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Abstract. In recent years, search engines have started presenting se-
mantically relevant entity information together with document search
results. Entity ranking systems are used to compute recommendations
for related entities that a user might also be interested to explore. Typi-
cally, this is done by ranking relationships between entities in a semantic
knowledge graph using signals found in a data source as well as type
annotations on the nodes and links of the graph. However, the process
of producing these rankings can take a substantial amount of time. As
a result, entity ranking systems typically lag behind real-world events
and present relevant entities with outdated relationships to the search
term or even outdated entities that should be replaced with more recent
relations or entities.

This paper presents a study using a real-world stream-processing based
implementation of an entity ranking system, to understand the effect of
data timeliness on entity rankings. We describe the system and the data
it processes in detail. Using a longitudinal case-study, we demonstrate (i)
that low-latency, large-scale entity relationship ranking is feasible using
moderate resources and (ii) that stream-based entity ranking improves
the freshness of related entities while maintaining relevance.

1 Introduction

In the past years, one of the major developments in the evolution of search
engines has been the move from serving only document results to providing
entity-based experiences. In contrast to the document results that are crawled
from the Web, these experiences are typically built on top of a knowledge base
assembled by the search engine provider from various sources of general and do-
main knowledge. All three major US search engines (Bing, Google, and Yahoo)
have developed features that make use of such a knowledge base, and in partic-
ular to provide large information boxes which, at the time of writing, appear on
the rightmost column of the interface for all three search engines. In all three
cases, the displays also provide recommendations for related entities that the
user may also want to explore.

Knowledge bases are typically organized in the form of an entity-relationship
graph with additional facts attached to the entities and relationships. While the



facts represented in the graph rarely change, the timeliness of relationships can
be significantly impacted by real world events. For example, in the domain of
entertainment, a movie release could drive significant interest towards the collab-
orations of actors, or news of an impending celebrity divorce may raise interest
into a couple. Similarly, in the domain of sports, a game could drive searches
toward the players that participated in certain actions during the game, etc. The
features that are used for measuring the importance of these relationships thus
also need to be reassessed as a result of these events.

Entity recommender systems typically work by exploiting query logs for pre-
dicting the relevance of a related entity, as query logs provide an accurate re-
flection of current interests. Traditionally, such logs are collected and processed
using offline, distributed batch processing systems such as Hadoop MapReduce.?
These systems are designed to handle large volumes of data but at the cost of
significant processing latency. More recently, a new class of distributed systems
based on stream processing have become available, opening up the potential for
new or improved applications of semantic technologies.

In this work, we describe Sundog, a stream processing based implementation
of an entity-recommender system and show that by exploiting the temporal
nature of search log data, we are able to significantly improve the quality of
recommendations compared to static models of relevance, in particular with
respect to freshness. The architecture of Sundog is based on a system that has
previously been presented at ISWC — Spark [2]. To understand the differences in
technology, we provide a comparison to the architecture of the batch-processing
based predecessor. We then describe a longitudinal study that evaluates the
relevance and freshness of the results computed by the system over a number of
consecutive days, using different window sizes and temporal lag in computing the
model. We show the benefits of using increasing amounts of data and reducing
the lag in processing, namely a relevance and freshness increase of over 24%
with respect to approaches that use stale data, in the best case. We conclude by
discussing improvements and other potential applications of our work.

2 Related Work

Our Sundog system is an entity ranking system facilitating semantic search
through the application of supervised machine learning techniques to features
extracted from query log data. Hence, this section succinctly reviews the related
work on (i) semantic search & entity ranking and (ii) temporal information re-
trieval.

With the introduction of entity-based experiences such as infoboxes, direct
answers and active objects [16], the disambiguation of query intent and search
results have gained in importance, because in these applications mistakes in
query interpretation are immediately obvious to the user. However, the semantic
gap between the words in user query and the descriptions of entities in the entity-
graph can be significant [18]. Entity ranking, or ad-hoc object retrieval is aimed

3 http://hadoop.apache.org



at finding the most relevant entity related to the user’s query, and it has been
the focus of many recent studies [2, 14, 20,19, 26]. Pound et al. provide a query
classification of entity-related search queries and define evaluation metrics for
the entity retrieval task [20]. This task has also been the focus of evaluations
in TREC [1] and other venues such as the SemSearch challenges [3]. A variant
of the ad-hoc object retrieval task is the recommendation of related entities,
where the focus is on ranking the relationships between a query entity and other
entities in the graph, see Kang et al. [14] and van Zwol et al. [26]. More recently,
Blanco et al. [2] present their work on the Spark system, which is a continuation
of the work of Kang et al.

Temporal aspects have gained traction in information retrieval (IR) over the
last couple of years and have found applications in document ranking [7, 6, 9],
query completion [22], query understanding [15, 8, 17], and recommender systems
[24,5,21]. Shokouhi et al. [22] analyse temporal trends and also use forecasted
frequencies to suggest candidates for auto completion in web search. Kulkarni
et al. analyse different features to describe changes in query popularity over
time, to understand the intent of queries [15]. In [7], Dai et al. use temporal
characteristics of queries to improve ranking web results using machine learned
models. They use temporal criteria for their page authority estimation algorithms
in [6]. More specifically, they propose a temporal link-based ranking scheme,
which also incorporates features from historical author activities. Dong et al.
identify breaking news queries by training a learning to rank model with temporal
features extracted from a page index such as the time stamp of when the page
was created, last updated, or linked to [8]. Elsas et al. analyzed the temporal
dynamics of content changes in order to rank documents for navigational queries
[10]. More related to the topic of query intent analysis, Metzler et al. [17] propose
to analyse query logs in order to find base queries that are normally qualified
by a year, in order to improve search results for implicit year qualified queries.
The work that is probably most closely related to our study is by Dong et al. [9].
The authors use realtime data of the micro-blogging website Twitter to extract
recency information and train learning to rank models, which in turn are used
to rank documents in web search. The recency information from Twitter was
then successfully used to rank documents, which promotes documents that are
both more fresh and more relevant.

3 System Description

The entity ranking system employed at Yahoo — Spark — is implemented as
a batch-processing based pipeline. For this study, we present Sundog, which
implements parts of the Spark pipeline using a distributed stream processing
framework. A full system description of the production system is beyond the
scope of this paper and we refer to [2,27] for details. However, for the sake
of reproducibility and to understand the various design decisions made when
building the system for our experiments, it is necessary to have an understanding
of Spark. For this reason, we are first going to introduce the most important parts
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Fig. 1: High-level architecture of the Spark entity ranking system.

of the Spark processing pipeline before we elaborate in detail, how and in what
aspects Sundog is different from the original system. We then describe the various
performance optimizations we applied. We end the section with performance
statistics of the system.

3.1 The Spark Processing Pipeline

Figure 1 gives a high level overview over the Spark ranking pipeline. The ranking
essentially happens in three steps: Volatile data sources are used to generate
co-occurrence features of entity pairs that are part of the relationships found
in a semantic knowledge base (1). Data sources used for this step are Yahoo
search logs, tweets from Twitter, and Flickr image tags. Note that for Sundog,
we limited ourselves to only use search logs as input data. Next to features
extracted from these volatile sources, semantic information such as the entity
types and relationship types are leveraged as features. The next step involves the
training of a decision tree model using editorial judgements that have previously
been collected for a limited set of entity pairs (2). The resulting ranking model
is then used to generate entity rankings for all the entity pairs for which features
were extracted (3). Disambiguation is conducted in a post-processing step and it
is based on a popularity measure derived from Wikipedia. For more information
on pre- and post-processing as well as the serving facility, we refer to [2].

Model Learning & Ranking Spark employs learning to rank approaches in
order to derive an efficient ranking function for entities related to a query entity.

Formally speaking, the goal of the Spark ranking system is to learn a function
h(-) that generates a score for an input query ¢; and an entity e; that belongs
to the set of entities related to the query e; € £9. Together, ¢; and e; are
represented as a feature vector wij that contains one entry per feature extracted.
The input of the learning process consists of training data of the form {T'(¢;) =
{wij, li;j} }qic@, where l;; € L is a manually assigned label from a pre-defined
set. Spark uses a 5-level label scale (I € {Bad, Fair, Good, Perfect, Excellent})
and the assignment from examples (g;,e;) was done manually by professional
editors, according to a pre-defined set of judging guidelines. The query set Q
is comprised of editorially picked entities and random samples from query logs.
This is expected to mimic the actual entity and query distribution of the live



system. The training set might also contain preference data, that is, labels that
indicate that an entity is preferred over another one for a particular query. The
ranking function has to satisfy the set of preferences as much as possible and at
the same time is has to match the label in the sense that a particular loss function
is minimized, for instance square loss ﬁ EinQ ﬁ EejeEw (Lij — h(ws;))?, for
a set of test examples.

Similarly to [27], Spark uses Stochastic Gradient Boosted Decision Trees
(GBDT) for ranking entities to queries [12,13]. GBRank is a variant of GBDT
that is able to incorporate both label information and pairwise preference infor-
mation into the learning process [25] and is the function of choice we adopted for
ranking in Spark. The system was trained using ~30K editorially labelled pairs
and ten fold cross-validation. Each time a model is learned the system sweeps
over a number of parameters (learning rate, number of trees and nodes, etc.) and
decides on their final value by optimizing for normalized discounted cumulative
gain (NDCG).

The features included in the system comprise a mixture of co-occurrence fea-
tures and graph-based features. Co-occurrence features compute several statistics
on mentions of pairs of entities appearing together in the data sources (condi-
tional and joint probabilities, Kullback-Leibler divergence, mutual entropy, etc.).
Other features include the types of entities and types of their relationships. In
contrast to Spark, Sundog does not currently include graph-based features such
as PageRank or the number of shared vertices (common neighbors) between two
entities. It does, however, create features using various linear combinations of
the features mentioned before as well as make use of the semantic features (type
annotations). For a detailed description of these features we refer to [2].

3.2 The Sundog System

In this section we present the implementation details of the Sundog system.
First, we describe the programming framework used to build the system. Next,
we describe Sundog itself, before presenting a series of optimizations that were
implemented to achieve the necessary performance.

Storm & Trident Sundog was implemented using the Storm* realtime compu-
tation framework. Storm is best described as the Hadoop MapReduce for stream
processing. Similar to MapReduce, data is partitioned, distributed amongst,
and processed by multiple compute nodes concurrently. A Storm application—a
topology—is a directed graph consisting of spout and bolt nodes.

Trident is a higher level programming framework that is part of the Storm
distribution. Trident offers higher level concepts such as aggregates, joins, merges,
state queries, functions, filters, and methods for state handling. As the Sundog
system relies heavily on the computation of state in the form of feature statistics
that have to be computed continuously, we chose to use Trident for the im-
plementation. In Trident, tuples are processed and accounted in mini-batches,

offering consistency guarantees on a per-batch basis.
* http://storm-project.net
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Fig. 2: The Sundog topology.

Topology Design The topology of Sundog can be roughly divided into three
phases as depicted in Figure 2. Please note that for the sake of clarity, we show
less nodes in the schematic depiction than the actual topology has. Each phase
has to fully finish processing, before the next phase can start. For example, before
we can compute the probability features of one mini-batch in phase 2, we first
have compute the counter values for that mini-batch in phase 1. In the following
paragraphs we are going to explain each of these phases in more detail.

In the first phase, query log data is read from the Hadoop Distributed Filesys-
tem (HDFS). For the sake of reproducibility of our experiments and because we
needed to be able to process historic log data, we chose to read from HDFS,
rather than reading from a volatile message queue. We then filter out all search
queries that do not contain at least one known entity name. The basis for this
filtering is the same knowledge base (KB) that is used in the Spark system. For
the experiments in this paper, we relied on the KB that was in production when
we ran our experiments. From this reduced data stream, we already count certain
events such as the number of distinct users or the number of search events. For
other counters, we first have to build entity pairs from the query terms in a se-
ries of preprocessing steps (PPS1-3). We count the number of search events and
unique users overall (for each entity pair and for each entity). As most of these
counters count events and unique users per entity or entity pairs, the relevant
data can readily be partitioned and the computation therefore run in parallel
on multiple compute nodes. Some counters, however, have a global character
and their value has to be aggregated across all data partitions. Their values are
stored in an external distributed key-value store (DKVS1) to enable access from
all compute tasks in later phases of the processing pipeline. The second phase
consists of computing the actual feature values from the counter values (FC1-7).
In the final phase (phase 3), the computed features are merged together and
complemented with semi-static features that are read from a table in the dis-
tributed key-value store (DKVS2 in Figure 2). Semi-static features are features
that do not change often, or not at all. For example the semantic type of an en-
tity or a relationship between two entities is assumed to be mostly static. After
all features have been merged together, a score is computed for each entity pair
using a GBDT model. Both, the feature values and the final scores are written
back to HDFS (HDFS2 and HDFS3 in Figure 2).



Optimizations A major difference between a Storm topology and a MapReduce-
based data pipeline is that while between every MapReduce job data necessarily
needs to be written to and read from disk. Storm does not have this requirement.
Tuples can pass between bolt instances without ever being written to disk. As
long as there is enough memory, state can be kept in memory for fast access. In
its current implementation, Sundog only stores two counter values persistently
in an external storage. All other information is kept in memory. For this rea-
son, we implemented several optimizations that reduce the memory footprint
and the network traffic incurred by the system. In this section, we list the most
important ones.

HyperLogLog For some of the features, we need the number of unique users
that searched for a given entity or a pair of entities. These counts are necessary
to reduce the impact any single user can have on the ranking of an entity. For
example, a fan of a football team may search for the name of his team very often
together with the names of several other related entities. Normalizing with the
number of unique users (rather than the number of search events) reduces the
impact that any single search user has on the ranking.

The nalve way of counting uniques is to create a hash-set for each entity and
entity pair — the values we want to count uniques for. For every search event, we
could then add the user identifier to the hash-sets of the corresponding entity
or entity pair. As hash-sets prevent duplicates from being stored, the size of
the hash-set automatically represents the number of unique users that searched
for a given entity or entity pair. The disadvantage of this method is, that we
need one hash-set for every entity and entity pair and store the user identifiers
of each user who searched for the given entity/entity pair. This has a worst
case space complexity of (e + ep) * u, where e is the number of entities, ep
is the number of entity pairs, and u is the number of users. With millions of
users and millions of entity pairs, this number can become prohibitively large.
To circumvent this, we used an implementation of the HyperLogLog algorithm
proposed by Flajolet et al.[11]. More specifically, we used the stream-lib® library
for approximate counting. The fact that approximate counting - or cardinality
estimation - does not provide us with exact counts, should not have a great
impact on our results, as we normalize all values with the same ”imprecise”
counts for unique users. For the experiments presented in this paper, we chose
a relative standard deviation of 1% as the target accuracy for the HyperLogLog
estimator.

Dictionary encoding & Bloomfilters As we only have to work with a limited
set of entity and relationship types, we use dictionaries to encode both of these
values. The compressed dictionary file is so small, that we were able to include
it in the jar file deployed on the servers to make it available on all machines.
As described in Section 3.2 the information about semi-static features is
stored in a distributed key-value store. The data in this database is also used

® https://github.com/addthis/stream-lib



to filter invalid entity pairs early in the processing pipeline. This ensures that
we do not compute feature values for entity pairs that eventually turn out to be
invalid. For example the pair ”Brad Pitt - Zurich, Switzerland” may be found
in the search logs, because a user searched for these two entities in the same
search query. However, the KB may not contain a relationship entry for the
two entities ”"Brad Pitt” and ”Zurich, Switzerland”. In fact, the vast majority
of potential entity pairs are invalid as there are certain geographical locations
that have names that (after the text normalization process) are lexicographically
equivalent to some words in the English dictionary. For example, there are several
villages in Norway with the name ”“A”. This leads to many candidate entity
pairs between ”a” and other entities that have no semantic relationship with
each other. In order to filter these, we need to check against the KB. To reduce
the number of requests to the KB, and hence the number of network requests in
the process, we use bloomfilters [4]. For the experiments presented in this paper,
we added all entity relations in the KB into a bloom filter. The resulting data
structure is included in the application deployment.

3.3 Runtime Characteristics & Performance

There are many factors that influence the performance of a distributed system.
For the sake of reproducibility, it may be of interest to the reader to learn more
about the setup of our cluster and the configuration parameters that we used
for the evaluation of Sundog. For this reason, we present the setup of our system
in this section by first describing the general setup of the Storm cluster, before
giving some insight into how we configured our topology in order to get better
performance out of the hardware that we were able to use.

Cluster Configuration We ran our evaluations on a cluster of machines that
are connected to a 1 Gbit/s network, each having 24 2.2GHz cores and 96GB of
RAM. The service that starts and stops Storm worker instances is called the su-
pervisor service. There is one supervisor per machine in the cluster. All supervi-
sors are centrally managed by a master server, the nimbus node. Communication
between the nimbus service and the supervisors happens over a ZookeeperS clus-
ter. The nimbus server schedules work among the available supervisor nodes. For
our experiments, we were given exclusive access to 40 machines. We configured
Storm to start 8 worker instances (JVMs) per supervisor, each having 12GB of
RAM.

Job Configuration & Performance Table 1 lists setup parameters we used
to configure Storm and Trident: We ran our experiments on 40 supervisors, each
having 8 workers which resulted in 320 workers in total. These workers were
executing 2449 task instances, of which 40 were spout instances and 2087 were
regular bolt instances. The remaining bolt instances are acker-instances or Tri-
dent coordinator bolts. We ran one spout instance for each machine. Each of

5 http://zookeeper.apache.org



these read and emitted 100,000 log lines per batch. One batch took on average
40 seconds to complete, which means that the system ingested about 100,000 log
lines per second. We found that neither increasing nor decreasing the batch-size
led to increased throughput. Most likely a result of the bookkeeping overhead
of Storm becoming proportionally more expensive with smaller batches, while
larger batches just increased the processing time per batch. The system trans-
ferred about about 2.5 million messages per second within the topology. As
running multiple batches concurrently did not yield higher throughput and only
increased the chances for batches to time out, we always only processed one
batch at a time. This led to the situation that we barely used all of the available
resources, because, as mentioned in Section 3.2, certain parts of the computation
need to wait for other parts to complete. This suggests that there may be further
potential improvements in terms of resource utilization.

Parameter Value
Workers 320
Spouts (Spout Tasks) 1 (40)
Bolts (Bolt Tasks) 30 (2087)
Total Task Instances 2449
Concurrent Batches 1

Batch Size (log lines) 100’000
Average Batch Time (Seconds) |~ 40
Log Lines per Second 100’000
Transferred Messages per Second|2.5 mio

Table 1: Sundog configuration parameters and performance numbers of a typical
evaluation run.

While the underlying platforms of Sundog and Spark are vastly different and
the performance indicators can therefore not easily be compared directly, it is
interesting to note, that even though Spark is running on a cluster that has two
orders of magnitude more machines, Sundog is still able to process comparable
amounts of data in about % of the time used by Spark.

4 Evaluation

Sundog allows us to compute feature values and entity rankings in much less
time compared to the old Spark system. This in turns enables us to use more
recently collected data for the ranking process. Hence, we are interested in three
things: First, we investigate the impact of data recency on the entity rankings.
For this we are interested in measuring the quality of the rankings in terms of
freshness and relevance. Secondly, we analyze if fresh rankings are more useful
to users. Lastly, we evaluate how the amount and the age of data used to train
the system impact performance.



4.1 Experimental Setup

We evaluated the rankings that Sundog produces on four different days over the
course of a week. We had human editors assess the rankings with regards to
relevance and freshness on each day. In this section, we present the experimental
setup of our evaluation. First, we describe the data sets that we collected, before
we describe in detail how our editors assessed the generated rankings.

The Data For our experiments, we produced entity rankings using search log
data of three time periods. For each time period we grouped the log files in sets
of different sizes (windows). Each log file set s; € S has a window of size w; and
an end date d;. The window size is inclusive. Hence, for a set s; with a window
size w; = 7 and end date d; = 2014/01/12, the respective start date is defined as
d; —w; +1 =2014/01/06. We differentiate between three different time periods
or epochs, so three collections of old, recent, and new sets of log files. As we ran
our experiments on 4 different days, the values for the new epoch changed. The
end date for the new epoch is defined as:

d,, € {2014/01/20,2014/01/21,2014/01/22,2014/01/23}

For the recent and the old epoch we chose d, = 2014/01/12 and d, = 2013/12/31,
respectively, to simulate the situation in which the rankings would be used dur-
ing a period of two to three weeks. For each period we compiled a data set of
three different sizes w € {1,7,30}. Table 2 lists the resulting data sets.

Epoch [Window|Dates
o |1 Day [2013/12/31
7 Day |2013/12/25 — 2013/12/31
30 Days [2013/12/2 — 2013/12/31
1 Day [2014/1/12
Recentl; p.v 2014?1?6 -~ 2014/1/12
30 Days [2013/12/14 — 2014/1/12
New |1 Day [2014/1/20...23
7 Day |2014/1/14...17 — 2014/1/20...23
30 Days |2013/12/22...25 — 2014/1/20. .. 23

Table 2: Data sets collected for the evaluation.

For each of the data sets we first had Sundog generate the feature values
which are stored in files. We then used these feature files to train Gradient
Boosted Decision Tree (GBDT) models (see 3.1 for details). The resulting mod-
els were then used to generate the entity rankings, again stored in files. For each
feature file and its corresponding model, we generated one ranking file. In ad-
dition, to test the performance of a model that has been generated with an old
feature file on freshly generated feature values, we also generated some ranking
files using models trained on old data and feature files extracted from new search
log data. Note that for all rankings where we used models trained with historic
data, we only scored the feature files on models of the corresponding window



size, as the feature values in the feature files would otherwise be incompatible
with the models.

The resulting ranking files contained a ranking score for each entity pair that
at least one user searched for within the corresponding time window. As the
number of such rankings can be quite large, we restricted ourselves to evaluate
only a subset of all pairs. As we are mostly interested in evaluating for freshness,
we selected the top-60 of all queries that matched the label of entities in the KB.
This ensured, (i) that we only select queries for which related entities would
actually be shown on the search page, and, as the entities in question were
"trending”, (ii) increased the likelihood that recency would be a factor for the
relationships. We then took all entity pairs that we could find from all 15 ranking
files for that day and pooled the query-entity pairs. With at most 10 related
entities on the result page, this yielded a pool of at most 60 x 15 = 900 entity
pairs per day - which was the upper limit of entity pairs that our human editors
could evaluate in respect to relevance and freshness in a day. Table 4 lists the
exact numbers of query-pairs for each day.

Editorial Judgement We asked a group of expert search editors working for
Yahoo to judge entity pairs in terms of relevance and freshness. Table 3 lists
the categories from which the editors could select. The editors were trained and
instructed to judge each relationship from the viewpoint of "today”. We asked
the editors to research the relationships which they did not know about, in order
to provide a well founded judgment.

Recency Categories Relevancy Categories

Is current today or

Super Recent vesterday

Very Recent |Was current the past week

Recent Relevant in the past year
Reasonable |A bit old, but still popular
Outdated There are better connections
NA or NJ Freshness is not a factor

Super Related
Closely Related
Mostly Related

Somewhat

Related
Embarrassing

N/J

Most interesting fac-

tual relationship
Related in a mean-

ingful or useful way
A little off, but

akes sense .
ot a meaningful or

useful suggestion
Does not make sense

No judgement possible

Table 3: Available recency and relevance categories and their description.

Date ‘Pairs‘ Super-Recent ‘ Super-Related
2014/01/20| 819 57 290
2014/01/21| 696 34 184
2014/01/22| 865 54 171
2014/01/23| 785 34 196

Table 4: The number of query pairs evaluated on each day with the corresponding
number of pairs that were judged Super-Recent or Super-Related, respectively.

We measure the performance on both relevance and freshness using standard
metrics such as normalized discounted cumulative gain (NDCG), precision, and



mean average precision (MAP). Given that we are considering freshness as a
discrete, graded variable we report on the same metrics as relevance, but using
the editorial labels for recency.

4.2 Results & Discussion
Fresh Data Is Better In Figure 3 we present our findings on the impact of

data freshness on relevance and freshness scores: In the two charts in the upper
row we plotted the NDCG scores using the top-10 and the top-5 results. We chose
top-10, because Spark always shows the top-10 ranked related entities. Sundog
may not be able to always find 10 related entities. This has several reasons:
Firstly, Sundog only uses one of the four data sources that Spark uses. Secondly,
while Spark uses default values for all features and entity pairs that could not be
found in the data, Sundog only computes features values, and hence rankings,
for entity pairs that we were able to find in the data. As we are currently mostly
interested in freshness of relationships it makes sense not to include relationships
that were not of any importance to our users during the time we collected the
data. For this reason, Figure 3 also shows the NDCG values for the top-5 ranked
entities.

It is apparent, that for sufficiently large time windows, new data always
produces entity-rankings that are both fresher and also more relevant in general.
If the data only contains log data from a single day, we see that while the data
that was collected most recently still consistently produces superior rankings,
the difference between the rankings of the recent data compared to the old data
is negative. Looking at the numbers in Table 5a we can see a similar picture:
Using window sizes of 7 and more days, we observe a significant improvement in
terms of freshness when using more recent data.

Old |Recent |New

1 10.3600(0.3446 (-4.20%) 0.3868" (+11.13%)
7 10.3945(0.4317* (+9.44%) 0.4870*t (+24.38%)
30[0.4569(0.4994% (+9.30%)|0.5335*1 (+16.75%)

(a) Freshness

Old |Recent ‘New

1 ]0.4499[0.4522 (+0.66%) [0.49587 (+10.20%)
7 10.51070.5913* (4+15.80%)|0.6123* (+19.90%)
30{0.6041|0.6588* (+7.71%) |0.6589" (4+9.05%)

(b) Relevance
Table 5: NDCG-10 improvements reported over old baseline. * indicates a signif-
icant improvement over old, and T over recent (p-value < 0.05, paired two-sided
t-test). Values for new are averaged over all four days.

In the graphs in the lower row of Figure 3, we compare the relevance and
freshness measured using several metrics such as precision (P), MAP, and NDCG



using a cutoff of 5 and 10, respectively. These charts confirm that our hypothesis
also holds for this analysis: Rankings produced from new data score higher than
rankings produced from historic data.
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Fig. 3: Top: NDCG for the top 10/5 ranked entities for freshness and relevance
Bottom: Comparing several metrics for freshness and relevance for a 30 day
window

p(NotRel.|-)|p(Rel.|-) p(-|NotRel.)|p(-|Rel.)
Super Recent 0.15 0.85 Super Recent 0.02 0.11
Very Recent 0.21 0.79 Very Recent 0.05 0.14
Recent 0.50 0.50 Recent 0.23 0.17
Reasonable 0.31 0.69 Reasonable 0.14 0.25
Outdated 0.57 0.43 Outdated 0.52 0.41
NA or NJ 0.45 0.55 NA or NJ 0.05 0.03

(a) Relevance (b) Freshness

Table 6: Distribution of recency across freshness and relevance values. ” Super
Related” and ” Closely Related” collapsed into ”Relevant” (Rel./Not Rel.).

Fresh is Relevant Table 6a shows the probabilities of different freshness labels
conditioned to observing relevance and non-relevance, respectively. Relevance
labels have been collapsed in the table, this is, we deemed the labels Super Related
and Closely Related as relevant and all other labels as not-relevant. The results
suggest that freshness is a good indicator for relevance for the Super Recent and
Very Recent categories. On the other hand, looking at Table 6b, we observe that
relevance is not a good indicator for freshness. Intuitively this makes sense as it
seems logical to assume that there are many more relationships between entities
that may, although being relevant, not be of immediate importance in terms of
recency. Overall, Pearson’s correlation coefficient between labels is 0.28, which
indicates that there is only a slight correlation between them.



More Data Is Better In all but one cases, having more data available to
generate the rankings resulted in better performance in terms of relevance (top-
right in Figure 3). Looking at the freshness evaluation, we observe a similar
behavior (top-left in Figure 3) with the exception of the NDCG values computed
using new data for the 7-day window, that for both, the top-10 and the top-5
ranks scored higher than the corresponding NDCG values for the 30-day window
computed using ”old” data. While this observation is consistent with the machine
learning literature, it also shows that data that is more fresh can compensate in
situations where only very little historic data can be collected.

Performant Recent Models In order to asses how well the GDBT models
we employed generalize for unknown data, we used models of varying age to
rank feature data generated from the most recent log data. The results of this
comparison are shown in Figure 4: Using 20 day old data to train the models
(Model Epoch = 0Old) yields worst performance for both freshness and relevance
for all time windows, which suggests that the age of a trained model has an
impact on performance. Comparing the performance achieved when using 10 day
old (Model Epoch = recent) and current (Model Epoch = new) data, however, we
can see that freshly trained models do not necessarily deliver better performance.
This suggests, that while fresh data is important for ranking entities, the training
of models is less time critical.

Freshness Relevance

0.5 0.6

0.44
30 3 Model Epoch S04 Model Epoch
(O old O] Oold
Q IRecent Q IRecent
So.24 New S New

0.2
0.14
0.0 0.0
1 Da) 7 Days 30 Days 1 Da 7 Days 30 Days
Y Windowg Size Y Y WindowySize Y

Fig.4: Comparing the effect of the model age on freshness (left) and relevance
(right). NDCG values obtained by applying new feature values on models of
varying age.

5 Conclusions & Future Work

We presented an evaluation of Sundog, a system for ranking relationships be-
tween entities on the web using a stream processing framework. Sundog is able
to ingest large quantities of data at high rates (orders of magnitude more than a
legacy batch-based system) and thus allows for adapting ranking into a live set-
ting, where the ordering of elements (entities) displayed to the user might change
with small time delays. This can be accomplished by inspecting relevance signals
coming from query logs and updating feature values on the fly.



This architecture enabled us to investigate the tradeoff between data recency
and relevance in a live setting, where rankings can change every day. We ran live
experiments on four different days using real queries, generating rankings that
were evaluated by professional human editors with regards to their relevance and
recency. We trained different models, using old, recent and new data and reported
their performance. It is apparent, that for sufficiently large time windows, new
data always produces entity-rankings that are both, more fresh and also more
relevant, with improvements reaching up to 24% in NDCG. We observed, that
recency of input data can even compensate for reduced amounts of data, which is
traditionally thought of as being a primary factor for the performance of machine
learning models. Additionally, the ranking models we deployed are robust enough
to be able to generalize well 10 days after they have been trained, even when
feature values for query-entity pairs have changed over time. This suggests that
while being able to process recent data is crucial, realtime re-learning does not
impact performance as much (if at all).

While the source code of the system as well as the search log data used in the
study are proprietary to Yahoo or cannot be released to the public for privacy
reasons, we do provide a detailed description of the system and the data, which
does allow for reproducibility of our results. For example, similar data sets that
could be used are tweets from Twitter or image tags from Flickr. In addition,
Sundog is built using open source software, e.g. Apache Storm.

In future work, we will explore adaptions to the ranking model in more depth
and also investigate, how freshness and relevance can be combined into one ob-
jective function. Currently, the models are learned by trying to maximize the
relevance score. While recency and relevance are not necessarily two orthogo-
nal performance characteristics, they can differ. The way in which one could
combine these two aspects is not clear, yet. This, as well as an investigation
of techniques with which recency and relevance can be independently measured
without trained editors, remains future work. Additionally, we are interested
in equipping the system with an online learner in order to make use of user
feedback information (clicks) in real time. Finally, additional work on recency
features is also necessary in order for the ranking models to be able to capture
time dependent characteristics as for example concept shifts [23].
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