre-
mentally update their indices due to the large cost of update
operations and the interference of incremental updates with
the capability to keep serving queries at high rates [18, 7].
Rather, they manage content updates at a higher level.

Shadowing is a common index replacement scheme [1, 8]:
while one immutable index is serving queries, a second index
is built in the background from newly crawled content. Once
the new index is ready, the engine shifts its service from the
older index to the newly built one. In this approach, indexed
content is fully updated upon a new index generation, and
the results cache is often flushed at that time.

Another approach, that performs updates at a finer level
of granularity than shadowing, uses stop-press or delta in-
dices [7, 11, 21]. Here, the engine maintains a large main in-
dex, which is rebuilt at relatively large intervals, along with
a smaller delta index which is rebuilt at a higher rate and
reflects the new content that arrived since the main index
was built. When building the next main index, the exist-
ing main index and the latest corresponding delta index are
merged. Query evaluation in this approach is a federated
task, requiring the merging of the results returned by both
indices. The main index can keep its own cache, as its results
remain stable over long periods of time.

We note that the vast literature on incremental indexing
is beyond the scope of this paper. However, we are not
aware of any work that addressed the maintenance of the
search results cache in such settings. In incremental settings,
systems typically either invalidate results whose age exceeds
some threshold, or forego caching altogether.
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3. SYSTEM MODEL
At a high level, Web search engines have three major com-

ponents: a crawler, an indexer, and a runtime component
that is dominated by the query processor (Figure 1). The
crawler continuously updates the engine’s document collec-
tion by fetching new or modified documents from the Web,
and deleting documents that are no longer available. The
indexer periodically processes the document collection and
generates a new inverted file and auxiliary data structures.
Finally, query processors evaluate user queries using the in-
verted file produced by the indexer [1, 5].

The runtime component of a Web search engine typically
also includes a cache of search results, located between the
engine’s front-end and its query processor, as depicted in
Figure 1. The cache provides two desirable benefits: (1)
it reduces the average latency perceived by a user, and (2)
it reduces the load on back-end query processors. Such a
cache may run in the same machines as query processors or
in separate machines. To simplify our discussion, we assume
that caches of results reside in separate machines, and that
most resources of those machines are available to the cache.

Crawler

Documents
from the Web

Document
Collection

- Add new documents
- Remove old documents

Indexer

Inverted
File

Query
Processor

Cache

User queries

Cache sends
query to 
processor in 
case of a miss 

Query 
processor
returns 
results

Periodically extracts
documents from 
collection to generate
a new inverted file

New
inverted
file

Use new 
inverted
file

Runtime system

Figure 1: Overview of system model.

However, as the index evolves, the cached results of certain
queries no longer reflect the latest content and become stale.
By stale queries, we precisely mean queries for which the
top-k results change because of an index update. In order
to keep serving fresh search results, the engine must inval-
idate those cached entries. One trivial invalidation mecha-
nism is to have the indexers indicate whenever the inverted
index changes, thereby prompting the cache to invalidate
all queries. When the index is updated often, the frequent
flushing of the cache severely impacts its hit rate, perhaps
to the point of rendering caching worthless.

To efficiently invalidate cache entries, we assume that the
indexer is able to propagate information to the runtime com-
ponent upon changes to the index. More concretely, we as-
sume that even though the crawler continuously updates the
document corpus, the indexer only generates a new version
every ∆t time. Upon a new version, we assume that a set
of documents D have each been either inserted to or deleted
from the index. Note that this simple model subsumes in-
cremental (real-time) indexing, in the sense that the indexer
can index every new or removed document by setting ∆t to
a very small value and having D be a singleton set.

We embody the above idea by introducing a new compo-
nent to the search engine architecture – the Cache Invalida-
tion Predictor (CIP).

4. CACHE INVALIDATION PREDICTORS
Cache invalidation predictors bridge the indexing and run-

time processes of a search engine, which typically do not in-
teract in search engines operating in batch mode, or limit
their interaction to synchronization and locking.

Runtime system

Index pipeline

Cache Query
Processor

IndexParser/
Tokenizer

Synopsis
Generator

Invalidator

Crawled
Documents

User
Queries

Figure 2: CIP Architecture.

When introducing cache invalidation prediction into a sys-
tem, the very front end of the runtime system – the cache –
needs to become aware of documents coming into the index-
ing pipeline. We thus envision building a CIP in two major
pieces, as depicted in Figure 2:

The synopsis generator: resides in the ingestion pipeline,
e.g., right after the tokenizer, and is responsible for prepar-
ing synopses of the new documents coming in. The synopses
may be as robust as the full token stream and other ranking
features of each and every incoming document, or as lean as
nothing at all (in which case the generator is trivial).

The invalidator: implements an invalidation policy. It
receives synopses of documents prepared by the synopsis
generator, and through interaction with the runtime sys-
tem, decides which cached entries to invalidate. The inter-
action may be complex, such as evaluating each synopsis-
query pair, or simplistic (ignoring the synopses altogether).

Section 4.1 describes various pairings of synopsis gener-
ators and invalidators, which together constitute a CIP. In
each case we note the computational complexities of both
components, as well as the communication between them.

4.1 CIP Policies
Our architecture allows composing different synopsis gen-

erators with different invalidators, yielding a large variety
of behaviors. Below we show how the traditional age-based
time-to-live policy (TTL) fits within the framework, and
proceed to describe several policies of synopsis generators
and invalidators, which we later compose in our experiments.

4.1.1 TTL: Age-based invalidation
Age-based policies consider each cached entry to be valid

for a certain amount of time τ after evaluation. Each entry
is expired, or invalidated, once its age reaches τ . At the
two extremes, τ = 1 implies no caching as results must be
recomputed for each and every query. With τ = ∞ no
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invalidation ever happens, and results are considered fresh as
long as they are in the cache. As the value of τ increases from
1 to ∞, the number of unnecessary invalidations decreases,
whereas the number of missed invalidations increases.

TTL-based policies ignore incoming content. In terms of
our architecture, the synopsis generator is null in TTL poli-
cies, and no communication is required. The invalidator can
be realized with a complexity of O(1) per query.

4.1.2 Synopsis Generation and Invalidation Policies
To improve over TTL, we exploit the fact that the cached

results for a given query are its top-k scoring documents. By
approximating the score of an incoming document to a query
we can try to predict whether it affects its top-k results.

Synopsis generation.
The synopsis generator attempts to send compact repre-

sentations of a document’s score attributes, albeit to un-
known queries. Its main output is a vector of the docu-
ment’s top-scoring TF-IDF terms [4] – these are the terms
for which the document might score highly for. To control
the length of the synopsis, the generator sends a fraction η
of each document’s top terms in the vector. η can range
from zero (empty synopsis) to 1 (all terms, full synopsis).
Intuitively, selective (short) synopses will lower the commu-
nication complexity of the CIP but will increase its error
rate, as less information is available to the invalidator.

Another observation, applicable to document revisions, is
that insignificant revisions typically do not affect the rank-
ings achieved by the document. Consequently, cached en-
tries should not be invalidated on account of minor revisions
of documents. Hence, we estimate the difference between
each document revision and its previously encountered ver-
sion, and only produce a synopsis if the difference is above
a modification threshold δ. Concretely, we use the weighted
Jaccard similarity [13] as a similarity measure, where the
weight of term t in document D is the number of occur-
rences of t in D. This measure can be efficiently and ac-
curately estimated by using shingles [6]. Increasing δ will
result in fewer synopses being produced, thereby lowering
the communication complexity of the CIP, at the cost of
failing to invalidate cached entries that have become stale.

Invalidation policies.
Once a synopsis is generated, the CIP invalidators make

a simplifying assumption that a document (and hence, a
synopsis) only affects the results of queries that it matches.
While this is true for most synopses and queries, it does not
always hold. For example, a document that does not match
a query may still change term statistics that affect the scores
of documents that do. With this assumption, an invalidator
first identifies all queries (and only those) matched by the
synopsis. A synopsis matches query q if it contains all of
q’s terms in conjunctive query models, or any term in dis-
junctive models. Then, the invalidator may invalidate all
queries matched by a synopsis (note that match computa-
tion can be efficiently implemented with an inverted index
over the cached query set). Alternatively, it can apply score
thresholding – namely, using the same ranking function as
the underlying search engine, it computes the score of the
synopsis with respect to cached query q, and only invali-
dates q if the computed score exceeds that of q’s last cached
result. This score projection procedure, which tries to de-

η fraction of top-terms included in synopsis
δ revision modification threshold for producing a synopsis
1s boolean indicating whether score thresholding is applied
τ time-to-live of a cached entry

Table 1: Summary of parameters.

termine whether a new document is in the top-k results of
a cached query, is feasible for many ranking functions, e.g.
TF-IDF, probabilistic ranking, etc. However, it is inherently
imperfect for an incremental index where cached scores can-
not be compared with newly computed ones as the index’s
term statistics drift. We denote by the indicator variable 1s

whether score thresholding is applied.
Similarly to TTL, CIP applies age-based invalidation –

they invalidate all queries whose age exceeds a certain time-
to-live threshold, denoted by τ . This bounds the maximum
staleness of the cached results.

Finally, all CIPs invalidate any cached results that include
documents that have been deleted. Clearly, all invalidation
due to deleted documents are correct.

Table 1 summarizes the parameters of our CIP policies.

4.2 Metrics of Cache Invalidation Predictors
Upon processing a new document set D, a Cache Invalida-

tion Predictor (CIP) makes a decision whether to invalidate
or not each cached query. We say CIP is positive (p) about
query q when CIP estimates that the ingestion of D by the
corpus will change q’s results, and so q’s entry should be
invalidated as it is now stale. CIP is negative (n) about q
when it estimates that q’s cached results do not change with
the ingestion of document set D.

For each query, we can compare CIP’s decision with an
oracle that knows exactly if the ingestion of D by the corpus
will change q’s results or not - as if it had re-run every cached
query upon indexing D. This leads to four possible cases
(depending on whether CIP or the oracle decide positive or
negative for the query). Let us call them {pp, pn, np, nn},
where the first letter indicates the decision of the CIP and
the second the oracle’s.

There are two types of errors CIP might make. In a false
positive (pn), CIP wrongly invalidates q’s results, leading to
an unnecessary evaluation of q if it is submitted again. In a
false negative (np), CIP wrongly keeps q’s results, causing
the cache to return stale results whenever q is subsequently
submitted until its eventual invalidation. If we have a set of
cached queriesQ of size Q, we can compute the total number
of queries falling in each one of these categories. Let us call
these totals PN and NP respectively.

These two types of errors have very different consequences.
The cost of a false positive is essentially computational,
whereas false negatives hurt quality of results. Conservative
policies, aiming to reduce the probability of users receiving
stale results, will focus on lowering false negatives. More ag-
gressive policies will focus on system performance and will
tolerate some staleness by lowering false positives. This im-
plies that CIPs should be evaluated along both dimensions
- each application will determine the most suitable compro-
mise between false positive and false negatives. We note
that modern search engines are conservative, and are will-
ing to devote computational resources to keep their results
as fresh as possible (“keeping up with the Web”).
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False Positive Ratio (FP) PN/Q
False Negative Ratio (FN) NP/Q
Stale Traffic Ratio (ST)

P
q∈S fq/F

Table 2: CIP performance metrics

We use the ratio of false positives and false negatives, de-
noted FP and FN respectively, as our performance metrics
(see Table 2 for definitions). High FP implies many wasteful
computation cycles due to unnecessary invalidations. High
FN implies many stale results in the cache, leading to po-
tentially many of them being returned to the users.

The metrics above were defined with respect to the con-
tents of the cache given a single document set D. In an
incremental setting, a CIP would receive a sequence of doc-
ument sets, D1, D2, . . .. It is important to note that a false
positive made by CIP when processing Dt can propagate er-
rors (from the users’ standpoint) into the future. Consider a
query q, upon which CIP incurs a false negative (np) when
processing Dt, thereby leaving q’s stale results in the cache.
Assume that when processing Dt+1, CIP correctly labels q
as negative (nn) and does not invalidate its results, as the
documents in Dt+1 indeed do not affect q’s results. While
the predictor made a correct point-in-time decision at time
t+ 1, q’s cached results remain stale, and any user submit-
ting q until such time when CIP invalidates q will receive
stale results. Let S be the set of cached queries whose re-
sults are stale. Note that after processing any document set,
|S| ≥ NP since stale queries may have persisted in the cache
from false negatives made on earlier document sets.

False positives and false negatives are asymmetrical also
in another aspect: a false positive on query q will incur a
single (redundant) re-evaluation of q, so the cost for the
engine is irrespective of the query stream. In contrast, the
cost of a false negative on q (and any stale query q ∈ S in
general) depends on the frequency of q in the query stream,
as the cache returns stale results for each request of q. We
therefore define a Stale Traffic ratio metric ST (see Table 2),
in which the cost of each stale query q ∈ S is weighted by
its frequency, denoted fq. The quantity F in the formula of
ST is the sum of all query frequencies F =

P
q∈Q fq.

Note that the metrics above are defined irrespective of the
cache replacement policy that may be used. In particular, a
CIP false negative on q is harmless if the cache replacement
policy evicts q before the next request of q. The interaction
between cache invalidation due to the dynamics of the un-
derlying corpus and cache replacement due to the dynamics
of the query stream is subject of future work.

5. EXPERIMENTS
This section presents our evaluation framework. We use a

large Web corpus and a real query log from the Yahoo! search
engine to evaluate our CIP policies. Note that our setup
makes several simplifying assumptions to make tractable the
problem of simulating a crawler, an indexer, a cache, and a
realistic query load interacting in a dynamic fashion.

5.1 Experimental Setup
As a Web-representative dynamic corpus, we use the his-

tory log of the (English) Wikipedia1, the largest time-varying

1
http://www.wikipedia.org/

dataset publicly available on the Web. This log contains all
revisions of 3, 466, 475 unique pages between Jan 1, 2006 and
Jan 1, 2008. It was constructed from two sources: the lat-
est public dump from the Internet Archive2, with the infor-
mation about page creations and updates, and the deletion
statistics available from Wikimedia3.

The initial snapshot on Jan 1, 2006 contained 904, 056 in-
dividual pages. We processed Wikipedia revisions in single-
day batches called epochs, each containing the revisions that
correspond to one day of Wikipedia history. The average
number of revisions per day is 41, 851 (i.e., about 4% of
the initial corpus), consisting mostly of page modifications
(95.22%) and new page creations (4.16%). The (uncom-
pressed) size of the corpus, with all revisions, is 2.8 TB.

We focus on conjunctive queries (the de facto standard
for Web search) – i.e., documents match a query only when
containing all query terms. Our experiments use the open-
source Lucene search library as the underlying index and
runtime engine4. Lucene uses TF-IDF for scoring.

We assess the performance of predictors on a fixed rep-
resentative set of queries Q, which represents a fixed set
of cached queries. The synopsis generator consumes each
epoch in turns, sends synopses of its documents to the in-
validator, and the invalidator makes a decision on each query
q ∈ Q. We compute the “ground truth” oracle by indexing
the epoch in Lucene and running all queries, retrieving the
top-10 documents per query. The ground truth oracle is con-
servative and declares a query as invalid upon any change to
the ranking of its top-10 results. We record the performance
of each CIP relative to the ground truth, and track its set
of stale queries. The performance numbers reported in the
next section are all averaged, per CIP policy, over a history
of 120 consecutive epochs (days) of Wikipedia revisions.

To generate the set of cached queries Q, we performed a
uniform sample, with repetitions, of 10, 000 queries from the
Yahoo! Web search log, sampled from a query log recorded
on May 4 and May 5, 2008, which resulted in a user clicking
on a page from the en.wikipedia.org domain. Q consists
of the 9,234 unique queries in the sample. The multiset of
queries was used to derive the frequency fq of each q ∈ Q,
for computing the stale traffic ratio (ST ).

Our choice of working with a fixed query set stems from
our desire to isolate the performance of the CIP policies from
the effects of a dynamic cache and its parameters (e.g., cache
size and replacement policies). The dynamic study, which is
plausible and interesting, is left for future research.

5.2 Numerical Results
We start by analyzing the results obtained for three stan-

dard policies: no caching, no invalidation (static cache), and
TTL caching (invalidating all queries after a fixed period of
time). Table 3 reports their performance. Not invalidating
entries causes the cache to return stale results. Not caching
guarantees that no results are stale, but it also forces the
engine to process queries unnecessarily as previous work on
caching has shown. Using a TTL value improves the overall
situation, since it reduces the amount of stale traffic com-
pared to not invalidating entries, but it still generates a sig-
nificant number of false positives and negatives. Finally, a
basic CIP policy with the following parameters is able to re-

2
http://www.archive.org/details/enwiki-20080103

3
http://stats.wikimedia.org

4
http://lucene.apache.org/
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Policy FP FN ST
No Invalidation 0.000 0.108 0.768
No Cache 0.892 0.000 0.000
TTL τ = 2 0.446 0.054 0.055
TTL τ = 5 0.179 0.086 0.175
Basic CIP 0.679 0.001 0.008

Table 3: Baseline CIP comparison.

duce the amount of stale traffic significantly, with very few
false negatives - similarly to the “no cache” case - at the cost
of many false positives:

Basic CIP: τ =∞, δ = 0, η = 1, and 1s = false

In words, our Basic CIP does not expire queries (τ =∞),
does not exclude documents based on similarity (δ = 0),
does not exclude terms (η = 1), and does not use score
thresholding. The synopsis generator of the Basic CIP es-
sentially sends each document in its entirety to the predic-
tor, which then invalidates each query whose terms appear
in conjunction in any synopsis.

Ruling out a cache is ideal with respect to freshness of
results, but it is undesirable from a performance perspec-
tive. The Basic CIP is able to achieve a similar degree of
freshness, while benefiting from cache hits. We next assess
how changing the CIP parameters affects both freshness and
performance.

Dynamics of stale traffic: Over time, errors due to false
negatives accumulate, and imply an increasingly high stale
traffic ratio (ST). The impact is most severe for frequent
queries. A false negative can be fixed by either (1) a CIP
positive, either true or false; or (2) an age threshold expira-
tion. CIP positives depend on the arrival rate of matching
documents: if a match never happens after a false nega-
tive, then the latter will persist forever. Consequently, it is
critical to augment the CIP with a finite age threshold τ ,
not only to bound the maximum result set age, but also to
guarantee that ST converges.

Figure 3 shows how stale traffic evolves over time with
three CIP instances. The CIP instances in the figure use
a synopsis of the top 20% terms (η = 0.2), employ score
thresholding (1s = true), and have different τ values. For
τ =∞, ST grows, albeit in a declining pace, and eventually
exceeds 30% without stabilizing. For τ = 5 and τ = 10,
ST stabilizes within a few epochs after the first expiration.
Infinite τ is practical only when the predictor’s FN ratio is
negligible, e.g., with the Basic CIP.

Varying η and τ : Figure 4 depicts the behavior of CIP for
different values of synopsis size η and time-to-live τ , also em-
ploying score thresholding (1s = true). In this experiment,
we create synopses for all document revisions (δ = 0). In
addition to plotting the TTL baseline, we show 5 CIP plots,
each having a fixed value of τ . The rightmost CIP plot
(circle marks) does not apply score thresholding (1s=false)
while the other 4 plots do. The six points in each CIP plot
correspond to increments of 0.1 in η, from η = 0.5 at the
top point of each plot to η = 1.0 at the bottom. The Basic
CIP is the bottom point in the rightmost CIP plot.

Score thresholding reduces false positives but increases the
false negatives ratio (FN). The τ parameter only affects the
positive predictions, hence it has no impact on FN. How-
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Figure 3: Convergence of stale traffic metric for CIP
instantiations. For finite age threshold τ , stale traffic
stabilizes shortly after τ . For infinite τ , stale traffic
grows throughout the evaluation.

δ = 0 δ = 0.005 δ = 0.01 δ = 0.05 δ = 0.1
100% 69.03% 57.25% 29.25% 20.38%

Table 4: Percentage of transmitted synopses as the
modification threshold δ increases.

ever, lowering τ reduces stale traffic, as frequent age-based
invalidation rectifies false negatives from previous epochs
and limits their adverse effect on stale traffic. For exam-
ple, although the Basic CIP (τ = ∞, 1s = false) achieves
the smallest possible FN (0.08%), there are instances (e.g.,
τ = 2, 1s = true) which improve upon it by reducing both
stale traffic and false positives (0.35% vs 0.89%, and 59.1%
vs 67.8%, respectively). In such configurations, false nega-
tives are fixed quickly, causing little cumulative effect.

Finally, shorter synopses (smaller η values) reduce false
positives and communication, at the expense of more false
negatives, and consequently, higher stale traffic.

Varying τ and δ: Figure 5 evaluates the effect of varying
the modification threshold δ. These experiments use com-
plete synopses (η = 1) and score thresholding (1s = true).
Each plot fixes a value of τ , and varies δ.

Increasing the value of δ yields a reduction of FP’s at
the cost of higher FN’s and ST. Additionally, eliminating
synopses due to minor revisions reduces the communication
overhead between the synopsis generator and the invalida-
tor. This is particularly useful when the two CIP compo-
nents reside on separate nodes. Table 4 shows how the per-
centage of generated (and transmitted) synopses drops as
the value of δ increases. Note that we compute the commu-
nication overhead here by counting the number of synopses.

Best cases: Here we contrast the best individual instances
of CIP classes studied in the previous sections against the
baseline TTL heuristic. Figure 6 depicts the policy instances
that formed the bottom-left envelope of Figure 4 and Fig-
ure 5. Our results show that for every point of TTL, there
is at least one point of CIP that obtains a significantly lower
stale traffic for the same value of false positives. For exam-
ple, tolerating 6% of stale traffic requires below 20% of false
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Figure 4: False Negatives (FN, left) and Stale traffic (ST, right) vs. False Positives (FP) curves, for varying
1s (false/true), τ (2, 3, 5, 10) and η (50%, 60%, 70%, 80%, 90%, 100%). The Basic CIP achieves the optimal FN but
a suboptimal ST, due to τ = ∞. Score thresholding (1s), longer timeouts (τ), and smaller synopses (η) lead
to more aggressive policies.
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Figure 5: False Negatives (FN, left) and Stale traffic (ST, right) vs. False Positives (FP) curves, for varying
τ (2, 3, 5, 10) and δ (0%, 0.5%, 1%, 5%, 10%). Higher modification thresholds (increasing δ, from bottom to top of
each plot) lead to more aggressive policies.

positives, in contrast with TTL’s 44.6%. When high preci-
sion is required (low ST), CIP performs particularly well –
the number of query evaluations is 30% below the baseline.

6. CONCLUSIONS
Cache invalidation is critical for caching query results over

incremental indices. Traditional approaches apply very sim-
ple invalidation policies such as flushing the cache upon up-
dates, which induces a significant penalty to cache perfor-
mance. We presented a cache invalidation predictor (CIP)
framework, which invalidates cached queries selectively by
using information about incoming documents. Our evalua-
tion results using Wikipedia documents and queries from a
real search engine shows that our policies enable a significant
reduction to the amount of redundant invalidations (false
positives, or FP) required to sustain the desired precision
(stale traffic, or ST). More concretely, for every target ST,

the reduction of FP compared to the baseline TTL scheme
is between 25% and 30%.

The implication of our results to the design of caching
systems is the following. False positives impact negatively
the cache hit rate as they lead to unnecessary misses in our
setting. Consequently, selecting a policy that enables a low
ratio of false positives is important for performance. With
our CIP policies, it is possible to select a desired ratio of
false positives as low as 0.2. Lowering the ratio of false pos-
itives, however, causes the ratio of false negatives (and stale
traffic) to increase, which is undesirable when the degree
of freshness expected for results is high. When designing
a caching system, a system architect must confront such a
trade-off and choose parameters according to the specific re-
quirements of precision and performance. Our CIP policies
enable such choices and improve over previous solutions.
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Figure 6: Stale traffic (ST) vs False Positives
(FP) for the best cases. We use: η = 1 – com-
plete synopses, 1s = true – score thresholding, δ =
(0%, 0.5%, 1%) – small modification threshold, and
2 ≤ τ ≤ 20 – a variety of age thresholds.
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