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Preface

Today's technological advancements have allowed for vast amounts of information to be widely 
generated,  disseminated  and  stored.  This  exponentially  increasing  amount  of  information  has 
rendered  the  retrieval  of  relevant  information  a  necessary  and  cumbersome  task.  The  field  of 
Information Retrieval addresses this task by developing systems in an effective and efficient way. 
Specifically, IR effectiveness deals with retrieving the most relevant information to a user need, 
while IR efficiency deals with providing fast and ordered access to large amounts of information. 

The efficiency of IR systems is of utmost importance, because it ensures that systems scale up to the 
vast  amounts  of  information  needing  retrieval.  This  is  an  important  topic  of  research  for  both 
academic and corporative environments. In academia, it is imperative for new ideas and techniques 
to be evaluated on as near-realistic environments as possible; this is reflected in the past Terabyte 
track  and  recent  Million  Query track  organised  by  the  Text  REtrieval  Evaluation  Conferences 
(TREC). 

In corporate environments, it is important that systems response time is kept low, and the amount of 
data processed high. These efficiency concerns need to be addressed in a principled way, so that 
they can be adapted to new platforms and environments, such as information retrieval from mobile 
devices, desktop search, distributed peer to peer, expert search, collaborative filtering, multimedia 
retrieval,  and so on.  Efficiency research over  the past  years  has  focused  on efficient  indexing, 
storage (compression) and retrieval of data (query processing strategies). 

Some of the questions  to  be addressed in  this  workshop are:  What  are  the efficiency concerns 
regarding IR applications (both new and traditional)? Do new applications create novel efficiency 
problems? Can existing efficiency related technology deal with these new applications? Has there 
been any advance in the last decade on state-of-the-art efficiency, or is it at a stand-still? Finally, 
bearing in mind past research on effciency, sketch future directions for the field. 
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The index, the cache and the company’s cash: daily
trade-offs for the modern information retriever

Diego Puppin

Google, Boston, USA
diego.puppin@alum.mit.edu

Abstract. With more than one billion people accessing the Internet, with million
queries asked daily, modern Web search engines are facing a problem of daunt-
ing scale. Search engines are expected to offer better and fresher results, faster,
while Web is growing every day at accelerating speed. And all this must must be
achieved while trying to limit the resources, the cash, put into crawling, indexing,
querying and serving results.
Distributed search infrastructures, such as the document-partitioned and the pipelined
term-partitioned architectures, are reaching a limit. A typical document-partitioned
architecture has to scan the whole index before returning an answer, while term-
partitioned architectures have major load-balancing problems.
We propose a new approach, based on representing documents as ”bag of queries”,
which uses a document collection strategy to reduce the number of servers uti-
lized by each query. By learning from users’ behavior, our system can return very
high quality results, with a strongly reduced computing load.
We also discuss the advantages and limits of the typical result cache as imple-
mented in search engines, and we show how to exploit the peculiarity of our col-
lection selection strategy to improve the result quality, while reducing the com-
puting needs at the same time. Our technique is able to guarantee, for repeated
queries, results comparable to those obtained with a centralized index, at a frac-
tion of the cost.
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A Distributed Indexing Strategy  
for Efficient XML Retrieval  

Judith Winter1 and Oswald Drobnik1 

 
1 J.W.Goethe University, Institute for Informatics, Frankfurt, Germany 

{winter, drobnik}@tm.informatik.uni-frankfurt.de  
 

Abstract. Using structural information from XML-documents can help to 
improve retrieval quality of these documents significantly, even in highly 
dynamic environments such as Peer to Peer (P2P) systems. However, due to the 
absence of a central index, the index information to be stored in a P2P network 
must be selected and distributed carefully to reduce communication costs and to 
guarantee scalability. We propose a novel indexing strategy for XML Informa-
tion Retrieval in P2P systems. Indexing techniques to realize efficient retrieval 
include the use of highly discriminative keys (HDKs) which are created from 
rare combinations of content and structure information and used to support 
efficient retrieval, in particular for multi term queries. Depending on a peer’s 
status, we index documents either globally into distributed indexes or locally in 
connection with distributing peer summaries. Finally, structural information 
from XML-documents is used to select entries for pruned posting and peer lists. 

Keywords: Information Retrieval, Peer-to-Peer, XML Information Retrieval, 
XML-Retrieval, Indexing, Peer Selection, Highly Discriminative Keys, 
Distributed Search 

1   Introduction and Related Work 

Peer-to-Peer networks are a potentially powerful form of distributed computing, 
where peers – large sets of equal and autonomous nodes – are pooled together to share 
resources such as storage and computing power. Activities involved in search include 
issuing requests (“querying”), routing requests (“query routing”), matching results 
(“ranking”), and responding to requests (“retrieval”) [8].  

A precondition for efficient Information Retrieval (IR) is an adequate indexing 
strategy, which is the process of building an index over the document collection. 
Typically, an inverted index is used for storing the lexicon (index terms) and the 
posting lists (occurrences of the index terms in the collection) [2]. In P2P environ-
ments, two different methods of distributing an inverted index can be applied: docu-
ment partitioning which is partitioning the document collection into several smaller 
sub-collections and indexing each of them, or term partitioning which is partitioning 
the inverted index by index terms [25].  
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Searching collections based on IR is a useful feature for the user. However, 
performing the search efficiently and maintaining scalability is one of the main 
obstacles in distributed environments [7]. Query processing consumes a considerable 
amount of resources even with centralized solutions; additional challenges arise in 
highly distributed P2P systems with bandwidth and latency constraints. The task of 
locating useful index information comes up, before relevant results can be ranked and 
retrieved. In order to reduce bandwidth consumption, P2P-IR algorithms aim at 
improving the efficiency of query evaluation by reducing the volume of index infor-
mation fetched and processed, e.g. by using only selected information [12]. Selection 
techniques involve cutting off posting lists (“top-k pruning”) or contacting only a 
small subset of participating peers that contain many documents relevant to the query 
(“resource selection”) [8].  

Approaches for Information Retrieval in P2P networks (P2P-IR) are a recent field 
of research. So far, acceptable response times are only achieved by solutions for 
simple pattern matching: documents are located in the P2P network by their name and 
only if they match the query exactly. An overview of P2P-IR approaches and criteria 
for their classification are presented in [17], whereas the issue of looking up data in 
P2P systems based on distributed hash tables (DHTs) is discussed in [3]. An efficient 
P2P search engine using IR techniques can be found in [15] where a key-based 
indexing strategy instead of single-term indexing is proposed, with keys being term 
sets that appear in a restricted number of documents, thus being highly discriminative 
keys. Two interesting approaches addressing the problem of efficiently selecting 
promising peers for answering a query are Minerva [4] and PlanetP [5]. Minerva is a 
distributed search engine on top of a DHT whose peer selection strategy is based on 
peer summaries. PlanetP is a content addressable publish/subscribe service for un-
structured P2P communities that selects and contacts peers until k documents are 
found and until retrieving more documents would fail to contribute better results than 
these k documents. 

The self-describing structure of XML can be a valuable source to achieve more 
precise and focused IR results when retrieving XML-documents. Methods include 
weighting diverse parts of documents differently; content and structure (CAS) queries 
enable users to specify structural constraints on what to retrieve; and retrieval units 
can consist of entire documents or only the most relevant parts of a document. A 
survey on indexing and searching XML-documents is conducted in [9]. Evaluation 
has shown successful application of XML Information Retrieval [10]. However, 
current approaches are all based on traditional client/server architectures.  

Schema-based P2P networks or Peer Data Management Systems do apply XML in 
a P2P environment by providing techniques for the lookup of semi-structured data, 
e.g. by using XML P2P databases [23]. These systems consider exact or even partial 
matches and return either documents as a whole or XML fragments. However, they 
do not provide means to compute content relevance or structure similarity so far. A 
general idea about indexing, query routing, and query processing of XML data in a 
P2P network is presented in [6]. None of the analyzed approaches enables the use of 
IR techniques to compute relevance, though. The central challenge concerning the 
indexing process is identified as the handling of both value and path indexes. 
Deriving appropriate mappings of documents to peers is considered as the main 
problem of structured P2P systems. A fully self-organizing XML P2P database 
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system for sharing and querying XML data is presented in [19]. Information is re-
quested with XQuery, so that a user can execute very expressive queries, but the 
results will have to match exactly. 

To our knowledge, no P2P solutions for IR of XML-documents exist so far. 
Schema-based P2P-networks consider hints about the desired document structure but 
do not yet provide means to compute the relevance of documents. In this paper, we 
propose the first approach for XML Information Retrieval in a P2P system and 
concentrate on a novel indexing strategy for efficient retrieval. 

2   Challenges for XML Indexing in P2P Systems 

Approaches for ranking of XML-documents can incorporate structural information to 
improve retrieval quality. Additionally, retrieval units can be whole documents or 
document parts, therefore term statistics have to be collected for both. Even for cen-
tralized IR approaches, this introduces the challenge of storing the extra information 
efficiently in terms of storage space and access effort. Optimally, the information 
available for XML Information Retrieval would consist of all term statistics of all 
retrieval units in all XML documents for all possible query term combinations and 
would be accessible by all participating computers. However, this would result in a 
very exhaustive indexing process, especially if all indexing information is stored in a 
P2P network, with “churning” peers producing a highly dynamic data flow by joining 
and leaving the network. Hence, the information to be indexed and its distribution 
over the network have to be selected very carefully. 

In P2P systems, the document collection to be queried is not static but undergoes 
constant change, e.g. by churning peers. In particular, there is no central index to store 
term weights and other evidence necessary for relevance computing, but the index is 
distributed over the network. Each newly indexed document leads to a bunch of mes-
sages sent between the peers to distribute the extracted information, and each churn of 
peers implies a redistribution of the existing information. Thus, communication over-
head is a major cost factor [7]. The extra information stored and accessed for XML IR 
can additionally increase the amount of data transfer. Accordingly, the number and 
size of messages sent over the network should be minimized.  

Due to the absence of a central index, peers cannot access required information 
directly but must locate it before use. Furthermore, the number of peers to be 
contacted for a specific query must be limited in order to guarantee scalability of the 
system – only carefully selected information can be used. Consequently, the index 
must be designed and distributed such that each peer can easily locate and access all 
content and structure information required for the peer’s participation in answering a 
specific query. The peer has to store this information locally or must have knowledge 
how to get it from other peers. Information relates to the content of documents and 
document parts as well as their structure. 

Around 85% of all queries are multi term queries that consist of more than one 
query term [14]. Especially in P2P systems, handling of multi term queries turns out 
to be a further challenge, since posting lists of all query terms must be matched with 
each other. This is of particular concern for large collections and popular terms, when 

9 



very large posting lists are transferred for matching leading to massive network 
traffic. In most existing P2P-IR approaches, much bandwidth is consumed by locating 
and sending large posting lists for the different query terms over the network, and 
expensive joins of these posting lists are performed at querying time. However, quick 
access to term combinations is desirable, especially to reduce network traffic and to 
facilitate query execution. 

3   A Hybrid Indexing Strategy Based on HDKs 

Our proposal for an indexing strategy aims at efficient querying by several 
techniques: pre-computing of posting lists for popular query term combinations; 
reducing posting list sizes to a fixed limit by indexing only rare terms (or term 
combinations) - highly discriminative keys; indexing documents either globally to 
distributed indexes or locally in connection with distributing peer summaries; and 
using structural information given by the user or by the documents themselves to 
select the entries that are stored in posting and peer lists. 

3.1   Indexing Highly Discriminative Keys 

Usually, documents are indexed per single terms. This might result in long posting 
lists for popular terms and in expensive joins of these posting lists for multi term 
queries. To avoid these problems, the use of highly discriminative keys was proposed 
in [15]. The original approach extracts all index terms of a document and distin-
guishes between rare and frequent keys. Only those keys whose global document 
frequency (df) with respect to the whole collection does not exceed a threshold are 
considered rare and specific enough to describe the document’s content. Frequent 
keys, i.e. with a global df above that threshold, are regarded as non-discriminative. 
They are combined with each other if hints imply that they might be used together in 
a multi term query, e.g. based on a query log analysis [21] or if they occur in the same 
window of the same document. Only rare keys and rare key combinations are consid-
ered as highly discriminative keys and thus are indexed. As a result, the posting list of 
a HDK never exceeds the threshold. Multi term queries are supported by those HDKs 
that consist of several terms. Despite increased indexing costs by indexing several 
combinations per frequent key, the total traffic generated is notably smaller than when 
using a distributed single-term indexing strategies [16]. 

In extension of this approach, our HDK-based indexing strategy is applied to 
XML-documents, where structure can be taken into account at several steps of the 
retrieval process and consequently must be indexed. For each term in a document, 
structural information about the XML elements that contain this term is extracted 
together with the content. We denote by XTerm a tuple of content (i.e. term) and its 
structure, which is the path from the document root element to the term element in the 
XML-document tree expressed with XPath. The extracted XTerms are used to build 
HDKs by combining XTerms such that each combination is rare. A HDK can either 
consist of a single rare XTerm, in which case the XTerm’s global frequency in the 
document collection does not exceed the frequency threshold. Or the HDK consists of 

10 



a set of frequent XTerms if each XTerm is frequent but the combination of XTerms is 
rare. We denote an index key as being either a HDK or an XTerm. The global 
frequency of an XTerm t is computed as a combination of the df of t’s content (as in 
the original HDK approach) and the df of t, i.e. different frequencies for different 
structures are taken into account. However, df of t’s content has more impact on the 
global frequency, as we focus on content-based search and use structure as vague hint 
considering that the user might not be able to specify the respective structure 
precisely. 

While extracting and building the HDKs, their term statistics are collected for later 
ranking. These statistics are not limited to static document statistics but include in-
formation about document parts, too: for each document, evidence for several of its 
potential retrieval units is collected. The decision, which passages of a document are 
chosen as potentially good retrieval units, is based on several factors, e.g. the depth of 
a passage’s path, the size of the passage, experience from past retrieval, parameters 
set by the user, or if the passage is very focused regarding a specific topic. 

To support efficient retrieval, pruned posting lists are indexed for frequent XTerms 
in addition to full posting lists for HDKs. There are two reasons for this. First, HDKs 
composed of more than one XTerm have posting lists that contain only documents in 
which all XTerms appear: the posting list pl(h) for a HDK h is created as intersection 
of the posting lists of all XTerms ti in h, i.e. pl(h) = ∩ pl(ti  | ti∈ h). Entries for docu-
ments that contain only one ti are therefore not stored; this might be an undesired 
effect for highly relevant documents. Thus, the most relevant documents are stored 
for frequent XTerms, too, and can later be included into the ranking. Second, not all 
queries are composed of HDKs completely. When a given query q is executed, it has 
to be split into HDKs. The query terms would ideally form a single existing HDK – 
the posting list for the query would have been already computed and can be used 
directly after locating it. In case the query has to be split into several HDKs, it might 
happen that not all query terms can be covered and non-discriminative XTerms are 
left. In [24] it was proposed to either ask the user to specify such XTerms by adding 
further hints on content or structure, or to merge posting lists of HDKs containing 
those terms. However, this results either in additional effort for the user or in compu-
tation costs and network traffic for the posting list merging. Using an additional index 
for frequent XTerms can increase efficiency. The posting lists for frequent XTerms 
are pruned to a limit PLmax which is proportional to the frequency threshold used for 
HDKs so that these posting lists are limited to a fixed number of entries, too. The 
approach in [22], that extends the original HDK algorithm by applying query-driven 
indexing, suggests truncating posting lists –if necessary– by ranking the posting list 
entries according to the BM25 relevance computation scheme. We propose a more 
elaborated formula for pruning, such as the scoring function shown in formula (1) 
which is applied to choose the top k best posting list entries for XTerm t. 
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The function is used to sort the posting list of t by scoret(di) instead of simply using 
the term frequency as sorting key. This score is computed at indexing time and takes 
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into account weights for document di and its best retrieval unit rubest., i.e. the retrieval 
unit with the highest weight for t. Alternatively, the average or even the sum of all 
indexed retrieval units of di could be considered. For the weighting function w, we 
adapted the BM25f formula [18] to XML IR. Parameters include the inverted collec-
tion frequency (icf) of t; the term frequency of t in di; and the term frequency of t in 
rubest. The scoret(pi) depends on the quality of peer pj on which di is stored. For 
instance, the peer score is high for peers with good collections regarding t and with 
good performance metrics such as response times. Values for , , and γ can be 
chosen such that 1≥≥≥γ≥0, i.e. the document weight will be favoured. 

3.2   Hybrid Evidence Indexing 

A peer can either index information locally or globally, depending on its status at 
indexing time. The more reliable and valuable a peer is, the more information it is 
allowed to send over the network (consuming more bandwidth and storage space) at 
indexing time, and the more information about the peer and its collection is available 
at querying time. A peer p is regarded as reliable, if it performed well in the past (e.g. 
provided highly relevant results for past queries) or if it provides a high quality col-
lection (e.g. can achieve high scores regarding formula (1) for at least one ti). Peer 
characteristics such as response times, available bandwidth, open IP address (vs. 
NAT-bound), latency, and CPU/Memory are also considered. To provide adequate 
peer statistics, we developed a P2P protocol that is based on Kademlia [11] and 
collects the desired information. Those peers will be preferred that have stayed online 
for at least x minutes, as the probability that a peer stays online increases with its 
uptime. For example, a network analysis of three file sharing systems found, that 65% 
of the peers joined the system online only once, that more than 20% of all connections 
lasted 1 minute or less, and that around 60% of the peers kept active no longer than 10 
minutes each time they joined the system [20]. Of course, the peers’ behaviour varies 
depending on the application. In our proposal, a relatively stable system is assumed 
where peers usually stay online over longer time periods. However, peers with short 
online times or which join the system only once and then disappear forever should not 
be allowed to perform an exhaustive indexing. 

Our hybrid strategy distinguishes between peers with different status. Peers with 
full reliable status can store all extracted evidence into indexes distributed over the 
network, i.e. all term statistics are stored per document. Peers with low status (or if 
the user chooses “quick indexing”) can store the extracted evidence only locally; a 
summary of the peer’s overall collection will then be stored in the distributed indexes, 
i.e. all term statistics are stored per local collection. Hence, the indexing process dis-
tributes two lists for each key: a posting list with entries for documents (which where 
indexed per document), and a peer list with entries for peers (which hold documents 
that were indexed per collection). In the retrieval process, entries from both lists are 
taken into account, with a bias to posting list entries since these host the more signifi-
cant information. 
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4   An Architecture Based on Distributed Indexes 

Index information will be stored and accessed as shown in the architecture of each 
peer in figure 1. Black arrows denote local interaction between components of the 
same peer, whereas dotted arrows denote interaction between components of different 
peers via the P2P complex. The search engine is accessed by graphical user interface 
(GUI) which is part of the application complex. All interaction between components 
of different peers such as lookup and storage of indexed information are handled by 
the P2P complex. 

 

Index storage component

local index

distributed index

INFORMATION  
RETRIEVAL     

PEER-TO-PEER

APPLICATION  

Retrieval 
component

Ranking 
component

P2P component variant of DHT-algorithm (Kademlia)

Document
index

Retrieval unit
index

documents dn

query q

results for q

term statistics for
retrieval units(d)

Graphical User Interface Indexing

Indexing
component

Frequent
XTerm index

HDK
index

Querying & result presentation

P2P network

Document
index

HDK
index

frequencies

Retrieval unit
index

(2)

File system

local documents

(1) Lookup frequencies /

store HDK, frequent keys, 
term weights, document IDs…

(2) request results for documents
di ∈ posting lists(keys ki∈ q)
or dj on pi ∈ peer lists(keys ki∈ q)

(3) request entries from lists:
di ∈ posting list(k)
dj on pi ∈ peer lists(keys ki ∈ q)

(4) results for retrieval units(di)

(1)

(4)
(4)(2) (4)(2)

(3)

(1)

 

Fig. 1. A peer’s architecture with several local and distributed indexes 

In the following, we focus on the Information Retrieval complex which performs 
indexing, querying, and ranking of XML-documents. Both a term-partitioned and a 
document-partitioned strategy [25] are combined to store (and later retrieve) all index-
ing information: HDK index and frequent XTerm index act as term-partitioned 
inverted indexes by storing posting and peer lists of keys; document index and 
retrieval unit index hold the evidence used for relevance computing and are 
implemented both in a distributed clustered version and in a local version for sub-
collections. 

The INDEXING COMPONENT parses XML-documents to extract all XTerms, creates 
HDKs from the extracted XTerms, and collects term statistics for potential retrieval 
units. For the HDK creation, global frequencies are requested via the P2P complex 
and received from the distributed HDK index and the frequent XTerm index. The 
following information is stored in local and distributed indexes:  
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• DISTRIBUTED HDK INDEX: For each HDK h, its global frequency, a posting list, 
and a peer list is stored. The posting list contains documents in which h occurs and 
is ordered by term frequency. These documents and their statistics are not stored 
locally but distributed among other peers. The peer list is ordered by peer score and 
contains peers that hold documents in which h occurs. 

• LOCAL HDK INDEX: The same information as in the distributed version of this 
index is stored with exception of peer lists. All information relates to locally stored 
documents of the same peer. 

• FREQUENT XTERM INDEX: For each frequent XTerm t with global tf exceeding 
threshold PLmax, a pruned posting list for the PLmax best documents and a pruned 
peer list for the best peers are stored. Links to all HDKs containing t are stored, 
too. 

• DOCUMENT INDEX: For each document, statistics are maintained to compute the 
relevance of the document in the ranking process. Additionally, links to possible 
retrieval units of each document are stored. The statistics are represented by 
vectors to support ranking based on an extended vector space model.  
The local document index stores statistics of documents stored directly on the same 
peer (and indexed per collection). The distributed version of the index stores 
statistics of documents stored on other peers (and indexed per document). 

• RETRIEVAL UNIT INDEX: Term statistics for the retrieval units of each indexed 
document are kept in vectors where each vector component represents the weight 
of an XTerm occurring in this retrieval unit. 

In the retrieval process, the indexes are used as follows: Information from HDK index 
and frequent XTerm index is used by the retrieval component of a querying peer to 
decide which peers should participate in answering a given query q. Therefore, the 
query is sent to all peers with posting lists and peer lists for HDKs covering the query. 
The retrieval components of these peers will consult their lists to select promising 
peers and redirect the query to the selected peers. These peers hold statistics of poten-
tial relevant documents in their local document index or in their locally stored part of 
the distributed document index (and also can direct access the retrieval unit statistics). 
Once they receive the query, their ranking components will perform the ranking and 
send back retrieval results to the querying peer. In the GUI of the querying peer, a 
ranked list of links to relevant documents and retrieval units is presented to the user 
who can access them directly on the source peers. 

5   Outlook 

In this paper, a novel indexing strategy for efficient XML Information Retrieval in 
P2P systems has been proposed in order to achieve reduction of bandwidth 
consumption, support of multi term queries, and quick access to distributed informa-
tion. The strategy is based on highly discriminative keys; posting lists for popular 
query term combinations are pre-computed at indexing time and their size is limited 
to a fixed threshold. Indexing is performed according to a hybrid strategy and depends 
on the indexing peer's status: only reliable peers can distribute exhaustive 
information; peers with an online time that is expected to be short can only store 
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evidence summaries. For the pruning of posting and peer lists, structural information 
is used to select the list entries. Finally, an architecture was designed that supports 
efficient retrieval by employing the proposed methods. 

At present, we are implementing SPIRIX, a P2P search engine for Information 
Retrieval in XML-documents, on top of the centralized search engine Terrier [13]. A 
P2P protocol based on Kademlia has been developed that collects the peer statistics 
for the hybrid evidence indexing. For the ranking, we extended the vector space 
model with BM25F-oriented weighting to the use of XML IR by including weights 
for structural information. Experiments with our prototype to evaluate optimal 
parameters for the proposed algorithms will start soon. 
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Abstract. In this work we present a series of collaborative filtering algorithms 
known for their simplicity and efficiency. The efficiency of this algorithm was 
compared with that of other more representative collaborative filtering 
algorithms. The results demonstrate that the response times are better than those 
of the rest (at least two orders of magnitude), in the training as well as when 
making predictions. Furthermore, when determining the quality of the 
predictions, the behavior of our algorithms is similar to that of the other 
algorithms, and even better when dealing with low-density training sets. 

Keywords: Collaborative Filtering, Efficiency, Recommender Systems 

1   Introduction 

The amount of information found in the media, such as the Internet, is growing 
more and more each year, making it necessary to develop new forms of information 
retrieval (IR). Personalized retrieval systems are becoming more interesting, 
especially when not limited to just searching for information but that also are able to 
recommend the items that would be more appropriate for the user's needs or 
preferences.  

Hence, the so-called recommender systems play an important role in the 
information society, thanks to their ability to predict the utility a particular item can 
have for a user, and thereby generate personal recommendations. 

At present, recommender systems have proven to be useful in contexts such as e-
commerce, and surely have a promising future in many others: Web search engines, 
program recommenders for digital TV, etc. 

To achieve this personalization, recommender systems need to store certain 
information about the user preferences, known as the user profile. Depending on the 
way the information is obtained, we will distinguish between explicit and implicit 
systems. The former request the required information directly from the user, for 
example, by making the user evaluate an item using a numerical scale. In contrast, the 
implicit systems work in such a way that the user is unaware of its presence, obtaining 
information from the normal interaction between the user and the system. For 
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example, a search engine can obtain information about the user by following the 
searches he/she makes, the websites visited, etc.  

There are two types of recommender systems, as a function of the algorithm used: 
content-based and collaborative filtering. 

Content-based filtering selects what information should be recommended [5]. 
These systems present various limitations [23]: 

- Item analysis should be performed automatically by a machine. This is 
problematic, especially when processing multimedia content, although the use 
of the multimedia contents mentioned has partially overcome this problem. 

- It is unable to determine item quality. The quality of an item is a profoundly 
subjective characteristic dependent on the likes of each individual. 

- It finds it difficult to describe “by chance” items that are interesting for the 
user (this is called serendipitous find). 

In contrast, collaborative filtering systems [23] avoid these problems, given they 
are based not on item content but rather on the evaluation of other users. The system 
will inform the user of what items are well recommended by other users with similar 
likes or interests. 

Because the evaluations are performed by individuals, an analysis of the content by 
the system is not necessary and the quality or subjective evaluation of the items will 
be considered. However, these algorithms present problems in their computational 
performance and efficiency. 

In this work we present a series of collaborative filtering algorithms that are known 
for their efficiency, surpassing the response times of the more relevant collaborative 
filtering algorithms found in the literature. Moreover, the quality of the predictions 
made using the algorithms proposed is, at least, the same as that of other collaborative 
filtering algorithms. 

In the section that follows, there is a brief introduction to collaborative filtering 
algorithms, including a brief description of the notation used throughout this work. 
After, there is a description of the collaborative filtering algorithms proposed. Section 
4 presents details on how the algorithm evaluation was carried out, and finally, there 
is a summary of the conclusions and possible future lines of research. 

2   Background 

In collaborative filtering-based systems, user profile is a set of evaluations (explicit 
or implicit) carried out by the user on different items. This evaluation is usually 
represented as a numerical value on a particular scale, although it can also be unifying 
(indicating only those items of interest) or binary (indicating good and bad items) 
evaluations. 

The system keeps a table containing the evaluations of the users, called an 
evaluation matrix. This table is processed to obtain the evaluation of new items, and 
thereby recommend new items to the users.  

The way in which the data of this table are processed allows us to differentiate 
between two types of collaborative filtering algorithms: memory-based and model-
based. 
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Memory-based algorithms carry out each prediction on the basis of the calculations 
performed using the entire table. Using similarity measurements the aim is to obtain 
users or items (called neighbors) that are similar to those for which we want to obtain 
a prediction, and calculate this prediction based on their neighbors. Most of these 
algorithms can be classified as user-based algorithms or item-based algorithms, 
depending on whether the process of obtaining neighbors was focused on obtaining 
similar users [18] [22] or items [20]. 

The model-based algorithms previously construct a model that is used to represent 
user behavior, and therefore, they make it possible to predict their evaluations. The 
parameters of the model are estimated offline using the data found in the table. 

In the literature we find different approaches, most related with machine learning 
[13]: based on methods of linear algebra (SVD [2][19], Factor Analysis [4], PCA [6], 
MMMF [17], among others), clustering [25][11], graphical models, or techniques 
associated with artificial intelligence, such as Bayesian networks [3], latent class 
models [9][24] or neuronal networks [2]. 

Memory-based algorithms are simple compared to the model-based, but despite 
this, they give reasonably precise results. The model-based algorithms tend to be 
faster in prediction time than the memory-based, however, the construction of the 
model requires considerable time. Another advantage of model-based algorithms is 
their ability to find underlying characteristics in the data, this being very difficult to 
achieve in the memory-based system. 

The main disadvantage of memory-based algorithms is their scalability, given each 
prediction made requires the processing of the entire table. With an elevated number 
of users or items, these algorithms are totally unadvisable for online systems that 
should recommend items in real time. 

Furthermore, they are much more sensitive to various problems that are common in 
recommender systems than are the model-based: 

- Sparsity: given most of the cells in the evaluation matrix are empty (without 
an evaluation) [20] [10]. 

- Cold-start: directly related with the previous point, there is the difficulty of 
making predictions for new users or items, and therefore, there are few 
evaluations [21]. 

- Spam: malicious users can apply certain techniques to influence the system 
[15]. 

However, despite these disadvantages, in practice the memory-based algorithms 
show the best results. The complexity of the models, dependent on multiple 
parameters, is difficult to foreseen and many times these are quite sensitive to changes 
in the data, long construction times for the model, or the problems of model updating 
when new date are available, make many algorithms unadvisable in a real system. 

Precisely, to avoid this problem, some authors have focused on the development of 
algorithms that use models that are simple and fast to calculate [12], or that use 
model-based algorithm techniques as well as memory-based [16] 

Finally, in an attempt to minimize the sparsity problem and the cold start, a third 
type of systems, called hybrids, was proposed. These combine the techniques of 
collaborative filtering with content-based methods [1][14]. 
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2.1   Notation 

The objective of collaborative filtering is the recommendation of a list of items to a 
user, or the prediction of the evaluation of a certain item. In both cases, the user object 
of the prediction or recommendation is known as active user. 

In a typical scenario of collaborative filtering, there is a set of users U={u1, u2, …, 
um} and another of items I={i1, i2, …, in}. Each user iu U∈ has a profile, represented 
as a subset of items that have been evaluated, uI I⊆ , along with the corresponding 
evaluation for each item. Similarly, the subset of users that have evaluated a particular 
item, iU U⊆ , is defined. The active user is denoted as ua. 

A user evaluates each item giving it a score on a finite numerical scale. This set of 
possible evaluations is denoted as R. 

Using the profiles of all the users we define the evaluation matrix, V, that 
represents their evaluations of the items. Each item of V, uiv R∈ ∪∅ , denotes the 
evaluation of the user u U∈ of item i I∈ , the value ∅  indicating that the user had 
not yet evaluated the item.  

Precisely, the objective of the collaborative filtering algorithm is to predict the 
value v in these cases. Let us denote uip R∈ ∪∅  as the prediction that the algorithm 
makes for the user’s evaluation u U∈ for item i I∈ . If the algorithm is unable to 
make this prediction, uip = ∅ . 

Finally, let us define the subset of evaluations carried out by a user, 
{ }/u ui uv v V i I⋅ = ∈ ∈ , and the group of evaluations for an item, 

{ }/i ui iv v U u U⋅ = ∈ ∈ . Let us denote uv ⋅  as the mean evaluation of a user, and as iv⋅  

the mean evaluation for an item. v⋅⋅ will be the overall mean evaluation. 

3   Efficient Collaborative Filtering Algorithms 

As recommender systems become more popular, they will have to deal with a higher 
number of users and items. In contexts such as Web IR, the potential number of users 
and information to treat is higher than in contexts such as e-commerce or 
recommendations of specific items (music, films...) in which traditionally, the use of 
collaborative filtering algorithms had been applied. 

To make the leap to these new contexts, an algorithm should meet a series of 
conditions that presently they do not: 

- Good behavior in settings of low density. The sparsity problem, present in 
domains of limited reach (such as film recommenders, for example), become 
more serious as the information is diversified. In these contexts, the problem is 
not only motivated by a high number of available items, but also because they 
belong to very different domains.  

- Computational efficiency. The algorithm should be scalable, to be able to 
handle the volume of information and of users of the system present in 
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contexts such as IR. Memory-based algorithms, for example, require an 
extensive calculation that makes them difficult to scalable to these new needs. 

- Constant updating. Many of the model-based algorithms are based on the more 
or less static nature of the data. The construction of the model, expensive 
computationally, is carried out offline and every certain amount of time. In 
certain contexts, this supposition is more or less correct. However, contexts 
such as Web IR are intrinsically dynamic, with continuous entries, 
withdrawals and modifications of the information. 

Next, a series of collaborative filtering memory-based algorithms designed for 
Web IR is presented, with special emphasis on their computational efficiency. 

3.1   Item Mean Algorithm 

This algorithm can be considered the baseline, given it consists in taking the mean of 
an item as prediction of its evaluation. Thus, ui ip v⋅= . 

It is based on the fact that if an item is a good recommendation for many people, 
and therefore it has an elevated mean, one can assume that it has many possibilities of 
being a good recommendation for this user. The idea is to recommend items that are 
generally considered good. 

However, this algorithm does not take into account user- or item-dependent 
variations, which could negatively influence the quality of the recommendations. 

3.2   Simple Mean Based Algorithm 

This algorithm is also based on the mean evaluation of an item, but corrected 
according to the mean of the user. 

The idea is to try to take into account, in a very simple manner, the way a user 
emits his/her evaluations. In fact, the only aspect that will be considered is going to be 
the tendency of the user to evaluate positively or negatively, following the formula: 
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The idea is the capture the variation between the mean of an item and the 
evaluation of the user, correcting the mean of the item to predict with this variation. 

3.3   Tendencies Based Algorithm 

This algorithm expands the previous idea, keeping in mind the mean of the users and 
the items, along with the variations that affect each user or item in particular. 

Starting with the fact that the users evaluate the items differently [18], we propose 
to capture the tendency of the user. Thus, it should be determined if a user has the 
tendency to evaluate the items positively, or on the contrary, to evaluate them 
negatively. 
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It is important to not confuse this tendency with whether the mean of the user is 
high or not. For example, a user that only evaluates items that he/she has liked will 
have a high mean, but it is possible that the evaluations are lower than the mean of 
each item. Thus, the user tends to evaluate the items negatively, even despite their 
high mean. 

Therefore, we define the tendency of a user (ubu) as the mean difference of his/her 
evaluations with respect to the mean of the item. 
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We are also interested in capturing the tendency of an item (ibi), that is, if the users 
consider it to be an especially good or especially bad item. In this case, the aim is not 
to determine if the item is well evaluated, but rather to see if it stands out among the 
items evaluated by a user. As in the previous case, we are interested in the relative 
evaluations (the evaluation with respect to the mean of the user), and not the absolute 
mean of the item. 
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The algorithm proposed takes into consideration both the mean of the user and 
item, as well as of their respective tendencies when computing a prediction. There are 
various cases that depend on these values, as depicted in Fig. 1. 

In the first case, Fig. 1 (a), both the user as well as the item have a positive 
tendency, that is, the user tends to evaluate the items above their mean, and the item 
tends to be evaluated above the mean of the user. Hence, the prediction will take a 
value that will be above the mean of both: 

max( , )ui u i i up v ib v ub⋅ ⋅= + +  
where the use of the maximum tends to give a better evaluation to this type of items, 
whose tendency indicates that they are good. 

The second case, Fig. 1 (b), is the opposite situation: both the user and the item 
have a negative tendency, that is, the user tends to evaluate the items below their 
mean, and the item tends to be evaluated below the mean of the user. In this case the 
prediction is computed as: 

 
 
 
 
 
 
 
 

Fig. 1. Relationship between the means (circles) and the tendencies (arrows). im and um 
represent the means of the items and user, respectively. ib and ub represent the tendencies of 
the item and the user, respectively. 
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min( , )ui u i i up v ib v ub⋅ ⋅= + +  
where the use of the minimum has to make sure that the item, whose tendency 
indicates that it is a bad recommendation, is not recommended simply because the 
user had a very high mean. 

The third case, Fig. 1 (c), is when we find a “negative” user (its tendency is to 
evaluate the items with values below its mean), and a good item (its tendency is to be 
evaluated above the user mean), or vice versa. 

If the means of both corroborate their tendencies (that is, user with low mean and 
item with high mean), the prediction will be in the middle between both, closer to one 
or the other depending on the value of the distinct tendencies. In this case, the 
prediction is computed as: 

min[max( , ) ( )(1 )), ]ui u i u u i ip v v ub v ib vα α⋅ ⋅ ⋅ ⋅= + + + −  
whereα  is a parameter that allows to grant a greater confidence in the mean of the 
user or of the item. Empirically, we have proven that values slightly about 0.5 (0.6, 
0.65) gave the best results. 

Finally, it is possible for the means to not corroborate the tendency, Fig. 1 (d). A 
user with negative tendency evaluates an item of low mean (expecting the prediction 
to be bad), but at the same time the mean of the user is high and the tendency of the 
item is positive (that on the contrary would indicate at good evaluation). In this case, 
the prediction is calculated as: 

(1 )ui i up v vα α⋅ ⋅= + −  
This case seems to contradict the suppositions of our algorithm, hence, it will be 

analyzed more thoroughly in the next section. 

4   Evaluation 

The evaluation of the algorithms proposed aims to study their efficiency, in 
comparison with other collaborative filtering algorithms (Section 4.2). However, we 
also include in Section 4.3 a brief comparative of the quality of the predictions made 
using the different algorithms. 

4.1   Methodology 

The different algorithms have been evaluated using the DataSet MovieLens [7]. This 
dataset contains real data corresponding to the rating of films by users, captured on 
the website of the film recommender MovieLens (http://movielens.umn.edu), during a 
period of 7 months (from 19-09-1997 to 22-04-1998). From these data users showing 
less than 20 evaluations were eliminated, obtaining a total of 100,000 evaluations, 
from 943 users for 1,682 movies. Therefore, the proportion between users and items 
is 1.78 items per user, and the density is 6%. The evaluations are discrete and take 
values between 1 (low evaluation) and 5 (high evaluation). 

The algorithms proposed are compared with a selection of collaborative filtering 
algorithms: 
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- Memory-based: 
o User-based [8] [18]. 
o Item-based, using the Adjusted Cosine Similarity as similarity 

measure, when the best results are obtained [20]. 
o Similarity fusion [27]. 

- Model-based: 
o Regression based [26]. 
o Slope one [12] 
o Latent Semantic Indexing (LSI) [19] 
o Cluster based smoothing [28] 

- Mixed: 
o Personality diagnosis [16]. 

The trials were performed by dividing the dataset into two groups: a training subset 
and an evaluation subset. The training subset is constructed by selecting a percentage 
of the evaluations available in the dataset. The remaining evaluations will be part of 
the evaluation set. The training subset is used by the algorithm to predict the value of 
the data from the evaluation subset. 

To evaluate the quality of the predictions, the evaluation obtained from the 
algorithm is compared with the original evaluation present in the evaluation subset. 

In the experiments performed we are working with training sets of various sizes to 
evaluate performance in situations of very low (10%), intermediate (50%) and high 
(90%) densities. 

For each algorithm evaluated, the training and prediction times, as well as the 
quality of their predictions are measured. For a greater confidence in the results 
obtained, each trial was repeated 5 times, then taking the mean value. 

All the experiments were performed on an AMD Athlon(tm) 64 Processor 3200+, 
1 GB RAM and 150 GB HDD. All the algorithms have been implemented in Java and 
executed on the machine with no type of charge. The dataset is stored in database 
MySQL 5.0.38 in the same computer. 

With respect to case (d) from Section 3.3, we have verified that this case occurs in 
less than 5% of predictions, which confirms the good behavior of the tendencies 
system. Secondly, we have found that as the density of the dataset increases, this 
percentage is reduced even further, reaching 2% when using the training set at 90% of 
the evaluations available (equivalent to density of 6%). In summary, this case is 
produced mainly when the tendencies are based on very few evaluations, and even in 
this case they are minimums. This finding reinforces the idea that the tendencies 
versus the mean are a good reflection of reality and that they can be a good prediction 
mechanism. 

4.2   Efficiency 

To evaluate the efficiency of the algorithms proposed, a theoretical study and an 
empirical analysis were performed. In the theoretical study, the computational 
complexity of the different algorithms evaluated for training (or model construction) 
and for prediction was determined. 
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Table 1 shows the complexities for the different algorithms, indicating in bold the 
algorithms with the best computational efficiency. As observed, the algorithms 
proposed showed a lower computational complexity for training and prediction. 

Table 2 shows the results of the empirical analysis. In this case, the running times 
of the different algorithms were measured during training and when making 
predictions, considering training groups 10%, 50% and 90% of the size of the dataset 
(respectively, 10,000, 50,000 and 90,000 evaluations), and the rest as evaluation set. 

With respect to training time, the user-based algorithm showed the best results 
given it lacks a training period, followed by the algorithms proposed. Overall, any of 
the algorithms proposed present training times that are at least two orders of 
magnitude lower that the rest of the collaborative filtering algorithms. 

For prediction time, the times in Table 2 refer to the time needed to calculate the 
predictions: 90,000, 50,000 and 10,000, for the 10%, 50% and 90% training sets, 
respectively. 

Table 1. Computational complexity of the collaborative filtering algorithms. The number of 
users is denoted as m and the number of items is denoted as n. 

Algorithm Training 
complexity 

Prediction 
complexity 

User Based - O(mn) 
Item-Based O(mn²) O(n) 
Similarity Fusion O(n²m + m²n) O(mn) 
Personality Diagnosis O(m²n) O(m) 
Regression Based O(mn²) O(n) 
Slope One O(mn²) O(n) 
Latent Semantic Indexing O((m+n)³) O(1) 
Cluster Based Smoothing O(mnα + m²n) O(mn) 
Item Mean O(mn) O(1) 
Simple Mean Based O(mn) O(1) 
Tendencies Based O(mn) O(1) 

 

Table 2. Training time and prediction time for the collaborative filtering algorithms, as a function of 
the size of the training set: 10%, 50% and 90 % (respectively, 90%, 50% and 10% for the prediction 
set). Time units are in milliseconds. 

Training time Prediction time Algorithm 
10% 50% 90% 10% 50% 90% 

User Based 0 0 0 6,250 15,597 8,915 
Item Based 415 1,060 1,986 221 1,864 909 
Similarity Fusion 987 3,840 5,474 227,736 756,834 264,951 
Personality Diagnosis 257 994 2,213 1,369 3,845 1,400 
Regression Based 3,302 4,575 7,780 205 570 265 
Slope One 1,246 2,175 2,541 319 501 116 
Latent Semantic Indexing 117,758 115,218 102,855 162 158 20 
Cluster Based Smoothing 60,247 71,529 44,635 70,515 251,595 118,552 
Item Mean 2 3 3 24 12 2 
Simple Mean Based 7 10 5 25 11 4 
Tendencies Based 11 15 9 24 16 4 
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In this case, the algorithms proposed are clearly the most efficient. The user-based 
algorithm, that presented good behavior in the training, shows a prediction time that is 
three orders of magnitude higher. The Latent Semantic Indexing algorithm, showing 
good behavior, is one order of magnitude slower and its training time is the worst one 
from the algorithms analyzed. 

Overall, one would expect that when you increase the number of predictions the 
prediction time would also increase in proportion. Thus, with a training group at 10% 
(equivalent to 90,000 predictions) the time is lower than that with a training group at 
50% (50,000 predictions), which seems contradictory. This is due to the fact that in 
situations of very low density the information available is minimal and it is not 
possible to carry out all the predictions of the predictions group. The predictions that 
cannot be made use up much less time, and the overall time of prediction is reduced. 

Lastly, and without going into a detailed analysis, the results show that the 
theoretical study of the computational complexities corresponds with the times 
obtained for the training and the predictions. 

4.3   Prediction quality 

In the previous section the efficiency of the algorithms presented in this work was 
demonstrated. However, it is also necessary to determine the quality of the algorithms 
proposed. 

In this sense, Table 3 presents the Mean Absolute Error (MAE) of the different 
algorithms evaluated as a function of size of the training set. As expected, as the 
training set increased, the results of the algorithms improved, producing fewer errors. 

Focusing on the algorithms proposed (Simple Mean Based and Tendencies Based), 
we can observe that in situations of very low density (training set at 10%) the best 
results are obtained, and in the other cases (50% and 90%) their results are similar to 
those of the best algorithms. So, the algorithms proposed show stable behavior, 
making good predictions with a high number of evaluations (like the rest of 
algorithms), but also when the number of evaluations is reduced (e.g. cold start and 
sparsity problems). 

Table 3. Mean Absolute Error of the collaborative filtering algorithms, as a function of the size of 
the training group: 10%, 50% and 90 % (respectively, 90%, 50% and 10% of the training group). 

MAE Algorithm 
10% 50% 90% 

User Based 0.99 0.71 0.68 
Item-Based 0.92 0.75 0.71 
Similarity Fusion 0.84 0.73 0.71 
Personality Diagnosis 0.82 0.78 0.78 
Regression Based 1.03 0.76 0.74 
Slope One 0.90 0.72 0.70 
Latent Semantic Indexing 0.85 0.77 0.73 
Cluster Based Smoothing 0.97 0.87 0.80 
Item Mean 0.82 0.79 0.79 
Simple Mean Based 0.79 0.72 0.72 
Tendencies Based 0.79 0.72 0.71 
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5   Conclusions 

In this work we have presented a series of algorithms that, based on the simplicity, 
obtain response times that are better than those of the algorithms evaluated. 
Moreover, when evaluating the quality of the predictions, our algorithms present a 
behavior that is equivalent to that of the best algorithms, and even improving the 
results with very low density training groups. 

Keeping this in mind, it would be interesting to use these algorithms in real 
settings, especially in Web IR systems. 

Along this line, future works are aimed towards the adaptation of these algorithms 
to a search engine. The objective is to improve the quality of the results and make it 
easier for the user to find relevant information, probably already found previously by 
other similar users. 
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Abstract. This paper presents a tunable index compression scheme for support-
ing time-travel phrase queries over large versioned corpora such as web archives.
Support for phrase queries makes maintenance of word positions necessary, thus
increasing the index size significantly. We propose to fuse the word positions in
many neighboring versions of a document, and thus exploit the typically high
level of redundancy and compressibility to shrink the index size. The result-
ing compression scheme called FUSION, can be tuned to trade off compres-
sion for query-processing overheads. Our experiments on the revision history of
Wikipedia demonstrate the effectiveness of our method.

1 Introduction

Nowadays more and more digital content is archived, thus preserving it for the future.
Documents in these collections are either explicitly versioned – as in the case of corpo-
rate documents or wiki pages, or timestamped, as in web archives, where timestamps
reflect the time of discovery. Access to these collections is often highly restricted, and a
search functionality, when available, ignores the temporal dimension of the collection.

Search over versioned corpora such as web archives and wikis has recently attracted
some interest from the research community, as can be seen from several recent related
publications [1–4]. Exploiting the typically high level of content redundancy in these
collections is a common theme in all of them. So-called historical queries or time-
travel queries are covered by Anick and Flynn [1] and in our previous work [2]. Given
a user-specified time point or time interval of interest, the query is evaluated taking into
account only document versions that existed back then. In our previous work [2] we
described techniques that provide efficient support for ranked keyword queries, but did
not consider phrase queries.

Phrase queries are valuable whenever the user is looking for person names, movie
titles, products, and other entities that can be identified unambiguously by a sequence
of words. In order to support phrase queries, word positions must be kept in the in-
dex, which inflates the index. This blow-up is typically countered by compressing the
positions of each word within a document by taking differences (d-gaps) and using a
space-efficient coding scheme (e.g., Elias or Golomb codes).

Changes between document versions tend to be small, leaving large portions of the
document unchanged. As a consequence, the set of positions in consecutive document
versions of a word often either (i) overlap significantly (e.g., if content is appended) or
(ii) are numerically close (e.g., if only a few words are inserted/deleted).
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Problem Statement In this work, we address the problem of supporting time-travel
phrase queries. We assume that an inverted index is employed, i.e., for each word
w its occurrences in the corpus are organized in a posting list. Given a sequence of
timestamped document versions d ti containing the word w, we seek to find a compact
lossless representation of w’s positions.

Contributions We introduce an effective solution to the above problem. The method
builds postings covering multiple consecutive document versions, thus yielding a signif-
icant reduction of the overall data volume. Since these postings can be larger than post-
ings for single document versions, possibly more data must be read at query-process-
ing time. The proposed method is tunable and allows trading-off the resulting query-
processing overheads and overall compression. Further, it allows plugging in arbitrary
schemes to compress postings. Its effectiveness is demonstrated in an experimental eval-
uation using the revision history of the English Wikipedia as a real-world large-scale
versioned corpus.

Organization An overview of relevant related work is given in Section 2. In Section 3
we illustrate the ideas behind our approach, before describing the underlying optimiza-
tion algorithm in Section 4. Following that, we describe the conducted experimental
evaluation in Section 5, and finally conclude the present work in Section 6.

2 Related Work

Recently, search over document collections that (i) are versioned or (ii) exhibit a high
level of redundancy has attracted some interest from the research community. The
earliest proposal by Anick and Flynn [1] describes a help-desk system that supports
historical queries by essentially indexing delta change records. Broder et al [5] pro-
pose a method that avoids indexing shared content. Their method, though, is applicable
only to collections with “well-behaved” content overlap such as E-mail conversations.
Hersovici et al. [3] yield a more compact index by exploiting redundancy in a sequence
of multiple document versions. They determine and index so-called virtual documents
containing content that is common in a subsequence of the document versions. Zhang
and Suel [4] exploit the redundancy in the collection by indexing text fragments in-
stead of complete documents. Additional bookkeeping is then required to keep track of
the fragments contained in a document. In our own previous work [2], we exploit re-
dundancy and thus compact the index by coalescing postings belonging to consecutive
document versions that bear almost-identical payloads. Further, the approach can sys-
tematically trade-off index size for query-processing efficiency by decomposing posting
lists into sublists covering small portions of the time axis. Only Anick and Flynn [1]
and our previous work [2] deal with so-called historical or time-travel queries, where the
idea is to search on the collection “as of” a user-specified time. None of the approaches
mentioned, however, provides a satisfying solution for phrase queries.

Compression of indexes is a well-studied topic in information retrieval, and has
produced a wealth of publications. Here, the core problem is to compactly represent an
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Fig. 1. Three timestamped document d t1 , d t2 , and d t3 containing words a, b, and c.

increasing integer sequence of document identifiers or word positions. Typically, the se-
quence is first converted into differences, and then encoded using a space-efficient cod-
ing scheme. Elias’ γ-codes and δ-codes are two popular non-parameterized, Golomb
codes and Golomb-Rice codes two popular parameterized coding schemes. For detailed
descriptions of these coding schemes, we point to Witten et al. [6]. Their applicability
to the inverted index is discussed by Moffat and Zobel [7], a thorough comparison of
different implementation alternatives can be found in Scholer et al. [8].

3 Compressing Word Positions

Word positions are typically organized in an inverted index – the standard index struc-
ture for large-scale text search. Words that occur in the collection are kept in a lexicon
organized, for instance, as a B+-Tree. For each word the lexicon points to its corre-
sponding posting list. These posting lists are often organized as flat lists, but can also
be organized in a more sophisticated manner, for instance, if efficient support for time-
travel queries [2] is needed. For the scope of this work, we assume that an inverted
index is employed, i.e., for a particular word, the information about its occurrences is
kept in a posting list, we do, however, not make further assumptions about the internal
organization of these posting lists.

3.1 Baseline

We now describe a baseline solution that keeps word positions per document version
d tb per contained word in a separate posting having the structure

〈 [ tb, te ) | did | positions 〉 .

The first component [ tb, te ) is the validity time-interval of the document version
conveying when the document version existed. For document version d ti the validity
time-interval is defined as [ti, ti+1), if a newer version exists, and [ti, now) otherwise.
The special value now always points to the current time. Keeping the validity time-
interval, instead of only the document version’s timestamp, is necessary to support time-
travel queries efficiently. The document identifier did is kept in the second component.
The third component maintains the list of word positions.

Depending on implementation choices, each of the three components is represented
compactly using one of the space-efficient compression schemes mentioned in Sec-
tion 2.
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In our concrete implementation, validity time-interval boundaries and document
identifiers are stored as uncompressed 64 bit integers, positions are compressed by tak-
ing their differences and encoding them using Elias γ- or δ-codes. For the problem
instance given in Figure 1, we obtain the following posting for document version d t1

and word b
〈 [ t1, t2 ) | d | 2 , 4 〉 .

Storing this posting requires 201 bits (26 bytes) and 204 bits (26 bytes) in our imple-
mentation, if γ-coding and δ-coding is used, respectively.

3.2 Key Observations

Figure 1 reveals two characteristics that we consider as typical for changes in versioned
document collections.

High Level of Redundancy Looking at the word b we see that it occurs at the same
positions in document versions d t1 and d t2 . Comparing the two document versions,
we see that content was only appended, leaving all existing word positions untouched.
Changes that add content to the end of a document are common in practice. Consider, as
an example, bulletin boards on the Web where replies to a post are typically presented
in chronological order.

Numerical Closeness A second –more subtle– observation can be made when compar-
ing the positions of word c between document versions d t2 and d t3 . Although there is
only a single position common between the two document version, we see that word po-
sitions are numerically relatively close. Positions {8, 9} in the newer document version
are just shifted equivalents of {6, 7} in the old. When merging the two sequences, as a
result of the numerical closeness, the resulting sequence {3, 5, 6, 7, 8, 9} has small gaps
between its elements. These smaller gaps in turn result in a better compressibility of the
merged sequence. Small shifts by a fixed margin are another common kind of change
occuring in practice, for instance, when adding missing or removing superfluous words.

3.3 Fusing Multiple Postings

The two observations presented above reveal that we can yield a more compact rep-
resentation of word positions by constructing postings that cover multiple consecutive
document versions. These fused postings must preserve all information that was also
conveyed in the original postings. We therefore extend the above posting structure to
hold word positions for multiple consecutive document versions as follows

〈 [ tb, te ) | did | positions | timestamps | signatures 〉 .

The validity time-interval [ tb, te ) now covers the validity time-intervals of all n
covered document versions. Similarly, the third component keeps the sequence of all m
positions where the word occurs in any of the document versions. In the fourth compo-
nent we keep, in increasing order, the timestamps of all but the first document version.
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Keeping the timestamp of this first version is not required, because it coincides with the
left boundary of the validity time-interval. In the fifth component, for each of the n cov-
ered document versions, a bit signature of length m is kept with the i-th bit conveying
whether the i-th position is present in this document version.

Again, as for the above original posting structure, there are different alternatives
to represent the different components. Our implementation represents validity time-
interval boundaries and document identifier explicitly using 64 bit for each. The se-
quences of positions and timestamps are compressed computing their differences and
using either γ-coding and δ-coding. The signatures are again stored explicitly, thus re-
quiring n ·m bits in our implementation.

For the problem instance in Figure 1 we obtain the following posting for b when
covering all three document versions

〈 [ t1, now ) | d | 2 , 4 , 6 | t2 , t3 | 110 110 101 〉 .

When using γ-coding or δ-coding storing this posting requires 322 bits (41 bytes) and
291 bits (37 bytes) in our implementation (assuming that timestamps ti are maintained
at the granularity of milliseconds and space one day apart from each other). In contrast,
storing three separate postings requires 78 bytes for both coding schemes. Thus, by
building the fused posting we save up to 52% of space.

3.4 Query-Processing Overheads

As we argued above, often one can save significant space by building postings that
cover multiple consecutive document versions. Depending on how the posting lists are
internally organized, these fused postings may affect query processing adversely. To
illustrate this, let us assume that we need to retrieve the word positions for a single doc-
ument version, possibly because an earlier filtering step has pruned all other candidate
versions. When we consider a naı̈ve index organization and query processing over it,
the full list is read to retrieve the single posting. In this case, we fully profit from the
space savings achieved, since less data needs to be read from disk. However, typically
high performance search systems employ sophisticated index organizations that could
include skip pointers [9] to jump directly (or close) to the desired posting during query
processing. In our running example, this sort of index organization means that, in the
worst case we read the 41 bytes of the fused posting instead of only 26 bytes for the
original posting – an overhead factor of 1.58.

4 Optimization Algorithm

Having illustrated the benefits and pitfalls of building postings that cover multiple con-
secutive document versions, we now describe a method to systematically determine
the versions that should be fused together. Our method is tunable by a parameter η
specifying the maximally acceptable worst case overhead factor for query processing
introduced above. It minimizes the total cost required to represent the word positions
in the given document versions under the constraint that no overhead factor larger than
the parameter η is paid.
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For a fixed word w and fixed document d, the method is applied to a sequence of n
versions d ti of the document containing the word. For ease of explanation we assume
that the right validity time-interval boundary of the last document version d tn is given
as tn+1.

For the description of the method, we abstract from the concrete posting structure,
and let cost([tb, te)) denote the cost required to represent the posting covering the
document versions d ti with tb ≤ ti < te. We make the natural assumption that the cost
is monotonous, i.e.,

[tb, te) ⊂ [tb′ , te′) ⇒ cost([tb, te)) ≤ cost([tb′ , te′)) .

The method outputs a partitioning I of the time interval [t1, tn+1). For [tb, te) ∈ I
we build a posting covering document versions d ti with tb ≤ ti < te. Formally, the
method solves the following optimization problem

argmin
I

∑
[tb, te)∈ I

cost([tb, te)) s.t.

∀ [tb, te) ∈ I : valid([tb, te)) with

valid([tb, te)) := [ti, ti+1) ⊆ [tb, te) ⇒ cost([tb, te)) ≤ η · cost([ti, ti+1)) .

Hence, the total cost to represent the word positions in the given document versions
is minimized. The family of constraints ensures that we never pay an overhead factor
larger than η when processing a query. The predicate valid([tb, te)) is true only if the
cost cost([tb, te) of the fused posting is larger by a factor of at most η than any of the
original postings’ costs.

Computing an Optimal Solution An optimal solution to the above optimization problem
is computable efficiently as we explain next. The recurrence

OPT([t1, tk)) = min
1≤j<k

{ OPT([t1, tj)) + cost([tj , tk)) | valid([tj , tk)) } .

allows us to compute an optimal solution for the time interval [t1, tk) based on the op-
timal solutions of its prefixes. The optimal solution is determined as the least expensive
combination of a prefix [t1, tj) and a single valid time interval [tj , tk).

Pseudo-code for computing an optimal solution is given in Algorithm 1. First, the
algorithm precomputes the costs of original postings cost([ti, ti+1) keeping them in
cost[i]. Pseudo-code for this precomputation is omitted. Following that, the algorithm
computes optimal solutions for increasing prefixes of [t1, tn+1). The optimal cost deter-
mined for the prefix [t1, tk) is kept in opt[k], the split, i.e., the optimal value j according
to the above recurrence is kept in splits[k]. Due to the assumed cost monotonicity, we
can terminate the inner loop early, once the validity test fails. The algorithm has time
complexity in O(n3) – in each iteration of the nested loops, the validity of the time
interval [tj , tk) is checked requiring O(n) comparisons in the worst case. The space
complexity is in O(n) for keeping the costs of original postings and prefixes, as well
as, the splits. The cubic runtime may seem impractical first, nevertheless we found that
the inner loop is most often terminated early for reasonable values of η, making the
algorithm well applicable in practice.
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cost [1..n] = 〈 cost([t1, t2)), . . . , cost([tn, tn+1)) 〉;1
opt [2..n] = 〈 cost([t1, t2)),∞, . . . ,∞ 〉;2
splits [2..n] = 〈 1, 0, . . . , 0 〉;3
for k = 3 to n + 1 do4

for j = k − 1 to 1 do5
if valid([tj , tk)) then6

combined = opt[j] + cost([tj , tk));7
if opt[k] > combined then8

opt[k] = combined;9
splits[k] = j;10

else11
break;12

Algorithm 1: Computing an optimal solution

5 Experimental Evaluation

Dataset To evaluate our approach experimentally, we chose the revision history of the
English Wikipedia [10] as a dataset. This dataset or parts thereof were also used for the
experimental evaluation in [2, 3]. We first extracted all document versions committed
during the years 2004 and 2005. From this collection, we extracted all document ver-
sions belonging to a randomly sampled 10% subset of the document identifiers. In total,
the resulting collection contains 35, 309 documents in 934, 411 versions.

Index Sizes On this collection, we constructed indexes according to the baseline de-
scribed in Section 3.1 using γ-codes and δ-codes. The resulting indexes are further re-
ferred to as BASELINE-γ and BASELINE-δ. In total, their sizes amount to 97.77 GBytes
and 97.51 GBytes, respectively. For our method, again using γ-codes and δ-codes, we
built indexes varying the threshold η between 1.1 and 10.0. These sets of indexes are
referred to as FUSION-γ and FUSION-δ in the remainder.

Figure 2 plots the resulting index sizes relative to the respective BASELINE. It can
be seen from the figure that our method is highly effective and achieves a significant
reduction of index size even for modest values of η. Thus, as an example, when setting
η = 1.5, which corresponds to a query-processing overhead of at most 50%, the index
size is reduced by more than 50% for both coding schemes.

When comparing the effectiveness of our method across the two coding schemes,
we observe that it performs slightly better when the more compact δ-coding is em-
ployed. For η = 2.0, as an example, we observe a reduction in index size by close to
80% in Figure 2(b) in contrast to only 75% in Figure 2(a). Hence, there seems to be a
reinforcing effect between the effectiveness of our method and the effectiveness of the
employed coding scheme.
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Fig. 2. Relative index sizes for η ∈ {1.1, 1.25, 1.5, 2.0, 3.0, 5.0, 10.0}

6 Conclusions

In this work, we have developed a method to compress word positions in a versioned
document collection, and thus provided a basis for efficient time-travel phrase query-
ing and proximity-based ranking in these collections. By building postings that cover
multiple consecutive document versions, we were able to reduce index size signifi-
cantly, as demonstrated in our experiments on parts of the revision history of the English
Wikipedia.

In our ongoing research, we investigate experimentally how much query processing
overhead is imposed by our approach in reality. In the future, we plan to develop query-
processing techniques that can leverage fused postings directly to discard entire groups
of document versions.
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Abstract. Inverted indices are one of the most commonly used tech-
niques to search very large document collections. While the typical size
of web document collections is constantly increasing, users have come to
expect a very quick response time, and accurate search results. Hence,
to make best use of available hardware resources, efficient and effective
retrieval techniques are desirable. We review several state-of-the-art ap-
proaches for matching documents to query terms, based on term-centric
and document-centric scoring. We test the techniques using three modern
Web Information Retrieval (IR) test collections, and conclude in terms
of the trade-off between retrieval effectiveness and efficiency.

1 Introduction

Inverted indices are one of the most commonly used techniques to search very
large document collections. Usually, these contain for each term a stream of
postings, i.e. the id of every document that the term occurs in, and the frequency
of the term in that document [18]. Other information may also be stored in the
posting list, such as term position information, or the HTML tags where the
term occurs within the document [3]. In this paper, we only consider a simple
inverted index containing the document identifier and term frequency postings.

The most common method for scoring documents retrieved in response to
a query (when using a bag-of-words retrieval approach) is to score each occur-
rence of a query term in a document using the information contained in its
corresponding posting list in the inverted file, and combining these scores for
each document. However, for terms with low discriminatory power, then every
document the term occurs in must be scored, leading to high retrieval time
without benefit to retrieval effectiveness.

While parallelised retrieval can mitigate the cost of high retrieval time, three
other matching approaches exist to reduce retrieval times, by trading off with
the overall effectiveness of system: Firstly, the pruning of low value documents
or terms from the inverted indices [2, 14]; secondly, ordering inverted indices
postings by their impact on retrieval [12]; thirdly avoiding scoring all occurrences
of the query terms. The focus of this work is to assess various techniques for
efficient matching in the latter case. Broadly, these efficient matching techniques
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fall into two categories - scoring by each term, or scoring by documents - known
as Term-at-a-time (TAAT) and Document-at-a-time (DAAT), respectively.

We experiment using these techniques, and integrate them into an existing IR
platform. The platform provides a classical TAAT approach where every term oc-
currence for each query term is evaluated, and we apply this as the baseline in our
experiments. Moreover, several DAAT approaches utilise an improved inverted
index format, which allows the decompression of documents that are unlikely to
be relevant to be skipped - indeed we experiment with two skipping strategies.
All our experiments are conducted in a uniform experimental setting, consisting
of several standard Web IR test collections of varying size. We conclude in terms
of retrieval effectiveness, retrieval efficiency, and for the inverted index skipping
techniques, the additional disk space required by the skipping structures. The
contributions of this paper are two-fold: firstly, an in-depth study of the effi-
ciency versus the effectiveness of various matching techniques, and, secondly,
to relate the findings to the statistics of the applied test collections. Our work
differs from that of other studies such as that of Cambazoglu & Aykanat [7],
in that both efficiency and effectiveness measures are examined, and trade-off
conclusions made.

The remainder of this paper is structured as follows: Section 2 briefly reviews
various matching approaches; Section 3 describes several inverted index formats
supporting efficient skipping; Section 4 details our experimental setting; and
results are provided in Section 5. We provide concluding remarks in Section 6.

2 Matching Techniques

We now describe the matching techniques we experiment with in this paper. As
mentioned in the introduction, these fall into two categories - namely TAAT and
DAAT. One of the problems with TAAT approaches is that a larger number of
documents are scored, requiring more memory to accumulate their scores (known
as accumulators [7]). In contrast, DAAT techniques require less memory, as less
documents should be scored overall.

However, in all cases except for Full TAAT (the baseline), a trade-off is made
by recognising that most Web retrieval tasks favour high-precision retrieval, and
aiming to retain high precision effectiveness at the system’s top-ranked docu-
ments, while degrading retrieval effectiveness at lower ranks. This is typically
achieved by predicting which terms have the least impact on the retrieved doc-
uments and ignoring portions of their posting lists not likely to affect the top-
ranked documents.

Full TAAT. This is our baseline, a TAAT approach, where we compute the
score of all postings for every query term. This is in contrast to the other ap-
proaches, which aim to avoid some scoring computations, this technique exhibits
no degradation in the effectiveness of the ranking.

Turtle TAAT. This technique is a TAAT approach developed by Turtle &
Flood in [17]. Firstly, the query terms are ordered by their maximum possible
impact on the retrieval score (called the term upper bounds). Then, the scoring
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of occurrences is performed in two phases: During the first phase, all postings
are evaluated for each query term. At the end of the scoring of each query term,
if the minimum score of the current top-ranked R documents is greater than the
sum of the upper bounds of the query terms remaining to be scored, then the
first phase scoring is terminated, and we proceed to the second phase. In this
second phase, only the documents which have already been scored are computed
for the remaining query terms.

This technique ensures that the top R documents are correctly ordered com-
pared to a Full TAAT, but without the need to fully evaluate all the query terms,
leading to document relevance scores that are different from the Full TAAT, but
with broadly similar rankings.

Moffat TAAT. The idea for this approach introduced by Moffat and Zobel
in [10] is also to score the most important query terms first. However, when
K documents have been scored, the matching enters a second phase, where no
more documents are retrieved, and the K documents retrieved thus far are fully
scored. K is typically equal to 0.2% of the number of documents in the collection.
Note that Moffat and Zobel presented two different heuristics, called ‘Quit’ and
‘Continue’ to determine when the first phrase scoring should be terminated. In
the ‘Quit’ approach, the condition of accumulators reaching size K is checked for
every posting scored, while for the ‘Continue’ approach, the condition is checked
only after each query term has been scored. In this paper, we only experiment
using the ‘Continue’ approach as this has less efficiency overheads, but may
result in scoring far more than K documents if a term posting list is very long.

Note also that in the second phase of Turtle TAAT and Moffat TAAT match-
ing approaches, it is possible to omit large numbers of postings for each query
term. In this scenario, it is advantageous for the inverted index implementation
to support a next(docid) operation. In the following section, we review several
inverted index skipping techniques.

Lester et al. [9] describe adaptive improvements to the Moffat TAAT ap-
proach in the context of Web-style queries. We do not experiment with this
approach, as we wish to experiment with generic algorithms without specific
assumptions.

Turtle DAAT. This DAAT technique was also developed by Turtle & Flood
in [17]. In a DAAT technique, the postings lists for all query terms are read
concurrently. Similar to Turtle TAAT, the term upper bounds are computed.
Then all of the ith postings for each query term are evaluated in turn. When a
document is scored, we add to the actual score of the document, the sum of the
upper bound of the remaining terms to be scored. If this sum is less than the
minimum score of the current Rth-ranked document, then we do not calculate
the term score of the document, as the document could not be in the top R

documents.

It is of note that Turtle & Flood [17] suggest that their DAAT technique
could be improved by the use of inverted index posting skipping, however it is not
clear from their description how this would be applied. Turtle & Flood’s meth-
ods are known as MAX-SCORE (MAX-SCORE TAAT and DAAT). Moreover,
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Stronham et al. [15]. revisit the MAX-SCORE approaches for DAAT, suggesting
heuristics to determine the top documents for a given query term, pre-scoring
these documents, and using these pre-scored documents as the threshold for the
MAX-SCORE algorithm. However, in contrast to the previously described ap-
proaches, their approach requires that posting lists be sorted by decreasing tf ,
not ascending docid.

3 Skipping Inverted Index Postings

Typically query term scoring in an IR system is disk IO intensive, however,
for larger Web-scale settings with many machines available, posting lists may be
kept in the main system memory or in the system cache [16]. In both cases, com-
pression is useful to reduce IO in favour of slight compression overheads [6]. Some
matching methods described above (in particular Moffat TAAT) can potentially
avoid scoring some postings of the query terms. Therefore, if this skipping could
reduce the IO operations, then the retrieval time can be reduced. Skipping tech-
niques on compressed inverted indices were first described by Moffat & Zobel
in [10]. In this work, we review both Moffat & Zobel’s approach as well as the
later approach proposed by Boldi & Vigna in [3].

Posting compression in inverted indices can be performed in several fashions.
One compression technique that can be applied is the use of Elias-Unary and
Elias-Gamma encoding [8]. While other techniques such as variable-byte encod-
ing exist (and may decode more efficiently), in this work we concentrate only on
these Unary and Gamma encodings.

As a given posting can then be of variable length, to efficiently skip over
postings in the posting list, additional pointers have to be embedded in the
posting list describing a potential skip when decoding. Unsurprisingly, these
additional pointers cause the size of the inverted index to grow.

Assume that the inverted index postings are grouped into blocks (of p ≥ 3
postings). A pointer allows one or more blocks to be skipped, ensuring that the
next posting to be read has a document id greater than or equal to a required
document. Skipping is best illustrated following Moffat & Zobel [10]:

In a normal inverted index for a given term, a posting list of 〈docid,tf〉 tuples
is stored as follows:

〈5,1〉 〈8,1〉 〈12,2〉 〈13,3〉 〈15,1〉〈18,1〉〈23,2〉〈28,1〉〈29,1〉〈32,3〉

We insert the pointers 〈〈docid, bit address〉〉 every p pointers (say 3 in our
example), where the docid in the pointer is the first docid in the first posting
of the next block, and ai is the pointer to the next block. Note that the first
pointer is an exception, as a0 is not required.

〈〈5,a0〉〉 〈〈13,a1〉〉 〈5,1〉〈8,1〉〈12,2〉 〈〈23,a2〉〉 〈13,3〉〈15,1〉〈18,1〉 〈〈32,a3〉〉 〈23,2〉〈28,1〉〈29,1〉

We can compress further the data by removing redundant document ids and
by applying delta gaps between pointers.

〈〈5,a0〉〉 〈〈8,a1〉〉 〈1〉〈3,1〉〈1,2〉 〈〈9,a2 − a1〉〉 〈3〉〈2,1〉〈3,1〉 〈〈9,a3 − a2〉〉 〈2〉〈5,1〉〈1,1〉
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This is a common approach of all of the skipping approaches. It allows us
skipping forward by an entire block, without decoding the information encoded
in the block.

From [3] & [10], we note three approaches. These differ in the way that they
determine the size of a block of postings p. Moreover, two approaches contain
multiple levels of pointers, allowing effective skipping of several blocks in one
disk seek.

Single Moffat: In this approach, the size of a posting block p for term t is
set as follows:

p =
√

LNt

2
(1)

where Nt is the number of documents that term t occurs in, and L is a free
parameter. Moffat & Zobel suggest three values of L, namely 10, 100 and 1000,
depending on statistics of the collection and of the query set [10].

Multi Moffat: In this method, the size of the skip pi of each level i of term
t is determined as a function of the skipping parameter L as follows:

pi =
1

2
L

i

h+1 p
h−i+1

h+1 (2)

where h is the number of levels to be computed for this term, calculated as:

h = (loge

Nt

L
) − 1 (3)

Multi Boldi: The lowest level has a block of L (32 or 64) postings, and
each higher level is composed of 2 lower ones [3]. Moreover, when a posting
list does not have exactly an exact multiple of L postings, extra unconnected
pointers can exist. In this approach they are removed, to prevent posting lists
being unnecessary large.

In the following section, we experiment with the Single Moffat and Multi
Boldi skipping techniques, as these are two representatives of the single and
multiple skipping level classes of techniques. Experiments using Multi Moffat
remain as future work.

4 Experimental Setting

In the following, we experiment with the reviewed matching techniques and
inverted index skipping techniques. To test the matching methods, we use three
different Web IR test collections, related to different domains and timescales. The
collections we experiment with are: two TREC Web test collections WT2G and
WT10G, which are medium-scale general Web crawls from early 1997; .GOV2
is a more recent and much larger TREC Web test collection - a crawl of the
.gov domain of the Web from 2003. Statistics from the collections are given
in Table 1, as well as the TREC topic sets applied. Note that, as expected,
the average length of the term postings increases as the collection size grows.
This infers that for larger collections, there is more potential improvements for
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Collection #Docs Avg Doc Len #Terms Avg Posting Len Topics

WT2G 247,491 645.3 1,002,586 62.7 401-450
WT10G 1,692,096 399 3,140,838 89.1 451-500
GOV2 25,205,179 652.4 15,466,363 304.4 801-850

Table 1. Statistics of the Web IR test collections applied.

increasing the retrieval speed when skipping can be used. Finally, we experiment
with short (title-only) queries and long (title, description and narrative) queries
from the used test collections, to assess whether the topic length has an impact
on the efficiency or effectiveness retrieval performances1.

In most retrieval tasks, the user is interested in the accuracy of the first page
of documents retrieved. For this reason, in all methods, we set R, the number of
top-ranked documents which should be fully scored, to R = 20.

We use the Terrier IR platform [11] in our experiments. The collections are
indexed, removing standard English stopwords, and applying Porter’s English
stemmer. For retrieval we use the BM11 document weighting model (as this is
similar to the TF-IDF which was applied in the original papers on DAAT and
TAAT matching approaches) [13], as follows:

score(d, Q) =
∑

t∈Q

qtw · tf · k1

tf + k1 · (1−b+b·l
avg l

)
· log2

N
N

Nt+1

(4)

where tf is the frequency of query term t in document d, l is the length of
document d, avg l is the average length of all documents in the collection, N is
the number of documents in the collection, and Nt is the number of documents
containing an occurrence of term t. k1 and b are parameters, for which we use
the default settings k = 1.2 and b = 0.75.

Note that BM11 includes a document length normalisation component, to
ensure a fair retrieval between long and short documents. By applying normali-
sation, the frequency of a term tf is normalised by the length of the document l,
with respect to the average document length avg l. However, this normalisation
can possibly hinder the correct calculation of the maximum score a term in a doc-
ument can achieve (the term upper bound), depending on whether the posting
with largest tf also has smallest document length. To simplify, we approximate
document length with average document length in the collection when calculat-
ing term upper bounds using BM11, as this avoids pre-scoring every posting for
every term in the collection, in order to obtain exact upper bounds. However,
since tf can exhibit strong correlations with l [1], average document length may
not be a good approximation. A more accurate approximation of the term upper
bounds is an appropriate future work direction.

For experiments where timing is recorded, these were carried out using a
dedicated Intel PIV 2GHz single CPU machine, with 512MB of RAM, running
Linux. The file-store is a RAID array attached to a Linux server by 20MB/sec
Wide SCSI. Machines are inter-connected by 100MBPs network.

1 Long queries on GOV2 are omitted.
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Matching
Short Long

#Term Scorings P@20 MAP #Term Scorings P@20 MAP

WT2G

Full TAAT 24,926 0.3650 0.2613 498,966 0.3620 0.2784
Turtle TAAT 7,202 0.2411 0.1788 253,991 0.1980 0.1262
Turtle DAAT 23,649 0.3230 0.1300 253,911 0.0350 0.0059
Moffat TAAT 6,855 0.3460 0.2350 16,142 0.1560 0.0857

WT10G

Full TAAT 183,607 0.2030 0.1880 2,039,356 0.2810 0.2326
Turtle TAAT 29,553 0.1740 0.1295 740,658 0.1440 0.1043
Turtle DAAT 163,371 0.1690 0.1054 1,253,580 0.0290 0.0090
Moffat TAAT 27,845 0.1870 0.1793 49,860 0.1530 0.0803

GOV2

Full TAAT 2,221,422 0.2840 0.2244 - - -
Turtle TAAT 692,921 0.2360 0.1402 - - -
Turtle DAAT 2,003,572 0.2190 0.1134 - - -
Moffat TAAT 628,538 0.2330 0.1320 - - -

Table 2. Efficiency and effectiveness results applying various matching techniques to
the three Web test collections.

5 Experimental Results

Table 2 presents the experimental results for the tested matching approaches.
Effectiveness is measured using Mean Average Precision (MAP) and Precision
at rank 20 (P@20). P@20 is a useful measure as it represents the accuracy of
the first screen of search results presented to a search engine user [5]. Efficiency
is measured by the average number of query term-document scorings per query.
The results presented for all methods do not use any additional inverted index
structure for skipping postings, instead emulating skipping by simply iterating
through the postings until the required document is found.

From the result in Table 2, we note firstly that all three ‘efficient techniques’
(i.e. Turtle TAAT, Turtle DAAT and Moffat TAAT) can reduce the number of
term occurrence scorings compared to the Full TAAT (our baseline matching
technique). However, such increase in efficiency has a corresponding trade-off in
retrieval effectiveness - this is typically more marked for MAP than P@20. This
is expected, as all the efficient techniques aim to get the top ranked documents
correct while trading off overall retrieval performance.

Comparing the techniques for short queries, it is noticeable that Moffat TAAT
matching usually achieves the lowest overall drop in P@20 and MAP. This is
surprising, given that far less term occurrences are scored when compared to
Turtle DAAT, which has slightly lower MAP and P@20 scores. Turtle TAAT is
more comparable to Moffat TAAT in terms of number of scorings, but less so in
terms of retrieval performance.

Examining the long queries, it is noticeable that all of the efficient matching
techniques perform less well here than on short queries. This contrasts from the
baseline matching technique, which usually increases in effectiveness (MAP and
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P@20). In particular, Turtle DAAT exhibits very low effectiveness. We believe
that the low performance of the efficient techniques for long queries is because
each approach tries to ascertain the impact of each query term in the retrieval
process. Indeed, for Turtle DAAT, the order of term scoring may be predicted
incorrectly, and hence the more important query terms occurring in the title of
the topics may not be scored. It is of note that the collection originally tested
by Turtle & Flood was much smaller than WT2G and WT10G ( 11K docs vs.
200K docs and 1.6 million docs respectively), and only medium length queries
(on average, 9.1 terms each) were used [17].

Comparing techniques across collections, it is noticeable that the efficiency
benefit of applying efficient techniques grows for larger collections, as more term
occurrences can be omitted from the scoring. Indeed, for GOV2 with short
queries, Moffat TAAT requires only 72% of term occurrences scorings compared
to the Full TAAT baseline for a 17% drop in P@20.

Overall, as expected, the techniques reviewed here can be applied to speed up
retrieval, if some degradations in retrieval effectiveness can be tolerated. Of all
the techniques, Moffat appears the most promising in reducing term occurrence
scorings while minimising the corresponding reduction in retrieval performance.

Table 3 presents a comparison of the time taken to perform retrieval for
short and long queries on the the WT2G and WT10G collections using the Turtle
TAAT and Moffat TAAT approaches. Using these efficient matching approaches,
we compare the efficiency of two inverted index skipping approaches reviewed in
Section 3. The baseline inverted index does not skip any postings.

From Table 3, we firstly note that (unsurprisingly) index sizes are increased
by the inclusion of skipping pointers to the inverted index. For some collections,
this can be as high as a 46% increase (see WT2G, Single Moffat L = 1000).
However, as collection size increases, the overhead in index size associated with
the skipping pointers decreases (down to 23% increase for L = 1000 on WT10G).

In terms of retrieval time, we found that most inverted index skipping settings
improved the average query time, particularly on WT2G. On this collection, the
retrieval efficiency is benefited most by Moffat TAAT, particularly with Single
Moffat skipping. For WT10G, there is no large benefits in applying skipping
techniques, and the most benefit is shown when using Multi Boldi (with mini-
mum skip size L = 32) for short queries. Comparing short and long queries in
general, the differences in retrieval times are largely correlated with the number
of term occurrence scorings reported in Table 2 above. Overall, we conclude that
the application of the skipping methods only benefited retrieval time on WT2G.
For WT10G, it appears that the overheads in decoding the more complicated
inverted index format outweighs the benefit in reducing the disk IO by skipping.

While the overall timing statistics may change if other compression tech-
niques (e.g. variable-byte encoding) had been applied, the conclusions would
not change, as the compression methods are not varied and the comparisons in
Table 3 are fair.
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No Skipping Single Moffat Multi Boldi

L = - 10 100 1000 32 64

WT2G

SQ Turtle TAAT 0.0899 0.0804 0.0803 0.0806 0.0804 0.0803
LQ Turtle TAAT 0.549 0.438 0.440 0.438 0.612 0.438
SQ Moffat TAAT 0.0962 0.0829 0.0831 0.0840 0.0841 0.0841
LQ Moffat TAAT 0.202 0.154 0.159 0.187 0.222 0.176

Index Size 100% 122% 136% 146% 110% 105.8%

WT10G

SQ Turtle TAAT 0.304 0.312 0.315 0.307 0.277 0.409
LQ Turtle TAAT 2.271 2.227 2.244 2.314 2.275 2.240
SQ Moffat TAAT 0.304 0.335 0.327 0.342 0.293 0.319
LQ Moffat TAAT 0.691 0.819 0.839 0.899 0.879 0.800

Index Size 100% 111% 115% 123% 107.8% 104.3%

Table 3. Mean query time (seconds) using the Moffat TAAT and Turtle TAAT match-
ing techniques for the various collections and inverted index skipping techniques. SQ
and LQ denote short and long queries, respectively. Index sizes are also reported; L is
the inverted index skipping parameter. Experiments on GOV2 are omitted.

6 Conclusions

In this paper, we reviewed several approaches for efficiently matching and scor-
ing documents in response to queries, and evaluated their efficiency and effec-
tiveness on three standard Web IR test collections. We found that, compared
to a full TAAT scoring baseline, these approaches could markedly reduce the
number of term occurrence scorings, but at the cost of reduced overall effective-
ness (MAP). However, high precision accuracy was usually maintained. There
is anecdotal evidence in this paper that the efficient matching techniques can
give larger benefits in retrieval performance for larger collections. However, im-
provements in applying inverted index skipping techniques did not appear to
scale to a larger collection. In the future, we intend to investigate how efficiency
changes when using larger test collections such as UK-2006, and comparing to
the systems submitted to the Efficiency task in the TREC 2004-2006 Terabyte
tracks [5]. In particular, it is probably more useful to evaluate effectiveness using
50 assessed queries, but evaluating efficiency using larger number of queries, to
gain more accurate timing measurements, as performed in the TREC Terabyte
track Efficiency tasks.

Other future investigations will include study into other techniques for reduc-
ing the number of term occurrences scored, such as the newer versions of Turtle
TAAT [9], MAX-SCORE DAAT [15], and finally the WAND iterator proposed
by Broder et al. in [4]. We would also like to understand more fully the rela-
tionship between retrieval performance and the R parameter (which controls the
number of documents that are scored and retrieved), especially with respect to
the application of document priors commonly required for Web search tasks such
as home-page and named-page finding tasks.
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Abstract. After validating an image feature extraction system (an Ac-
tive Net) and created a metric for the extracted features (casting the
Active Nets to graphs), it is necessary to make an index structure that
speeds up the search process [1, 2], reducing the necessary I/O to disk.
The M-Tree, due to its properties was selected as an indexing structure.
The high dimensionality of the extracted features and its non-vector
structure made the M-Tree one of the logical choices. The high dimen-
sionality of the graphs and the non multidimensional vector structure of
them made the M-Tree the logical choice [3].

1 Introduction

Effective access to modern archives of digital images requires that conventional
searching techniques based on textual keywords are extended by content-based
queries addressing visual features of searched data. To this end, many solutions
have been experimented which permit to represent and compare images in terms
of quantitative indexes of visual features. In particular, different techniques have
been identified and experimented to represent content of single images according
to low-level features, such as color, texture, shape and structure, intermediate-
level features of saliency and spatial relationships, or high-level traits modeling
the semantics of image content [4–7].

Among these approaches, image representations based on chromatic indexes
have been largely used for general purpose image retrieval systems, as well as
for object based search partially robust to changes in objects shape and pose.
Several low level features have been considered. In particular, representations
based on chromatic indexes have been widely experimented and comprise the
basic backbone of most commercial and research retrieval engines such as QBIC
[8], Virage [9], Visual Seek [10] or Simplicity [11]. Together with color, texture is
a powerful discriminating feature, present almost everywhere in nature. Textures
may be described according to their spatial, frequency or perceptual properties.
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Features of the appearing shape of imaged objects have also been used to repre-
sent image content through a variety of approaches. Only few approaches have
tried to conjugate color and shape information to improve the significance of
object representations.

We proposed [1, 2] a descriptor modeled through a graph which accounts for
structural elements and color of regions (objects) of interest in an image. The
graph directly corresponds to an elastic structure (active net) that, through a
deformation process, is used to separate regions from the background. In par-
ticular, due to their deformable structure, active nets can adapt to the borders
and internal part of a region encoding, at the same time, information of color,
shape and spatial structure of the region. Now, to improve the efficiency of the
search process, the graph representations are stored into an efficient secondary
memory access structure using M-Tree indexing. The performance of the index-
ing retrieval system are evaluated based on a large and publicly available image
object database.

The paper is organized in the following sections: In Sect.2, active nets are
defined and feature extraction based on active nets is discussed; In Sect.3, a
graph based modeling of the active nets is proposed, and a similarity measure
between active nets is defined; Efficient image indexing of active nets is proposed
in Sect.4; An experimental evaluation of the efficiency and effectiveness of the
indexing system is reported in Sect.5; Finally, in Sect.6 discussion and summary
of the chapter are given.

2 Modeling image content by active nets

An active net is a discrete implementation of an elastic sheet [12]. In para-
metric form, it can be defined as u (r, s) = (x (r, s) , y (r, s)), where (r, s) ∈
([0, 1] × [0, 1]). The domain of parameters (r, s), is discretized to a regular grid
of nodes defined by the internode spacing. The two-dimensional net can deform
in the image space under the control of the following energy function

E (u) =
∑

(r,s)

(Eint (u (r, s)) + Eext (u (r, s))) (1)

The internal energy, Eint, controls the shape and structure of the net and is

defined as Eint (u) = α
(

|ur|
2

+ |us|
2
)

+β
(

|urr|
2
+ 2 |urs|

2
+ |uss|

2
)

, where the

subscripts indicate the partial derivatives and α and β are coefficients control-
ling the first and second order smoothness of the net. In particular, the first
derivatives make the net contract and the second derivatives enforce smoothness
and rigidity of the net.

The external energy, Eext, accounts for external forces acting on the net, and
is defined as Eext (u) = f [I (u)], where f is a general function of the properties
of the image I (u). The objective is to find a function f that makes the nodes of
the net to be attracted to significant zones of an image according to an energy
minimization process (fitting) [12].
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Nodes are divided into external nodes (i.e., nodes belonging to the border of
the net u(r, s) : r, s = 0, 1), and internal nodes (i.e., nodes that do not belong
to the border of the net u(r, s) : r, s 6= 0, 1). In our approach, color information
is used to drive the fitting process which controls the deformation of a net. This
is obtained by creating two external energy images, one locating the borders of a
relevant region, and the other describing its internal area. During the net fitting
process, the external nodes are attracted to the borders of a region, while the
internal nodes are attracted to the internal zones of a region [1, 2].

3 Similarity model for topological active nets

In the perspective to compare objects for retrieval purposes, a distance measure
between two active nets has been defined [1, 2]. To this end, a net is regarded as
an attributed relational graph so that graph properties can be usefully exploited
to enhance the net representation. In this way, the comparison between two nets
is reduced to the problem of matching their corresponding graphs.

Given an active net u (r, s), it is cast to a graph G by mapping nodes of the
net to vertices of the graph, and links between nodes of the net to edges of the
graph:

G = < V, E, γ, δ >,

V = set of vertices

E ⊆ V × V = set of edges

γ : V 7→ LV , vertices labeling function

δ : E 7→ LE , edge labeling function
where LV and LE are the sets of vertices and edge labels, respectively.

In our framework, active nets adapt to image regions according to the overall
energy function of Eq.(1) so that nodes are constrained to some relevant point
of the image (those providing the stable minimal configuration for the energy of
the net). In so doing, the average color (in the L∗a∗b∗ color space) of the Voronoi
regions surrounding the nodes in the image is used as the vertices labeling func-
tion γ of the graph. Given two vertices v1 and v2, their distance is evaluated as:
Dv(v1, v2) =

√

(L∗

v1
− L∗

v2
)2 + (a∗

v1
− a∗

v2
)2 + (b∗v1

− b∗v2
)2.

In order to account for the deformation of the net with respect to its initial
configuration, the normalized distance existing between two nodes n1 and n2 is
used as edge labeling function δ of the edge en1,n2

The distance between edges ej

and ek is defined as: De(ej , ek) = |lej
− lek

| being lej
and lek

the labels associated
to ej and ek, and measuring their length.

The comparison of the graph models of a query net Q and an archive descrip-

tion net D involves the association of the vertices in the query with a subset
of the vertices in the description. Using an additive composition, and indicating
with Γ (vi) an injective function which associates vertices vi in the query graph
with a subset of the vertices in the description graph, this is expressed as follows:

µ
Γ (Q, D) =λ

Nq
X

k=1

Dv(vk, Γ (vk))+

(1 − λ)

Nq
X

k=1

X

h∈C(k)

De([vk, vh], [Γ (vk), Γ (vh)])

(2)
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where Nq is the number of vertices in the query graph Q, C(k) is the set of query
graph vertices directly connected to the vertex vk, and λ ∈ [0, 1] balances the
mutual relevance of edge and vertex distance (e.g., for λ = 1, the distance only
accounts for the chromatic distance).

We assume that nets with the same number of nodes are used to describe
every object in the image database This is motivated by the fact that nets with
the same number of nodes represent image objects at the same spatial resolution.
A second basic assumption is that during comparison, only homologous graph
vertices can match This corresponds to assume that the injective function Γ of
Eq.(2) maps any vertex vk in the graph Q to the homologous vertex dk in D. In
so doing, indicating with Tv and Te the time spent in computing the vertex and
the edge distance, respectively, the complexity in matching two graphs is upper
bounded by O(mn · Tv + 4mn · Te) from an exponential time [13].

4 Indexing Graphs: M-Tree

The selection of M-Tree [14] for tasks of indexing is motivated by the fact that
the graph model proposed in this work is not a feature vector space, so it is not
possible to use the traditional tree structures for its indexing. The M-Tree is a
paged metric tree. It is a balanced tree, able to deal with dynamic data fill, and
it does not require periodical reorganizations. M-Tree can index objects using
features compared by distances functions which either do not fit into a vector
space or do not use a Lp metric. Using a specific distance function d, the M-Tree
can partition objects, and store these objects into fixed nodes, which correspond
to constrained regions in the metric space. The only requirement is that the
distance follows the metric axioms. If the metric assumption is true, the M-Tree
can index any kind of data without knowing their structure.

A M-Tree of graphs is a tree of nodes, each containing a fixed maximum
number m of entries. In turn, each entry is constituted by a routing graph D; a
reference to the root subD of a (sub)index containing the graphs in the so-called
covering region of D; and a radius µD providing an upper bound for the distance
between D and any graph in its covering region (figure 1)

< node > ::= {< entry >}m

< entry > ::= D, subD, µrD (3)

The index tree can be constructed using different schemes for the insertion of
new graphs and the selection of routing graphs [14]. In our particular case, the
index is constructed dynamically by inserting graphs from the bottom layer and
by splitting nodes and promoting routing graphs when insertion overflows occur
(see figure 2). In so doing, the tree is kept balanced while its depth grows through
splits of the root node. Different policies can be implemented to select the most
suitable leaf node for the insertion, the entries moved in the split of a node,
and the graphs which is promoted in the split. Typical policies are Minimum
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(a) An M-Tree which a maximum of 3 objects
per node.
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(b) Covering radius to each
one of those routing ob-
jects.

Fig. 1. Visual concept of the covering radius to each one of these routing objects.

of Maximum of Radii (which reduces the size of regions) and Maximum Lower

Bound on Distance (which reduces the overlap between different regions) [14].

AA AB

BA BB BC

XXCA CB CC

Root Node AA AB

BA BB BCCB

CC

Root Node

XX CA

AA AB CB

BA BB

CC

Root Node

XX CA

CB BC

Fig. 2. Split process of the M-tree. The new object XX needs to be inserted into a full
leaf node: this induces a split of the node. Two new routing objects are selected, and
the leaf node splits into two different leaf nodes. The new routing objects create a new
split into a routing node. The split process propagates towards the root of the tree and
ends up when no more splits are needed..

In our case, we used the Minimum Sum of Radii policy. This algorithm
considers all the possible pairs of objects, partitions the set of entries to each
one of those combinations and promotes the pair of objects for which the sum
of covering radius, µD1 + µD2 is minimum. This algorithm is the most complex
in terms of distance computations.

During retrieval, triangular inequality can be used to support efficient pro-
cessing of range queries, i.e., queries seeking for all the graphs in the archive
which are within a given range of distance from a query graph Q. To this end,
the distance between Q and any graph in the covering region of a routing graph
D can be lower-bounded using the radius µD and the distance between D and
Q. Specifically, if µmax is the range of the query, the following condition can be
employed to check whether all the graphs in the covering region of D can be
discarded, based on the sole evaluation of the distance µ (Q, D)

µ (Q, D) ≥ µmax + µD → no graph in subD is acceptable (4)
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In a similar manner, the following condition checks whether all the graphs in
the covering region of D fall within the range of the query (in this case, all the
graphs in the region can be accepted)

µ (Q, D) ≤ µmax − µD → every graph in subD is aceptable (5)

In the critical case that neither one of the previous two inequalities holds, the
covering region of D may contain both acceptable and non acceptable graphs,
and the search must be repeated on the subindex subD.

K-Nearest Neighbor (KNN) queries seeking for the K graphs that are most
similar to the query in the archive can be also managed in a similar manner, but
with lower efficiency. This is obtained by regarding the query as a particular case
in which the range is determined during the search (This is the solution imple-
mented in this work). To manage KNN queries, Ciaccia et al. [14] proposed the
use of a branch-and-bound technique. This technique uses two global structures,
a priority queue PR, and a result array NN .

PR is a structure that contains pointers to every subtree that may contain
valid objects for a given query Q. For every pointer, a lower bound in the distance
of any graph in subDr is kept

dmin

(

subDr
)

= max
{

d (Dr, Q) − µDr , 0
}

(6)

At each step of the algorithm, the entry in PR with the lower dmin is con-
sidered in order to find objects relevant to the given query.

NN is the sorted array that at the end of the execution contains the final
results of the search. Each element of the array stores a graph Dj and its distance
to the query, d (Dj, Q). We denote the distance dk as the distance of the last
element in the array. As a consequence, any subtree so that dmin

(

subDr
)

> dk

can be safely pruned from the search. In so doing, dk plays the role of a dynamic
search radius.

Apart from the lower bound, an upper bound is also considered

dmin

(

subDr
)

= max
{

d (Dr, Q) − µDr , 0
}

(7)

After analyzing the root graph of a branch, if dmax < dk, this root graph is
added to NN with dmax as distance value, and dk is updated. This may cause
a pruning in PR, thus reducing the number of necessary computations.

5 Results

To evaluate the M-Tree indexing algorithm we used the ETH-80 image database
[15]. This database is composed of 3280 images. After being processed by our
algorithm the final database was composed of 7016 objects, usually one active
net for the object in the image and another for the background. To do a linear
scan in this database, comparing one query object against all the objects in it,
takes 7016 comparisons and about 347646 miliseconds, using an active net of size
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15 × 15. This time includes I/O access3. It is necessary to note that the graphs
of size 15 × 15 have a high consume in memory. This increases the use of the
memory, and it makes necessary to do more I/O tasks, increasing the necessary
time to complete a search process.

To check the influence of the size of leafs per branch we constructed several
trees of different size: 10, 15, 20 and 30 leafs per branch. Every tree was tested
with the same query images and compared their results against each other and
against a linear scan. The result are resumed in the table 1 (Increasing the size
of the leafs per branch over 30 did not show an increase in the performance).

Time
(ms)

# Comparisons Performance
Gain vs Linear
Scan (Time)

Performance Gain
vs Linear Scan
(Comparisons)

10 Leafs per Branch

Query 1 206264 2337 1.68 3.00

Query 2 119894 1279 2.89 5.48

Query 3 259289 3058 1.34 2.29

Query 4 81569 903 4.26 7.77

15 Leafs per Branch

Query 1 198023 2266 1.68 3.10

Query 2 136621 1336 2.89 5.25

Query 3 261834 3124 1.32 2.24

Query 4 84047 899 4.13 7.80

20 Leafs per Branch

Query 1 182913 2156 1.90 3.25

Query 2 126806 1355 2.74 4.21

Query 3 256015 3042 1.35 2.31

Query 4 85438 951 4.06 7.37

30 Leafs per Branch

Query 1 211128 2274 1.64 3.08

Query 2 154981 1666 2.24 4.21

Query 3 280959 2314 1.23 3.03

Query 4 104521 1197 3.32 5.86
Table 1. Time and number of comparisons for different queries using M-Trees with
10, 15, 20 and 30 leafs at maximum per branch.

6 Conclusions

In this work, we have propose an index system that completes the necessary steps
for an already proposed and validated content-based image retrieval system [1,
2]. The metric similarity measure used to compare two graphs allows to index

3 The tests were done in an Intel Core 2 Duo machine at 2.4GHz, 2 GB of RAM and
Java 6.0 Virtual Machine.
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all the objects in the database into a M-Tree indexing structure. This speeds
up the retrieval process making necessary less computations with respect to a
linear scan. Experimental results validated the proposed approach on a standard
object image database.

References
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3. Böhm, C., Berchtold, S., Keim, D.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Com-
puting Surveys (CSUR) vol. 33(n. 3) (2001) pp. 322–373

4. Gupta, A., Jain, R.: Visual information retrieval. Communications of the ACM
40(5) (1997) pp. 70–79

5. del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann Plublisers, Inc.
(1999)

6. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image
retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and
Machine Intelligence vol. 22(n. 12) (2000) pp. 1349–1380

7. Lew, M., Sebe, N., Djereba, C., Jain, R.: Content-based multimedia information
retrieval: State of the art and challenges. ACM Transactions on Multimedia Com-
puting, Communications and Applications 2(1) (2006) pp. 1–19

8. Flickner, M., Swahney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,
M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and
video content: The qbic system. IEEE Computer vol. 28(n. 9) (September 1995)
pp. 23–32

9. Swain, M., Ballard, D.: Colour indexing. International Journal of Computer Vision
vol. 1(n. 7) (1991) pp. 11–32

10. Smith, J., Chang, S.: Visualseek: a fully automated content-based image query
system. ACM Multimedia (1996)

11. Wang, J., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated match-
ing for picture libraries. IEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 23(n. 9) (2001) pp. 947–963

12. Ansia, F., Penedo, M., Mariño, C., López, J., Mosquera, A.: Automatic 3d shape
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Abstract. The increasing amount of digital audio-visual content acces-
sible today calls for scalable solutions for content based search. The state
of the art solutions reveal linear scalability in respect to the collection size
due to the large number of distance computations needed for comparing
low level audio-visual features. As a result, search in large audio-visual
collections is limited to associated metadata only done by text retrieval
methods that are proven to be scalable.
Search in audio-visual content can be generalized to search in metric
spaces by assuming some distance function on low-level features. In this
paper we propose a framework for efficient indexing and retrieval of met-
ric spaces by extending classical techniques taken from the textual IR
methods such as lexicon, posting lists and boolean constraints- thus
enable scalable search in any metric space and in particular in audio-
visual content. We show the efficiency and effectiveness of our method
by experiments on a large image collection.

1 Introduction

Recently, with the proliferation of Web 2.0 applications, we experience a new
trend in multimedia production where users become mass producers of audio-
visual content. Websites like Flickr, YouTube and Facebook1 are just some ex-
amples of websites with large collections of audio-visual content. Still, search in
such collections is limited to associated metadata that was added manually by
users and thus search results are quite dependant on the quality of the metadata.

The problem of audio-visual content based search can be generalized to a
search in metric spaces by assuming some distance function on low-level features.
For example, for CBIR (Content Based Image Retrieval) it is common to use
low level features such as Scalable Color, Textures, Edge Histograms etc. These
features define, each one, a specific metric space [7].

State of the art solutions for search in metric spaces such as [2, 3, 10] reveal
linear scalability in the collection size. This is mainly because of high number
of distance computations needed for comparing low level features. Thus, some

? This work was partially funded by the European Commission Sixth Framework Pro-
gramme project SAPIR - Search in Audiovisual content using P2P IR.

1 http://www.flickr.com, http://www.youtube.com, http://www.facebook.com
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approximation is needed. On the other hand, text search is known to be scalable
since text IR methods uses efficient data structures such as lexicon, posting
lists and boolean operations that make it very efficient for searching in large
collections.

In this work, we try to bridge the performance gap between text IR and
metric IR by introducing an approximation for top-k using MII (Metric Inverted
Index) - an inverted index implementation for metric spaces. We show that by
using text IR methods such as lexicon, posting lists and boolean operators we
can achieve high scalability for search in metric spaces. Using the MII we can
tradeoff between efficiency and effectiveness of our approximated top-k. We show
an implementation of a system based on Lucene2 and report experiments on a
real data collection that shows the efficiency of our method compared to other
methods.

The paper is organized as follows; we review related work in Section 2. In
Section 3, we define metric spaces and state the problem. In Section 4, we de-
scribe the MII - Metric inverted index for metric spaces. Then, in Section 5, we
show how to use it efficiently for top-k retrieval. Experimental setup and results
on a large image collection are given in Section 6 and we conclude with summary
and future work in Section 7.

2 Related work

Using Text IR techniques for retrieving multi-media content was already sug-
gested by several works. The early works [9, 5] suggested the use of inverted
index with a lexicon containing pre-defined set of around 80000 features which
correspond to human perception features. Their reported experiments are done
on limited collection of 2500 images, so scalability is not addressed.

[12] facilitates the use of inverted index for indexing N -grams of visual de-
scriptor vectors. Their approach is limited to vectors only and thus can not be
generalized to general metric spaces. More recently, [1, 6, 8] showed how to use
inverted index for search in images. Specifically, in [1], each image is segmented
into several segments and segments are mapped to lexicon entries. These works
on images only and not on general metric spaces.

Another line of related works discuss methodologies of indexing and accessing
data in metric spaces and are covered in details in [7, 14]. These techniques are
general and work for every metric space; however, their main disadvantage is
that their complexity increase linearly with the collection size, thus, they are not
scalable and not appropriate to large-scale collections. Each of the techniques
partition the metric space differently; specifically, [13] considered the space as
a ball and applied ball-partitioning. An orthogonal approach is the GHT [10],
where two reference objects (pivots) are arbitrarily chosen and assigned to two
distinct objects subsets. All objects are assigned to the subset containing the
pivot which is nearest to the object itself. In contrast to ball partitioning, the

2 http://lucene.apache.org
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generalized hyperplane does not guarantee a balanced split. Finally, [2, 3] present
another way of partitioning the data having balanced split.

3 Definitions and Problem Statement

3.1 Definitions

Metric Spaces A metric space is an ordered pair (S, d), where S is a domain
and d is a distance function d : S × S → R between any two objects in S.
Usually, the smaller the distance is, the more similar the objects are. The dis-
tance function d must satisfy non-negativity, reflexibility, symmetry and triangle
inequality. Assume a metric space (S, d), a collection C ⊆ S of objects, and a
query Q ∈ S. The best-k results for the query are the k objects with the smallest
distance to the query object. For compatibility with IR scoring we transform the
distances to scores and we assign to each object D a score sd(Q,D) in the range
[0,1] such that objects with smaller distance get higher score.

Top-k problem Assume m metric spaces {(Si, di))}
m
i=1

, a query Q ∈
∏m

i=1
Si,

and an aggregate function f : Rm → R. The problem of top-k is to retrieve the
best k objects that are similar to the given query, namely those objects D with
the highest aggregate score f(sd1(Q,D), sd2(Q,D), . . . , sdm(Q,D)) over all m
features.

Measures

– effectiveness To measure effectiveness of a retrieval engine we use the stan-
dard Precision and MAP (Mean average Precision) [11] measures. The pre-
cision is used to measure the percentage of documents retrieved that are
relevant. In metric spaces each object has some distance to the query (and
thus some level of relevancy). Thus, we define MAP@k which is the same
as MAP but we take the relevant results to be the real top-k objects.

– efficiency Let us assume that the cost of a single distance computation
between any two objects in any of the metric spaces is cd. The efficiency of a
retrieval engine on metric spaces is measured by the total computation cost
(cd ×Nd), where Nd is the total number of distance computations needed to
answer a top-k query.

3.2 Problem Statement

Assume {(Si, di))}
m
i=1

metric spaces and a cost cd for a single distance computa-
tion. Our goal is to return the best approximation (measured by effectiveness)
to the top-k query while minimizing the total computation cost (efficiency mea-
sure).
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4 Indexing

We assume m metric spaces denoted by {(S1, d1) · · · (Sm, dm)} and a collection
of N objects each having m features F1 · · ·Fm such that ∀i ∈ [1,m], Fi ∈ (Si, di).

We describe now a Metric Inverted Index for metric spaces. Similarily to
an inverted text index it contains two main parts: a lexicon of features in the
collection and posting lists containing for each feature the list of documents in
which the feature appear.

4.1 Lexicon candidate selection

In text IR, the size of the lexicon is substantially smaller than the size of the
collection since terms tend to appear in many documents. This is not always
the case for metric spaces. For example, low level image features such as e.g. a
Scalable Color can be reprensented by a vector of 256 integers. Since the space of
possible values for each feature is huge, the size of a lexicon will be in the order
of the collection size. Consequently, it would be impossible to store all features
in the lexicon as in text IR.

Thus we would like to select candidates for the lexicon such that the max
number of lexicon entries will be at most some parameter l. Note that we keep
all the different features from all the metric spaces in the same lexicon. A naive
approach would consist by ramdomly selecting l/m documents per feature. The
m features extracted from these documents will constitute the lexicon terms.
This approach can be widely improved by applying some clustering algorithms
on the extracted features using the distance function such that selected candi-
dates spans the metric space. In the present work, we use K-Means clustering
algorithm [4].

For each feature, we choose randomly M = l/m centroids. Note that generally
M << N . K-Means algorithm is run iteratively by mapping each feature to the
closest centroid using the distance function. Then new centroids are selected
and the process continues until fixed clusters are reached, namely no feature
was moved to another centroid in a full iteration. The lexicon elements are then
the clusters’ centroids. K-Means is run for each of the m features and we get a
lexicon of l terms.

4.2 Index creation

Once the lexicon entries are selected we need to create the posting lists. Let us
denote the terms of the lexicon by (F : v) where F is the feature name and v is
its value. Assume an object D with features D = {(F1 : v1), (F2 : v2), . . . , (Fm :
vm)}.

Most of the features (Fi : vi) are not part of the lexicon so we need to select
from the lexicon terms that best represent our object. This is done by selecting
for each feature (Fi : vi), the n nearest lexicon terms (n is a parameter) according
to the distance function. In order to determine these nearest terms efficiently,
the lexicon is stored in an M-tree [2]. After this stage, D can be represented as:
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D = {(F1 : v11), . . . (F1 : v1n), . . . , (Fm : vm1), . . . , (Fm : vmn)},
where (Fi : vij) are all the lexicon terms.

5 Retrieval stage

Given a query Q = {(F1 : qv1), (F2 : qv2), . . . , (Fm : qvm)} we describe now
the query processing done to retrieve the best approximation of the top-k while
minimizing the computation cost as defined in Section 3. Query processing is
done into three steps: term selection, Boolean constraint filtering and scoring.

5.1 Term selection:

Similarly to the indexing process described in Section refindex, we first find for
each query feature, the n closest lexicon terms. Consequently, Q is expanded to
Q′ = {(F1 : qv11), . . . (F1 : v1n), . . . (Fm : qvm1), . . . , (Fm : qvmn)}.
Q’ contains m · n terms all from the lexicon.

5.2 Boolean Constraint Filtering:

We look now at the posting lists of the m · n terms in Q′ and we want to select
the best approximation to the top-k out of the objects in those posting lists. We
present two strategies to select the best results:

Strict-Query mode - recall that we have m features in the query and for
each feature we have n posting lists of the closest lexicon entries. In the strict
mode we would like to return results only if they contain all the m features. To
achieve that we create a conjunction of m clauses Ci, where clause Ci is a disjunc-
tion of the n terms found for query feature (Fi, qvi). Experiments demonstrate
that this occurs very rarely in real configuration. Formally,

m
⋂

i=1

∪n
j=1

(Fi : qvij) (1)

Fuzzy-Query mode - in this mode, we consider all objects that appear in at
least 2 features. To achieve that, we create

(

m

2

)

conjunction clauses for each pair
of features and then we create a disjunction between those clauses. Formally,

⋃

(
m
⋂

i=1

(∪n
j=1

(Fi : vij),∪
n
j=1

(Fk : vkj)), i 6= k) (2)

5.3 Scoring

At the end of the filtering step we have a list of documents and we would like
to rank them by relevance to the query. Given an aggregate function f , we
compute for each returned document D, its aggregate score to the query Q given
by f(sd1(Q,D), sd2(Q,D), . . . , sdm(Q,D)). Our top-k result is the k documents
with the highest aggregate score.
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6 Experiments

In this section, we analyse the MII under various settings with focus on efficiency
and effectiveness. Specifically, we experimented variations of lexicon size and
number of nearest terms. In addition, we compare the MII to the M-Tree data
structure, one of the state-of-the-art data structure for metric spaces3.

6.1 Collection description

Our experiments were done on a collection of 160, 000 images crawled from Flickr.
For each image, three features have been extracted - ScalableColor, EdgeHis-
togram and ColorLayout. We used L1 (Manhattan distance) for the Scalable-
Color and EdgeHistogram features and L2 (Euclidean distance) for the Color-
Layout. The aggregate function f is simple sum. We randomly choose 180 images
from the collection to serve as the queries; for each we computed the MAP and
the number of comparisons. The retrieval was done using the Fuzzy-Query

mode .

6.2 Results

Effectiveness We present the effectiveness of the MII approach using the
MAP@k measure. Figure 1(a) shows the MAP@k values (for k=10, 20 and 30)
vs. the number of nearest terms for index with lexicon size of l = 12000 (4000
entries for each feature). We can see that when the number n of nearest terms
increases, the MAP@k increases as well because more candidates pass the fil-
tering step. For example for n = 10 the MAP@10 is 0.798 while for n = 30 the
MAP@10 is 0.98.

Figure 1(b) shows the MAP@k values relatively to the lexicon size for a fixed
number of nearest terms n = 30. Similarly, we can see that reducing the size of
the lexicon increases the MAP@k because for smaller lexicon size more elements
are in the posting list of each term and thus more good candidates pass the
filtering step. This improvement in the MAP@k results in a more expensive cost
computation as we will see in the efficiency subsection and thus we can tradeoff
between effectiveness and efficiency.

Efficiency The efficiency is measured by the number of distance computations
that is calculated as follow; assume m different features per object. For each
feature fi, we use M-Tree to find the n nearest terms in the lexicon. We designate
this cost as lookup(fi). Then assume N documents are returned from the Boolean
constraint filtering so we need N × m computations to score them. The cost of
the retrieval is thus

∑m

i=1
lookup(fi) + N × m.

Figure 2 shows the efficiency results for various sizes of lexicon using n = 30
nearest terms and for M-Tree. The M-Tree was created for the 160K collection

3 The M-Tree implementation we used has been taken from
http://lsd.fi.muni.cz/trac/mtree
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Fig. 1. MAP value for different k’s.(a) Lexicons’ size =12000, varied number of nearest
terms(b) number of nearest term =30, varied size of lexicon

with a distance function using a pre-cooked combination of the 3 distance func-
tions of the individual features. All our settings achieved much less distance
computations than M-tree where our best setting (l = 12000) achieved improve-
ment of about 90% efficiency over M-tree.

We can also see the tradeoff between effectiveness and efficiency. For lexicon
size l = 3000 the computation cost is 3 times more then for l = 48000, whereas
the MAP@30 was 0.997 and 0.877 respectively. The best cost-effective setting
was with lexicon size l = 12000, with almost best efficiency and almost best
effectiveness (with MAP= 0.985). For lexicons of size l = 12000 and l = 48000
the cost is almost the same and this can be explained by the fact that the number
of lexicon lookups for the larger lexicon is still dominant over the number of the
final number of documents that passed the filtering step.
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Fig. 2. # distance computations for different MII and M-tree vs. varied k value

In addition, our approach does not depend on k while for M-Tree the number
of computations increases when k increases. Moreover with our approach we can
combine the m features using varying weights and aggregation per query while
with the M-tree approach the aggregate function is fixed at indexing time.

61 



7 Conclusions and Future Work

In this paper we showed a new approximation approach for top-k over metric
spaces using MII - Metric Inverted Index. Our experiments show that we achieve
very good approximation (MAP=98%) with vast efficiency improvement (90%)
over state of the art methods. Furthermore by varying the size of the MII lexicon
and the number of nearest terms we can tradeoff efficiency vs effectiveness. For
future work we plan to experiment with larger scale collections (in the order of
million objects) and to exploit MII to combine search over text and audio-visual
content.
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