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Entity-linking is a natural-language–processing task that consists in identifying the entities men-
tioned in a piece of text, linking each to an appropriate itemin some knowledge base; when the
knowledge base is Wikipedia, the problem comes to be known aswikification(in this case, items are
wikipedia articles). One instance of entity-linking can beformalized as an optimization problem on
the underlying concept graph, where the quantity to be optimized is the average distance between
chosen items. Inspired by this application, we define a new graph problem which is a natural variant
of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general
graphs; nonetheless, under some restrictive assumptions,it turns out to be solvable in linear time.
For the general case, we propose two heuristics: one tries toenforce the above assumptions and an-
other one is based on the notion of hitting distance; we show experimentally how these approaches
perform with respect to some baselines on a real-world dataset.

1 Introduction

Wikipedia1 is a free, collaborative, hypertextual encyclopedia that aims at collecting articles on different
(virtually, all) branches of knowledge. The usage of wikipedia for automatically tagging documents is
a well-known methodology, that includes in particular a task calledwikification [13]. Wikification is a
special instance ofentity-linking: a textual document is given and within the document variousfragments
are identified (either manually or automatically) as being(named) entities(e.g., names of people, brands,
places. . . ); the purpose of entity-linking is assigning a specific reference (a wikipedia article, in the case
of wikification) as a tag to each entity in the document.

Entity-linking happens typically in two stages: in a first phase, every entity is assigned to a set
of items, e.g., wikipedia articles (thecandidate nodesfor that entity); then a second phase consists in
selecting a single node for each entity, from within the set of candidates. The latter task, calledcandidate
selection, is the topic on which this paper focuses.

To provide a concrete example, suppose that the target document contains the entity “jaguar” and the
entity “jungle”. Entity “jaguar” is assigned to a set of candidates that contains (among others) both the
wikipedia article about the feline living in America and theone about the Jaguar car producer. On the
other hand, “jungle” is assigned to the article about tropical forests and to the one about the electronic
music genre. Actually, there are more than 30 candidates for“jaguar”, and more about 20 for “jungle”.

In this paper, we study an instance of the candidate selection problem in which the selection takes
place based on some cost function that depends on the averagedistance between the selected candidates,
where the distance is measured on the wikipedia graph2: the rationale should be clear enough—concepts

∗The second and third authors were supported by the EU-FET grant NADINE (GA 288956).
1http://en.wikipedia.org/
2The undirected graph whose vertices are the wikipedia articles and whose edges represent hyperlinks between them.
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appearing in the same text are related, and so we should choose, among the possible candidates for each
entity, those that are more closely related to one another.

Getting back to the example above, there is an edge connecting “jaguar” the feline with “jungle” the
tropical forest, whereas the distance between, say, the feline and the music genre is much larger.

The approach we assume here highlights thecollectivenature of the entity-linking problem, as men-
tioned already in [10]: accuracy of the selection can be improved by a global (rather than local) opti-
mization of the choices. As [10] observes, however, trying to optimize all-pair compatibility is a compu-
tationally difficult problem.

In this paper, we prove that the problem itself, even in the simple instance we take into consideration,
is NP-hard; however, it becomes efficiently solvable under some special assumptions. We prove that,
although these assumptions fail to hold in real-world scenarios, we can still provide heuristics to solve
real instances.

We test our proposals on a real-world dataset showing that one of our heuristics is very effective,
actually more effective than other methods previously proposed in the literature, and more than a simple
greedy approach using the same cost function adopted here.

2 Related Work

Named-entity linking (NEL)- also referred to asnamed entity disambiguationgrounds mentions of en-
tities in text (surface forms) into some knowledge base (e.g. Wikipedia, Freebase). Early approaches to
NEL [13] make use of measures derived from the frequency of the keywords to be linked in the text and in
different Wikipedia pages. These includetf-idf, χ2 andkeyphraseness, which stands for a measure of how
much a certain word is used in Wikipedia links in relation to its frequency in general text. Cucerzan [7]
employed the context in which words appears and Wikipedia page categories in order to create a richer
representation of the input text and candidate entities. These approaches were extended by Milne and
Witten [14] who combined commonness (i.e., prior probability) of an entity with its relatedness to the
surrounding context using machine learning. Further, Bunescu [4] employed adisambiguationkernel
which uses the hierarchy of classes in Wikipedia along with its word contents to derive a finer-grained
similarity measure between the candidate text and its context with the potential named entities to link
to. In this paper we will make use of Kulkarni et al.’s dataset[11]. They propose a general collective
disambiguation approach, under the premise that coherent documents refer to entities from one or a few
related topics. They introduce formulations that account for the trade-off between local spot-to-entity
compatibility and measures of global coherence between entities. More recently, Han et al. [10] propose
a graph-based representation which exploits the global interdependence of different linking decisions.
The algorithm infers jointly the disambiguated named mentions by exploiting the graph.

It is worth to remark that NEL is a task somehow similar to WordSense Disambiguation (deter-
mining the right sense of a word given its context) in which the role of the knowledge base is played
by Wordnet [8]. WSD is a problem that has been extensively studied and its explicitly connection with
NEL was made by Hachey et al [9]. WSD has been an area of intenseresearch in the past, so we will
review here the approaches that are directly relevant to ourwork. Graph-based approaches to word sense
disambiguation are pervasive and yield state of the art performance [15]; however, its use for NEL has
been restricted to ranking candidate named entities with different flavors of centrality measures, such as
in-degree or PageRank [9].

Mihalcea [12] introduced an unsupervised method for disambiguating the senses of words using
random walks on graphs that encode the dependencies betweenword senses.
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Navigli and Lapata [18, 16, 17] present subsequent approaches to WSD using graph connectivity
metrics, in which nodes are ranked with respect to their local importance, which is regarded using cen-
trality measures like in-degree, centrality, PageRank or HITS, among others.

Importantly, even if the experimental section of this paperdeals with a NEL dataset exclusively,
the theoretical findings could be equally applied to WSD-style problems. Ourgreedyalgorithm is an
adaptation of Navigli and Velardi’s Structural Semantic Interconnections algorithms for WSD [18, 6].
The original algorithm receives an ordered list of words to disambiguate. The procedure first selects the
unambiguouswords from the set (the ones with only one synset), and then for every ambiguous word, it
iteratively selects the sense that iscloser to the sense of disambiguated words, and adds the word to the
unambiguous set. This works in the case that a sufficiently connected amount of words is unambiguous;
this is not the case in NEL and in our experimental set-up, where there could potentially exists hundreds
of candidates for a particular piece of text.

3 Problem statement and NP-completeness

In this section we will introduce the general formal definition of the problem, in the formulation we
decided to take into consideration. We will make use of the classical graph notation: in particular, given
an undirected graphG= (V,E), we will denote withG[W] the graph induced by the vertices inW, and
with d(u,v) the distance between the nodesu andv, that is, the number of edges in the shortest path from
u to v (or the sum of the weights of the lightest path, ifG is weighted).

If G is a graph ande is an edge ofG, G− e is the graph obtained by removinge from G; we say
thate is abridge if the number of connected components ofG−e is larger than that ofG. A connected
bridgeless graph is calledbiconnected; a maximal set of vertices ofG inducing a biconnected subgraph
is called abiconnected componentof G.

We call our main problem theMinimum Distance Representative, in short MINDR, and we define it
as follows. Given an undirected graphG= (V,E) (possibly weighted) andk subsets of its set of vertices,
X1, . . . ,Xk⊆V, a feasible solution for MINDR is a sequence of vertices ofG, x1, . . . ,xk, such that for any
i, with 1≤ i ≤ k, xi ∈ Xi (i.e., the solution contains exactly one element from everyset, possibly with
repetitions).

Given the instanceG,{X1, . . . ,Xk}, the measure (thedistance cost) of a solutionS, x1, . . . ,xk, is
f (S) = ∑k

i=1∑k
j=1d(xi ,x j). The goal is finding the solution of minimum distance cost, i.e., a feasible

solutionSsuch thatf (S) is minimum.
We call the restriction of this problem, in which the sets of vertices in input{X1, . . . ,Xk} are disjoint,

M INDIR(Minimum Independent Distance Representative). In this case, for the sake of simplicity, we
will refer to a solution as the multiset composed by its elements.3

3.1 NP-completeness of MIN DR

The MINDIR problem seems to be similar and related to the so-called Maximum Capacity Represen-
tatives [5], in short MAX CRS. The Maximum Capacity Representatives problem is defined as follows:
given some disjoint setsX1, . . . ,Xm and for anyi 6= j, x∈ Xi, andy∈ Xj , a nonnegative capacityc(x,y), a

3We shall make free use of multiset membership, intersectionand union with their standard meaning: in particular, ifA
and B are multisets with multiplicity functiona andb, respectively, the multiplicity functions ofA∪B andA∩B arex 7→
max(a(x),b(x)) andx 7→min(a(x),b(x)), respectively.
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solution is a setS= {x1, . . .xm}, such that, for anyi, xi ∈Xi; such a solution is calledsystem of representa-
tives. The measure of a solution is the capacity of the system of representatives, that is∑x∈S∑y∈Sc(x,y),
and the MAX CRS problem aims atmaximizingit. The MAX CRS problem was introduced by [1], who
showed that it is NP-complete and gave some non-approximability results. Successively, in [19], tight
inapproximability results for the problem were presented.

The MINDIR problem differs from MAX CRS just for in the sense that we are dealing with distances
instead of capacities, and therefore we ask for a minimum instead of a maximum. Nonetheless the fol-
lowing Lemma, whose proof is given in Appendix A, shows that also MINDIR problem is NP-complete.

Lemma 1. TheM INDIR (hence,M INDR) problem is NP-complete.

4 The decomposable case

In this section we study the MINDR problem under some restrictive hypothesis and we will show that in
this case a linear exact algorithm exists.

Even if it may seem that these hypothesis are too strong to make the algorithm useful in practice, in
the next section we will use our algorithm to design an effective heuristic for the general problem. In
particular, we assume that the graphG (possibly weighted) is such that:

• any setXi induces a connected subgraph onG, i.e.,G[Xi] is connected,

• for any i 6= j, for anyx∈ Xi andy∈ Xj , x andy do not belong to the same biconnected component.

The problem, under these further restrictions, will be calleddecomposableM INDR. Note that the second
condition implies that a decomposable MINDR is in fact an instance of MINDIR, because it implies that
no two sets can have nonempty intersection.

Let us consider an instance(G,{X1, . . .Xk}) of decomposable MINDR problem on a graphG =
(V,E).

An edgee= (x,y) ∈ E is calledusefulif it is a bridge,x andy do not belong to the same setXi, and
there are at least two indicesi and j such thatXi andXj are in different components ofG−e (sincee is
a bridge, the graph obtained removing the edgee from G is no more connected).

4.1 Decomposing the problem

The main trick that allows to obtain a linear-time solution for the decomposable case is that we can
actually decompose the problem (hence the name) through useful edges. First observe that, trivially:

Remark 1. Let e= (x,y) be a useful edge and let Zx and Zy be the two connected components of G−e
containing x and y, respectively. In G, all paths from any x′ ∈ Zx to any y′ ∈ Zy must contain e.

Moreover:

Remark 2. Let e= (x,y) be a useful edge. There cannot be an index i such that Xi has a nonempty
intersection with both components of G−e.

In fact, assume by contradiction that one suchXi exists, and letu,w∈ Xi be two vertices living in the
two different components ofG−e: sinceG[Xi] is connected, there must be a path connectingu andw
and made only of elements ofXi; because of Remark 1, this path passes throughe, but this would imply
thatx,y∈ Xi, in contrast with the definition of useful edge.

Armed with the previous observations, we can give the following further definitions. LetYx (respec-
tively, Yy) be the set of setsXi such thatXi ⊆ Zx (respectively,Xi ⊆ Zy); we denote the sets of nodes inYx

andYy by V(Yx)⊆ Zx andV(Yy)⊆ Zy, respectively.
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By virtue of Remark 1, all the paths inG from anyx′ ∈V(Yx) to anyy′ ∈V(Yy) pass throughe. This
implies also that there is no simple cycle in the graph including bothx′ ∈V(Yx) andy′ ∈V(Yy).

Given a solutionS for M INDIR(G,{X1, . . . ,Xk}), and a useful edge(x,y), we have:

∑
xi ,xj∈S

d(xi ,x j) = ∑
xi ,xj∈S∩V(Yx)

d(xi ,x j)+ ∑
xi ,xj∈S∩V(Yy)

d(xi ,x j)+

2 ∑
xi∈S∩V(Yx),xj∈S∩V(Yy)

(d(xi ,x)+d(x,y)+d(y,x j )) .

Indeed all the shortest paths from anyxi ∈ S∩V(Yx) to anyx j ∈ S∩V(Yy) pass through the useful edge
(x,y) by Remark 1. Moreover, since the setsX1, . . . ,Xk are disjoint, we have that|S∩V(Yx)| = |Yx| and
|S∩V(Yy)| = |Yy|, that is, a solution has exactly one element for each set inYx (respectively,Yy). Hence
we can rewrite the last summand of the above equation as follows:

∑
xi∈S∩V(Yx),xj∈S∩V(Yy)

(d(xi ,x)+d(y,x j )+d(x,y)) = |Yy| · ∑
xi∈S∩V(Yx)

d(xi ,x)+

|Yx| · ∑
xj∈S∩V(Yy)

d(y,x j )+

|Yx| · |Yy| ·d(x,y).

By combining the two equations, we can conclude that finding asolution for MINDIR(G,{X1, . . . ,Xk})
can be decomposed into the following two subproblems:

1. findingSx minimizing ∑xi ,xj∈S∩V(Yx)d(xi ,x j)+2∑xi∈S∩V(Yx) |Yy|d(xi ,x) in the instance(G[Zx],Yx);

2. findingSy minimizing ∑xi ,xj∈S∩V(Yy)d(xi ,x j)+2∑xj∈S∩V(Yy) |Yx|d(y,x j) in the instance(G[Zy],Yy).

Note that both instances are smaller than the original one because of the definition of a useful edge.
The idea of our algorithm generalizes this principle; note that the new objective function we must take
into consideration is slightly more complex than the original one: in fact, besides the usual all-pair–
distance cost there is a further summand that is a weighted sum of distances from some fixed nodes (such
asx for the instanceG[Zx],Yx andy for the instanceG[Zy],Yy).

We hence define an extension of the MINDR problem, that we call EXTM INDR (for Extended
Minimum Distance Representatives). In this problem, we are given:

• an undirected graphG= (V,E) (possibly weighted)

• k subsets of its set of vertices,X1, . . . ,Xk ⊆V

• a multisetB of vertices, eachx∈ B endowed with a weightb(x).

A feasible solution for the EXTM INDR is a multisetS= {x1, . . . ,xk} of vertices ofG, such that for any
i, with 1≤ i ≤ k, S∩Xi 6= /0 (i.e., the set contains at least one element from every set). Its cost is

f (S) =
h

∑
i=1

k

∑
j=1

d(xi ,x j)+
k

∑
i=1

∑
z∈B

b(z)d(xi ,z).

The goal is finding the solution of minimum cost, i.e., a feasible solutionSsuch thatf (S) is minimum.
The original version of the problem is obtained by lettingB= /0.

We are now ready to formalize our decomposition through the following Theorem, whose proof is
given in Appendix B.
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Theorem 1. Let us be given a decomposableEXTM INDR instance(G,{X1, . . . ,Xk},B,b) and a useful
edge e= (t0, t1). For every s∈ {0,1}, let Zs be the connected component of G−e containing ts, Ys be the
set of sets Xi such that Xi ⊆ Zs and V(Ys) be the union of those Xi ’s. Let also Bs be the intersection of B
with Zs. Define a new instance Is = (T[Zs],{Xi , i ∈Ys},Bs∪{ts},bs) where

bs(ts) = 2|Y1−s|+ ∑
z∈B1−s

b(z) and bs(z) = b(z), for any z∈ B.

Then the cost f(S) of an optimal solution S of the original problem is equal to

f (S0)+ f (S1)+2|Y0||Y1|d(t0, t1)+ ∑
s∈{0,1}

(

|S∩V(Ys)| · ∑
z∈B∩Z1−s

b(z)d(ts,z)

)

where Ss is an optimal solution for the instance Is.

For completeness, we need to consider the base case of an instance with just one setG,{X1},B,b:
the solution in this case is just one nodex ∈ X1 and the objective function to be minimized is simply
∑z∈Bd(x,z)b(z). The optimal solution can be found by performing a BFS from everyzj ∈B (in increasing
order of j), maintaining for each nodey∈ X1, g(y) = ∑zt∈B,t< j d(x,zt )b(zt), and picking the node having
maximum finalg(y). This process takesO(|B| · |E(G[X1])|). It is worth observing that in our case the
size of the multisetB is always bounded byk. Moreover since∑k

i=1 |E(G[Xi])| ≤ |E(G)|= m, the overall
complexity for all these base cases is bounded byO(k ·m).

4.2 Finding useful edges

For every instance with more than one set, given an useful edge e the creation of the subproblems as
described above is linear, so we are left with the issue of finding useful edges. This task can be seen as
a variant of the standard depth-first search of bridges, as shown in Algorithm 2 and 3, in Appendix C.
Recall that bridges can be found by performing a standard DFSthat numbers the nodes as they are found
(using the global counter visited, and keeping the DFS numbers in the array dfs); every visit returns the
index of the least ancestor reachable through a back edge while visiting the DFS-subtree rooted at the
node where the visit starts from. Every time a DFS returns a value that is larger than the number of the
node currently being visited, we have found a bridge.

The variant consists in returning not just the index of the least ancestor reachable, but also the set
of indicesi that are found while visiting the subtree. If the set of indices and its complement are both
different from /0 then the bridge is useful: at this point, a “rapid ascent” is performed to get out of the
recursive procedure.

4.3 The final algorithm

Combining the observations above, we can conclude that the overall complexity of the algorithm is
O(k ·m). The algorithm is presented in Algorithm 1.

5 The general case

As we observed at the beginning, the MINDR problem is NP-complete in general, although the decom-
posable version turns out to be linear. We want to discuss howwe can deal with a general instance of the
problem. To start with, let us consider a general connected MINDR instance, that is:
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Algorithm 1: DECOMPOSABLEM INDR
Input : A graphG= (V,E), X1 . . . ,Xk ⊆V, a weighted multisetB of nodes inV, where each element inB has a weight

b. G[Xi ] is connected for everyi and moreover for alli 6= j andx∈ Xi , y∈ Xj , the two verticesx andy do not
belong to the same biconnected component ofG.

Output : A solutionS= {x1, . . . ,xk} such that for anyi, with 1≤ i ≤ k, xi ∈ Xi , minimizing
∑h

i=1 ∑k
j=1 d(xi ,x j )+∑k

i=1∑z∈Bb(z)d(xi ,z)
Find a useful edgee= (x,y), if it exists, using Algorithm 2
if the useful edge does not existthen

if k 6= 1 then
Fail!

end
Output the elementx1 ∈ X1 minimizing ∑z∈Bb(z)d(x1,z)

else
Let Zx (respectivelyZy) be the connected component ofT−e containingx (respectivelyy) .
LetYx (respectivelyYy) be the indicesi such thatXi ⊆Yx (Xi ⊆Yy, respectively)
B′← B∪{x} (multiset union) withb(x) = 2|Yy|+∑z∈B∩Zy

b(z)
B′← B′∩Zx (multiset intersection)
S′← DECOMPOSABLEM INDR(T[Zx],Yx,B′)
B′′← B∪{x} (multiset union) withb(y) = 2|Yx|+∑z∈B∩Zx

b(z)
B′′← B′′∩Zy (multiset intersection)
S′′← DECOMPOSABLEM INDR(T[Zy],Yy,B′′)
return S′∪S′′

end

• a connected undirected (possibly weighted) graphG= (V,E),

• k subsets of its set of vertices,X1, . . . ,Xk ⊆V,

with the additional assumption thatG[Xi] is connected for everyi. Recall that a feasible solution is a
sequenceSof vertices ofG, x1, . . . ,xk, such that for anyi, with 1≤ i ≤ k, we havexi ∈ Xi; its (distance)
cost is f (S) = ∑k

i=1∑k
j=1d(xi ,x j).

We shall discuss two heuristics to approach this problem: the first is related to Algorithm 1 in that
it tries to modify the problem to make it into a decomposable one, whereas the second is based on the
notion of hitting distance.

Before describing the two heuristics, let us briefly explainthe rationale behind the additional as-
sumption (i.e., that everyG[Xi] be connected). In our main application (entity-linking) the structure of
the graph within eachXi is not very important, and can actually be misleading: a verycentral node in a
large candidate set may seem very promising (and may actually minimize the distance to the other sets)
but can be blatantly wrong. It is pretty much like the distinction between nepotistic and non-nepotistic
links in PageRank computation: the linkswithin each host are not very useful in determining the impor-
tance of a page—on the contrary, they may be confusing, and are thus often disregarded.

Based on this observation, we can (and probably want to) modify the structure of the graph within
each setXi to avoid this kind of trap. This is done by preserving theexternallinks (those that connect
vertices ofXi to the outside), but at the same time adding or deleting edgeswithin eachXi in a suitable
way. In our experiments, we considered two possible approaches:

• one consists in makingG[Xi] maximally connected, i.e., transforming it into a clique;

• the opposite approach makesG[Xi] minimally connectedby adding the minimum number of edges
needed to that purpose; this can be done by computing the connected components ofG[Xi] and
then adding enough edges to join them in a single connected component.



R. Blanco, P. Boldi, A. Marino 37

Both approaches guarantee thatG[Xi] is connected, so that the two heuristics described below canbe
applied.

5.1 The spanning-tree heuristic

The first heuristic aims at modifying the graphG in such a way that the resulting instance becomes
decomposable. For the moment, let us assume that the setsXi are pairwise disjoint. To guarantee that
the problem be decomposable, we proceed as follows. Define anequivalence relation∼ onV by letting
x∼ y wheneverx andy belong to the sameXi.4 The quotient graphG/ ∼= (V/ ∼,E/ ∼) has vertices
V/ ∼ and an edge between[x] and [y] whenever there is some edge(x′,y′) ∈ E with x′ ∼ x andy′ ∼ y
(here, and in the following,[x] denotes the∼-equivalence class includingx). Thus, there is a surjective
(but not injective) mapι : E→ E/∼.

SinceG is connected, so isG/ ∼, and we perform a breadth-first traversal ofG building a spanning
treeT. Every tree edge is an edge ofG/∼, so its pre-image with respect toι is a nonempty set of edges
in G. Let us arbitrarily choose one edge ofG from ι−1(t) for every tree edget, and letT ′ be the resulting
set of edges ofG.

Define the new graphG′ = (V,E′) whereE′ = T ′∪
⋃k

i=1 E(G[Xi]): this graph cointains all the edges
within each setXi, plus the setT ′ of external edges.

It is easy to see thatG′[Xi] is connected (it is in fact equal toG[Xi]), and moreover all the elements of
T ′ are bridges dividing all theXi ’s in distinct biconnected components. In other words, we have turned
the instance into adecomposableone, where Algorithm 1 can be run.

The non-disjoint case If the setsXi are not pairwise disjoint, we can proceed as follows. Let us define
maximal mutually disjoint sets of indicesI1, . . . , Ih⊆{1, . . . ,k} such that for allt 6= s,∪i∈It Xi∩∪i∈IsXi = /0.

Now, take the new problem instance with the same graph and setsY1, . . . ,Yh whereYt = ∪i∈It Xi: this
instance is disjoint, so the previous construction applies. The only difference is that, at the very last step
of Algorithm 1, when we are left with a graph and asingle Yt , we will not select a singley∈Yt optimizing
the cost function

∑
z∈B

b(z)d(y,z).

Rather, we will choose one elementxi for everyi ∈ It optimizing

∑
i∈It

∑
z∈B

b(z)d(xi ,z).

Discussion Both steps presented above introduce some level of imprecision, that make the algorithm
only a heuristic in the general case. The first approximationis due to the fact that building a tree on
G will produce distances (between vertices living in different Xi) much larger than they are inG; the
second approximation is that when we have non-disjoint sets, we only optimize with respect to bridges,
disregarding the sum of distances of the nodes of different sets. Actually, we should optimize

∑
i∈It

∑ j ∈ Itd(xi ,x j)+∑
i∈It

∑
z∈B

b(z)d(xi ,z).

but this would make the final optimization step NP-complete.

4Note that, since the setsXi are pairwise disjoint,∼ is transitive.
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5.2 The hitting-distance heuristic

The second heuristic we propose is based on the notion ofhitting distance: given a vertexx and a set
of verticesY, define the hitting distance ofx to Y asd(x,Y) = miny∈Y d(x,y). The hitting distance can
be easily found by a breadth-first traversal starting atx and stopping as soon as an element ofY is hit.
Given a general connected instance of MINDR, as described above, we can consider, for everyi and
everyx∈ Xi, the average hitting distance ofx to the other sets:

∑k
j=1d(x,Xj)

k
.

The elementx∗i ∈ Xi minimizing the average hitting distance (or any such an element, if there are many)
is the candidate chosen for the setXi in that solution.

The main problem with this heuristic is related to its locality (optimization is performed separately
for eachXi); moreover the worst-case complexity isO(m∑i |Xi|), that reduces toO(k ·m) only under the
restriction that the setsXi haveO(1) size.

6 Experiments

All our experiments were performed on a snapshot of the English portion of Wikipedia as of late Febru-
ary 2013; the graph (represented in the BVGraph format [3]) was symmetrized and only the largest
component was kept. The undirected graph has 3 685 351 vertices (87.2% of the vertices of the original
graph) and 36 066 162 edges (99.9% of the edges of the original graph). Such a graph will be called the
“Wikipedia graph” and referred to asG throughout this experimental section.

Our experiments use actual real-world entity-linking problems for which we have a human judgment,
and tries the two heuristics proposed in Section 5, as well asa greedy baseline and other heuristics.

The greedy baseline works as follows: it first chooses an index i at random, and draws an element
xi ∈Xi also at random. Then, it selects a vertex ofxi+1 ∈Xi+1,xi+2∈ Xi+2, . . . ,xk ∈Xk,x1∈ X1, . . . ,xi−1 ∈
Xi−1 (in this order) minimizing each time the sum of the distancesto the previously selected vertices;
the greedy algorithm continues doing the same also forxi ∈ Xi to get rid of the only element (the first
one) that was selected completely at random. Moreover we have considered also two other heuristics,
that have been observed to be effective in practice [9]: these aredegreeand PageRank based. They
respectively select the highest degree and the highest PageRank vertex for each set.

The real-world entity-linking dataset has been taken from [11] which contains a larger number of
human-labelled annotations. For retrieving the candidates, we created an index over all Wikipedia pages
with different fields (title, body, anchor text) and used a variant of BM25F [2] for ranking, returning
the top 100 scoring candidate entities. Since the candidateselection method was the same for every
graph-based method employed, there should be no bias in the experimental outcomes.

The problem instances contained in the dataset have 11.73 entities on average (with a maximum of
53), and the average number of candidates per entity is 95.90 (with a maximum of 200). Each of the 100
problem instances in the NEL dataset is annotated, and in particular, for everyi there is a subsetX∗i ⊆ Xi

of fair vertices (that is, vertices that are good candidates for that set): typically|X∗i | = 1. Note that, for
every instance in the NEL dataset, we deleted the setsXi such thatX∗i were not included in the largest
connected component of the Wikipedia graph. The number of setsXi deleted was at maximum 2 (for two
instances). We have not considered instances in which, after these modifications, we have just one setXi:
this situation happened in 5 cases. So the problem set on which we actually ran our algorithm contains
95 instances.
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DISTANCE-COST RATIO VALUE

MAXIMAL M INIMAL MAXIMAL M INIMAL

CONNECTION CONNECTION CONNECTION CONNECTION

Average Average Average Average
HEURISTIC (± Std Error) (± Std Error) (± Std Error) (± Std Error)
Spanning-tree 122.747(±2.812) 130.998 (±2.917) 0.369 (±0.023) 0.360 (±0.023)
Hitting-distance 103.945 (±1.320) 105.797 (±2.322) 0.454 (±0.027) 0.459 (±0.027)
Greedy 101.969 (±0.429) 102.785 (± 0.426) 0.428 (±0.025) 0.426 (±0.026)
Degree based 114.182 (±2.386) 113.285 (±2.305) 0.411 (±0.024) 0.394 (±0.023)
PageRank based 114.894 (±2.452) 112.392 (±2.266) 0.407 (±0.025) 0.398 (±0.023)

GROUND TRUTH 115.117 (±1.782) 119.243 (±1.873)

Table 1: Distance-cost ratio and value.

For every instance, we considered the maximal and minimal connection5 approach, and then ran both
heuristics described in Section 5, comparing them with the greedy baseline, and also with the degree and
PageRank heuristics.

For any instance, when comparing the distance costf of the solutionsSj returned by some algorithm
A j , we have computed thedistance-cost ratioof each algorithmA j , defined as

f (Sj)

min j f (Sj)
·100.

Intuitively this corresponds to the approximation ratio ofeach solution with respect to the best solution
found by all the considered algorithms: hence the best algorithm has minimum distance-cost ratio and it
equals 100.

Besides evaluating the distance cost of the solutions foundby the various heuristics, we can compute
how many of the elements found are fair: we normalize this quantity by k, so that 1.0 means that all the
k candidates selected are fair. We call such a quantity thevalueof a solution.

In the last two columns of Table 1 we report, for each heuristic, the average value (across all the
instances) along with the standard error. For both the connection approaches, we have that the hitting-
distance heuristic outperforms all the other heuristics, and it selects more than 45% of fair candidates.
The variability of the results seems not to differ too much for all the methods. The second best heuristic
is the greedy baseline, that selects almost 42.8% and 42.6% fair candidates respectively in a maximal
and minimal connected scenario.

It is worth observing that the greedy approach comes second (as far as the value is concerned),
and outperforms the baseline techniques (degree and PageRank). The spanning tree heuristic, instead,
perform worse than any other method.

The latter outcome is easily explained by the fact that it transforms completely the topology of
the graph in order to make the instance decomposable, and thedistances between vertices are mostly
scrambled. This interpretation of the bad result obtained can also be seen looking at the distance cost
(central columns of Table 1): the spanning-tree heuristic is the one that is less respectful of distances,
selecting candidates that are far apart from one another.

In the central columns of Table 1, we report also the distance-cost ratio for all the other heuristics.
For both the maximal and the minimal connection approaches,the greedy baseline seems to obtain more

5To obtain the minimal connection of eachG[Xi ], we chose to connect the vertex of maximum degree of its largest component
with an (arbitrary) vertex of each of its remaining components.
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often a minimum distance cost solution. The second best option is the hitting distance heuristic, while
the other methods seems to be more far away from an optimal result.

In the last row of Table 1, we report the distance-cost ratio for the ground-truth solution given by the
fair candidates. It seems that for any instance, the ground truth has distance cost averagely 15%-20%
higher than the best solution we achieve by using the heuristics. This observation suggests that probably
our objective function (that simply aims at minimizing the graph distances) is too simplistic: the distance
cost is an important factor to be taken into account but certainly not the unique one.

It is interesting to remark, though, that the average Jaccard coefficient between the solution found
by the degree based and the hitting-distance heuristic is 0.3 (for both maximal and minimal connection
approaches): this fact means that the degree and distance can be probably used as complementary features
that hint at different good candidates, although we currently do not know how to combine these pieces
of information.

Finally, we remark that we also tried to apply the degree and PageRank based heuristics by using the
same problem set butin the original directed graph; in this case, we did not enforce any connectivity of
the subgraphsG[Xi]: the resulting average values (± standard error) are respectively 0.327 (±0.020) and
0.336 (±0.022), and they are both worse than the values achieved by degree and PageRank heuristics in
Table 1. This fact suggests that our experimental approach (of considering the undirected version and of
enforcing some connectivity on the subgraphs) not only guarantees the applicability of our heuristics in
a more suitable scenario, but also improves the effectiveness of the other existing techniques.

7 Conclusions and future work

Inspired by the entity-linking task in NLP, we defined and studied a new graph problem related to Max-
imum Capacity Representative Set and we proved that this problem is NP-hard in general (although it
remains an open problem to determine its exact approximability). Morevoer, we showed that the problem
can be solved efficiently in some special case, and that we cananyway provide reasonable heuristics for
the general scenario. We tested our proposals on a real-world dataset showing that one of our heuristics
is very effective, actually more effective than other methods previously proposed in the literature, and
more than a simple greedy approach using the same cost function adopted here.

The other heuristic proposed in this paper seem to work poorly (albeit it reduces to a case where we
know how to produce the optimal solution), but we believe that this is just because of the very rough
preprocessing phase it adopts; we plan to devise a more refined way to induce the conditions needed for
Algorithm 1 to work, without having to resort to the usage of aspanning tree—the latter scrambles the
distances too much, resulting in a bad selection of candidates.

Finally, we observed that a distance-based approach is complementary to other methods (e.g., the
local techniques based solely on the vertex degree), hinting at the possibility of obtaining a new, better
cost function that exploits both features at the same time.
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A Proof of Lemma 1

Proof. We reduce MAX CRS to MINDIR. Given an instance of MAX CRS,{X1, . . .Xk} and for anyi 6= j,
x∈ Xi, andy∈ Xj , a nonnegative capacityc(x,y), we construct the instance of MINDIR G,{X1, . . . ,Xk};
the vertices ofG are X1∪ . . . ∪Xk, and for any pairx ∈ Xi, y ∈ Xj , with i 6= j, we add a weighted
edge betweenx and y, i.e., for each pair for which MAX CRS defines a capacity we create a corre-
sponding edge inG. In particular the weight of the edge betweenx andy is set toα − c(x,y), where
α = 2maxz∈Xi ,t∈Xj ,i 6= j c(z, t).

Observe that for any pair of nodesu∈ Xi, v∈ Xj , with i 6= j, d(u,v) in G is equal to the weight of
(u,v), i.e., it is not convenient to pass through other nodes when going fromu to v: in fact, for any path
z1, . . . ,zp from u to v in G, with p≥ 1, we always haveα − c(u,v) ≤ α − c(u,z1)+ . . .+α − c(zp,v),
sinceα − c(u,v) ≤ α and the weight of such a path is at leastp+1

2 α ≥ α . Moreover, observe that any
optimal solution inG has exactly one element for each setXi: thus, we havek(k−1) pairs of elements
(x,y), whose distance is always given by the weight of the single edge(x,y), that isα−c(x,y).

Hence it is easy to see that MAX CRS admits a system of representatives whose capacity is greater
thanh, if and only if MINDIR admits a solutionSsuch thatf (S) is less thank(k−1)α−h.

Since MINDIR is a restriction of MINDR we can conclude that also MINDR is NP-complete.

B Proof of Theorem 1

Proof. We can rewrite the objective function as follows.

∑
xi ,xj∈S

d(xi ,x j)+ ∑
xi∈S

∑
z∈B

d(xi ,z)b(z) = 2|Y0||Y1|d(t0, t1)+ ∑
xi ,xj∈S∩V(Y0)

d(xi ,x j)+ ∑
xi ,xj∈S∩V(Y1)

d(xi ,x j)+

2|Y1| ∑
xi∈S∩V(Y0)

d(xi , t0)+ ∑
xi∈S∩V(Y0)

∑
z∈B

d(xi ,z)b(z)+

2|Y0| ∑
xj∈S∩V(Y1)

d(t1,x j)+ ∑
xi∈S∩V(Y1)

∑
z∈B

d(xi ,z)b(z).

This is because ifz∈ B∩Z1, for any nodexi ∈ S∩V(Y0), we haved(xi ,z) = d(xi , t0) + d(t0,z) (and
analogously, ifz∈ B∩Z0, for any nodexi ∈ S∩V(Y1), we haved(xi ,z) = d(xi , t1)+d(t1,z)). Hence:

∑
xi∈S∩V(Y0)

∑
z∈B

d(xi ,z)b(z) = ∑
xi∈S∩V(Y0)

∑
z∈B∩Z0

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y0)

∑
z∈B∩Z1

d(xi , t0)b(z)+d(t0,z)b(z)

and

∑
xi∈S∩V(Y1)

∑
z∈B

d(xi ,z)b(z) = ∑
xi∈S∩V(Y1)

∑
z∈B∩Z1

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y1)

∑
z∈B∩Z0

d(xi , t1)b(z)+d(t1,z)b(z).

Observe thatt0 or t1 might already belong toB: this is why we assumed thatB is a multiset.
Then, we have that:

f (S0) = ∑
xi ,xj∈S∩V(Y0)

d(xi ,x j)+ ∑
xi∈S∩V(Y0)

∑
z∈B∩Z0

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y0)

d(xi , t0) ·

(

2|Y1|+ ∑
z∈B∩Z1

b(z)

)
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f (S1) = ∑
xi ,xj∈S∩V(Y1)

d(xi ,x j)+ ∑
xi∈S∩V(Y1)

∑
z∈B∩Z1

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y1)

d(xi , t1) ·

(

2|Y0|+ ∑
z∈B∩Z0

b(z)

)

Hence, by addingts to B∩Zs = Bs, with weight equal tobs = 2|Y1−s|+∑z∈B∩Z1−s
b(z), f (S) can be

reduced tof (S0) and f (S1).

C The algorithm for finding useful edges

Algorithm 2: USEFULEDGE

Input : An instanceG,{X1, . . . ,Xk},B,b
Output : A useful edge, or null
Pick a nodeu of the setXi of the instanceG,{X1, . . . ,Xk},B,b
Mark all the nodes as unseen
dfs[]←−1, visited← 0, usefulEdgeFound← f alse, usefulEdge← null
DFS(u,−1)
if usefulEdgeFoundthen

return usefulEdge
else

return null
end

Algorithm 3: DFS
Input : A nodeu, its parentp
Output : A pair (t,Y), wheret is an integer andY is a set of indices
if usefulEdgeFoundthen return null Mark u as seen
dfs[u]← visited
visited← visited+1
furthestAncestor← visited
Y← /0
if t ∈ Xi then Y←Y∪{i} for v∈ N(u) s.t. w6= p do

if v is unseenthen
(t ′,Y′)← DFS(v,u)
if t ′ > dfs[u] and /0 6=Y′ 6= {1, . . . ,k} then

usefulEdgeFound← true
usefulEdge← (u,v)
return null

end
furthestAncestor←min(furthestAncestor, t ′)
Y←Y∪Y′

else
furthestAncestor←min(furthestAncestor,dfs[v])

end
end
return (furthestAncestor,Y)


	1 Introduction
	2 Related Work
	3 Problem statement and NP-completeness
	3.1 NP-completeness of MinDR

	4 The decomposable case
	4.1 Decomposing the problem
	4.2 Finding useful edges
	4.3 The final algorithm

	5 The general case
	5.1 The spanning-tree heuristic
	5.2 The hitting-distance heuristic

	6 Experiments
	7 Conclusions and future work
	A Proof of Lemma ??
	B Proof of Theorem ??
	C The algorithm for finding useful edges

