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Abstract. Automatic language processing tools typically assign to terms
so-called ‘weights’ corresponding to the contribution of terms to informa-
tion content. Traditionally, term weights are computed from lexical sta-
tistics, e.g., term frequencies. We propose a new type of term weight that
is computed from part of speech (POS) n-gram statistics. The proposed
POS-based term weight represents how informative a term is in general,
based on the ‘POS contexts’ in which it generally occurs in language.
We suggest five different computations of POS-based term weights by
extending existing statistical approximations of term information mea-
sures. We apply these POS-based term weights to information retrieval,
by integrating them into the model that matches documents to queries.
Experiments with two TREC collections and 300 queries, using TF-IDF
& BM25 as baselines, show that integrating our POS-based term weights
to retrieval always leads to gains (up to +33.7% from the baseline). Addi-
tional experiments with a different retrieval model as baseline (Language
Model with Dirichlet priors smoothing) and our best performing POS-
based term weight, show retrieval gains always and consistently across
the whole smoothing range of the baseline.

1 Introduction

With the increase in available online data, accessing relevant information be-
comes more difficult and provides a strong impetus for the development of auto-
matic language processing systems, able to convert human language into repre-
sentations that can be processed by computers. Typically, these systems locate
and quantify information in data by making statistical decisions about the oc-
currence and distribution of words in text. These statistical decisions have led to
the development of term weights which reflect how informative a word is within
some text, e.g., the well-known Inverse Document Frequency (IDF) weight [33].

We propose an alternative type of term weight, computed from part of speech
(POS) information (e.g., verb, noun), and specifically POS n-grams. These POS-
based term weights represent how informative a term is in general, based on the
‘POS contexts’ in which the term occurs in language. The motivation for using
POS is that their shallow grammatical information can indicate to an extent
the presence or absence of content. This is a well-known grammatical notion,



for instance Jespersen’s Rank Theory uses this notion to semantically define
and rank POS [15]. The motivation for using n-grams is their well-known lan-
guage modelling advantages: representing ‘small contexts’ (inside the n-gram),
and profiling ‘large samples’ (the collections from which they are extracted).
The intuition behind our POS n-gram based term weights is to reward terms
occurring often in content-rich POS n-grams, which are n-grams of salient POS,
such as nouns, verbs or adjectives.

We apply our POS-based term weights to Information Retrieval (IR), by in-
tegrating them into the retrieval model that matches documents to user queries,
using a standard way of integrating additional evidence into retrieval [11]. Us-
ing the original retrieval model as a baseline, and experimenting with three
established models (TF-IDF, BM25, LM with Dirichlet priors smoothing), two
standard TREC [35] collections, and 300 queries, we see that integrating our
POS-based term weights to retrieval enhances performance notably, with re-
spect to average and early precision, and with a statistical significance at most
times.

The contributions of this work are: (i) it proposes a type of term weight that
is derived from POS n-grams, (ii) it shows that this POS-based term weight can
be integrated to IR, similarly to additional evidence, with benefits to retrieval
performance.

This paper is organised as follows. Section 2 discusses the motivation for
computing a term weight from POS. Section 3 presents other applications of
POS n-grams and related work on term weighting. Section 4 describes how we
derive a term weight from POS n-grams, and Section 5 evaluates our proposed
term weights in the IR task. Section 6 concludes this work.

2 Motivation for using parts of speech

Our motivation is that the shallow grammatical information carried by POS can
indicate to an extent the presence or absence of informative content. This is
certainly not new; it can be found as an observation in 4th century BC studies of
Sanskrit [19], and also formalised into a linguistic theory for ranking POS [15].
In fact, Jespersen’s Rank Theory suggests that POS are semantically definable
and subject to ranking according to degrees [15]: firstly (most content-bearing)
nouns; secondly adjectives, verbs and participles; thirdly adverbs; and finally all
remaining POS. Jespersen’s notion of degree is defined in terms of the combi-
natorial properties of POS: each POS is modified by a higher degree POS, e.g.,
nouns are modified by verbs, and verbs are modified by adverbs.

A more general POS distinction is between major (or open) and minor (or
closed) POS, where roughly speaking open POS mainly bear content, and closed
POS mainly modify content. Open POS correspond to Jespersen’s first, second,
and third degrees, and closed POS correspond to the remaining POS. This POS
distinction is not language-dependent e.g., Chinese grammatical theory also tra-
ditionally distinguishes between ‘full’ and ‘empty’ words [19]. In addition, this
distinction can have philosophical extensions, for instance, it can be compared



to the Aristotelian opposition of ‘matter’ and ‘form’, with open POS signifying
objects of thought which constitute the ‘matter’ of discourse, and closed POS
contributing to the meaning of sentences by imposing upon them a certain ‘form’
or organisation [3]. A more practical implementation of this distinction is lan-
guage processing systems that consider closed POS as ‘stopwords’ and exclude
them from processing.

In this light, POS n-grams can become ‘POS contexts’ for which we have
some prior knowledge of content, e.g. POS n-grams containing nouns and verbs
are likely to be more informative than POS n-grams containing prepositions and
adverbs. We look at all the POS n-grams of a term and we reason that the
more informative and frequent these POS n-grams are, the more informative
that term is likely to be. We propose to use such a general ‘term informative-
ness’ term weight in IR, motivated by the fact that similar notions are often
used in readability formulae to predict the comprehension or complexity level of
texts [21].

3 Related work

3.1 Applications of part of speech n-grams

POS have been used for a variety of different applications. In POS tagging, they
are used to predict the POS of a word on the basis of its immediate context,
modelled within the n-gram [6]. Several well-known POS taggers use POS n-
grams, e.g. Mxpost [26] or TreeTagger [31]. Another application is stylometric
text categorisation, where POS n-grams assist in predicting the author/genre
of a given text. In such applications, POS n-grams, described as ‘pseudo-word
sequences’ [2], ‘POS triplets’ [30], or ‘quasi-syntactic features’ [16] have been
used with promising results. POS n-grams are also used in IR, for instance to
prune term n-grams from IR system indices in order to reduce storage costs
[17], or to predict the difficulty of search terms [1]. In machine translation, POS
n-grams are often used to select the best translation among several candidates
[14], for instance by looking at the more likely correspondence of POS patterns
between the source and target languages. Spell or grammar checking [36] and
automatic summarisation [10] also use POS n-grams.

Overall, POS n-grams are typically used to predict the occurrence of an item
in a sequence (e.g., POS tagging), or to characterise the sample from which
they are extracted (e.g., text classification). Using POS n-grams to compute
a term weight differs from that. Recently, Lioma & van Rijsbergen [18] pro-
posed deriving term weights from POS n-grams, using Jespersen’s Rank Theory.
Specifically, they adapted Jespersen’s POS ranks into POS weights, the values of
which were tuned empirically. In this work, we present five different POS-based
weights. Our weights are computed from POS n-grams, and in this respect they
are similar to the work proposed in [18]. However, whereas in [18] term weights
are derived according to Jespersen’s theory for ranking POS, we derive all five
proposed weights by extracting POS n-gram statistics directly from the collec-
tion. Hence, our approach is not based on a linguistic theory like in [18], but on



collection statistics. Practically this means that whereas in [18] Lioma & van Ri-
jsbergen employ four different parameters, which they tune in order to optimise
retrieval performance, our proposed weights are parameter-free in this respect.
In Section 5.1 we present experiments using both the POS weights proposed by
[18] and the POS weights proposed in this work, and we show that the latter
outperform the former.

3.2 Term weighting schemes

Typically, term weighting schemes assign to terms weights which represent their
contribution to the contents of some document or collection of documents. A
popular term weight is IDF [33], which weights how discriminative a term is
by looking at how many different documents contain it in a general collection
of documents: idf = log N

df , where N is the total number of documents in the

collection, and df is the number of documents that contain a term (document

frequency). The intuition behind IDF is that the more rare a word is, the greater
the chance it is relevant to those documents in which it appears.

Other term weights have also been proposed. Bookstein & Swanson intro-
duced the xI measure for a word w [4]: xI(w) = tf−df , where tf is the frequency
of a word in a document. This term weight is intuitive to an extent (e.g., for two
words of the same frequency, the more ‘concentrated’ word will score higher),
but can be biased toward frequent words, which tend to be less informative [24].

In [13] Harter proposed another term weight, called z-measure in an earlier
formulation by Brookes [5], based on the observation that informative words
tend to divert from a Poisson distribution. He suggested that informative words
may be identified by observing their fit to a mixture of a 2-Poisson model. The
z-measure computes the difference between the means of the two distributions,
divided by the square-root of the respective summed variances. Harter found
this term weight successful for keyword identification in indexing. Eventually,
this approach was extended by N-Poisson mixtures [20].

More recently, Cooper et al. suggested an extension of IDF [9]: they used
logistic regression to assign term weights according to how often a query term
occurs in the query and a document, the term’s IDF, and the number of dis-
tinct terms common to both query and document. Another IDF extension was
suggested by Church & Gale [8]. Their alternative, Residual IDF (RIDF), was
motivated by the observation that nearly all words have IDF scores that are
larger than what one would expect according to an independence-based model
(such as Poisson): RIDF = IDF − ÎDF , where ÎDF is the expected IDF. Ren-
nie & Jaakkola note that even though the RIDF intuition is similar to that of the
xI measure, xI has a bias toward high-frequency words, whereas RIDF has the
potential to be largest for medium-frequency words, and as such may be more
effective [27].

Over the years several variations of term frequency heuristics have been used
for term weighting. Some of those are the lnc.ltc weight by Buckley et al. [7];
the approach of Pasca to distinguish between terms of high, medium and low
relevance using heuristical rules [25]; the extension of Pasca’s heuristics by Monz,



who used machine learning techniques to learn term weights by representing
terms as sets of features, and applied the resulting term weights to question
answering [22].

All these approaches have one overriding factor in common: they attempt to
capitalise on the frequency and distribution of individual terms in the collection
in order to provide a statistical estimate of the importance of a term in a do-
cument/collection, aside of the semantic or syntactic nature of the term itself.
The POS-based term weights we propose are different in this sense, because the
usage of the term is captured and considered in order to determine the term’s
importance, as opposed to only considering occurrence data, and variations of.

4 POS-based term weighting

The aim is to suggest term weights, which represent how informative a term is,
and which have been computed from POS n-gram information only. The general
methodology is: (1) ‘Map’ terms to the POS n-grams that ‘contain’ them3 and
store their frequency statistics. (2) Approximate the probability that a term is
informative on the basis of how informative its corresponding POS n-grams are.

Let {pos} be the set of parts of speech, and {POS} the set of POS n-grams,
where if POS ∈ {POS}, POS = [pos1, . . . posN ], posi ∈ {pos}∀i ∈ [1 . . . N ]. Let
I be a random variable for informative content. Also, let {POS}t be the set (no
duplicates) of POS n-grams that ‘contain’ term t. Then, according to the total
probability theorem, the probability that a term is informative P (I|t) is:

p(I|t) =
∑

POS∈{POS}

p(I|t, POS) p(POS|t) ≈
∑

POS∈{POS}t

p(I|t, POS) p(POS|t)

(1)

where we assume that p(POS|t) = 0 if POS /∈ {POS}t. Otherwise, there are
two options to compute p(POS|t): (i) the probability can be considered uniform,
regardless of how many times a POS n-gram ‘contains’ the term (boolean option);
(ii) the probability can be estimated by counting POS n-gram frequencies in the
collection (weighted option).

The five different weights we propose have Eq. 1 as a starting point, but
compute its components in different ways. We present these weights in Sec-
tions 4.1-4.2, and show how we integrate then into the retrieval model using a
standard formulation for integrating evidence into retrieval [34] in Section 4.3.

4.1 POS n-gram Maximum Likelihood

We derive a term weight using Eq. 1, and approximate p(I|t, POS) ≈ p(I|POS)
by computing the maximum likelihood (ML) of individual POS n-grams in a
collection. This is similar to building a language model of POS n-grams from

3 A POS n-gram that ‘contains’ a term = a POS n-gram which corresponds to a term
n-gram that contains a term.



their occurrence in a collection C: p(I|POS) ∝ p(POS|C). This equation assumes
that the informative content of a POS n-gram is approximately proportional to
the frequency of a POS n-gram in a collection. This approximation is parameter-
free. The above produces two different weights, when combined with a boolean
and respectively weighted option for computing p(POS|t). We call these weights
pos ml boolean and pos ml weighted respectively.

4.2 POS n-gram Inverse Document Frequency (IDF)

We also suggest three alternative term weight computations using POS n-gram
statistics, inspired by the computations of IDF, RIDF and Bookstein and Swan-
son’s xI , presented in Section 3.2.
pos idf: In conventional term IDF, document frequency (df) is the number of
documents in which a term occurs. In our proposed pos idf, we count the number
of POS n-grams in which a term occurs, and refer to this as POS ngram frequency

(pf). We compute pos idf as follows: pos idf = log |C|
pf , where |C| is the number

of all POS n-grams in the collection. Note that pos idf can be effectively derived
from Eq. 1 if we consider p(POS|t) = 1/{POS}t and p(I|t, POS) = 1 if POS /∈
{POS}t and 0 otherwise.
pos ridf: We compute the Residual IDF (RIDF) of POS n-grams: pos ridf =

pos idf − ̂pos idf , where pos idf is computed with the equation shown immedi-

ately above, and ̂pos idf is the expected pos idf , computed as −log(1−eTF/|C|),
where TF is the number of times a term occurs in the different POS n-grams,
and |C| is as defined above.
pos bs: We compute Bookstein and Swanson’s term weight of POS n-grams:
pos bs = TF −pf , where TF and pf are as defined above. In this paper we take
the log of TF − pf to compute our term weight.

4.3 Integration into retrieval models

In Sections 4.1-4.2, we suggest in total five POS-based term weights, namely:

1. pos ml boolean: POS n-gram Maximum Likelihood; ignores how often a POS

n-gram ‘contains’ a term

2. pos ml weighted: POS n-gram Maximum Likelihood; considers how often a POS

n-gram ‘contains’ a term

3. pos idf: how many POS n-grams ‘contain’ a term

4. pos ridf: how many POS n-grams ‘contain’ a term

5. pos bs: term frequency in POS n-grams, how many POS n-grams ‘contain’ a term

Our POS-based term weights are document-independent weights that mea-
sure the general (non-topical) informative content of terms. We integrate them
into the retrieval model, using a standard integration of document-independent
evidence into retrieval, [11] or term proximity evidence [34]:

New score(t, d) = Old score(t, d) + w · pos weight (2)



where New score(t, d) (resp. Old score(t, d)) is the score of a document for a
query that integrates (resp. does not integrate) our POS-based term weight, w
is a parameter that controls the integration, and pos weight is our POS-based
term weight. When combining evidence in this way, we combine evidence that is
dependent on the query (as in [34]), and not query independent evidence (as in
[11]). Note that the type of evidence, query independent or not, is arbitrary. In
[11] Craswell et al. proposed various ways of integrating evidence into retrieval.
Here, we employ their simplest way which contains one parameter only (extended
from Eq. 1 in [11]). Other ways of integrating our POS-based term weights to
retrieval are also possible, e.g., by rank merging, or as prior probabilities [11].

5 Evaluation

Experimental methodology: We integrate the POS-based term weights into
retrieval models, and compare retrieval performance against a baseline of the
retrieval models without our POS-based weights. In addition, we present results
with the POS-based weight proposed by Lioma & van Rijsbergen in [18], so
that we can compare directly the POS weight of [18], which is derived from a
linguistic theory, to our proposed POS weights, which are derived from collection
statistics. Note that when doing so, we integrate the POS-based weight of [18]
using Eq. 2, and not the integration originally presented in [18].

We conduct three rounds of experiments: (1) We integrate our five proposed
POS-based term weights to TF-IDF & BM25, and we tune the parameter w of
the integration separately for each POS-based term weight (x5), retrieval model
(x2), collection (x2), and evaluation measure (x2). We tune w by ranging its
values between [0-50000]. (2) We further test the robustness of our POS-based
weights as follows. For Disks4&5 only (the collection with the most queries),
we train our POS-based weights on 150 queries (301-450), and test on the re-
maining 100 queries (601-700). Each time we train by tuning parameter w of
the integration separately for MAP and P@10. (3) We further experiment with
an additional baseline model (LM with Dirichlet priors smoothing) and our best
performing POS-based term weight (pos ml weighted). Here we tune both the
parameter w of the integration and the smoothing parameter µ of the LM.

Table 1. Collection features.

collection domain size documents terms (unique) POS 4-grams

Disks 4&5 news 1.9GB 528,155 840,536 25,475
WT2G Web 2GB 247,491 1,159,310 25,915

Retrieval settings: For retrieval we use the Terrier4 IR system, and we extend
its indexing functionalities to accommodate POS n-gram indexing. We match

4 ir.dcs.gla.ac.uk/terrier/



documents to queries with three established and statistically different retrieval
models: (1) the traditional TF-IDF [28] with pivoted document length normal-
isation [32]. We use TF-IDF with pivoted document length normalisation over
standard TF-IDF because it does not include an explicit document length nor-
malisation parameter; (2) the established Okapi’s Best Match 25 (BM25) [29];
(3) the more recent Language Model (LM) with Dirichlet priors smoothing [12].
BM25 includes three tunable parameters: k1 & k3, which have little effect on
retrieval performance, and b, which normalises the relevance score of a docu-
ment for a query across document lengths. We use default values of all BM25
parameters: k1 = 1.2, k3 = 1000, and b = 0.75 [29]. We use default values,
instead of tuning these parameters, because our focus is to test our hypothesis,
and not to optimise retrieval performance. If these parameters are optimised, re-
trieval performance may be further improved. LM Dirichlet includes a smoothing
parameter µ, which we tune to optimise retrieval performance (for the second
round of experiments only). Table 1 presents the two TREC [35] collections used:
Disks 4&5 and WT2G. Disks 4&5 contain news releases from printed media; this
collection is mostly homogeneous (it contains documents from a single source).
WT2G consists of crawled pages from the Web, which is itself a heterogeneous
source. Even though the collections are of similar size (1.9GB - 2GB), they differ
in word statistics (Disks 4&5 have almost twice as many documents as WT2G,
but notably less unique terms than WT2G), and domain (newswire, Web). For
each collection, we use its associated set of queries: 301-450 & 601-700 for Disks
4&5, and 451-500 for WT2G. We experiment with short queries (title) only,
because they are more representative of real user queries on the Web [23]. We
evaluate retrieval performance in terms of Mean Average Precision (MAP) and
Precision at 10 (P10) and report the results of statistical significance testing
using the Wilcoxon matched-pairs signed-ranks test.
POS-based term weighting settings: We POS tag the collections with the
freely available TreeTagger [31]. We collapse the Penn TreeBank tags used by
the TreeTagger into the fourteen POS categories used in [18], because we are not
interested in morphological or other secondary grammatical distinctions, but in
primary grammatical units. We extract POS n-grams, and set n=4 following [18].
Varying n=[3,6] is expected to give similar results [18].

5.1 Experimental results

Table 2 shows the retrieval performance of our experiments (best scores are
bold). At all times, all five POS-based term weights enhance retrieval. This
improvement is more for MAP than for P@10 (this is common in IR, because it
is hard to alter the top ranks of relevant documents). This improvement is also
more notable for WT2G than for Disks 4&5, even though we have more queries
for the latter. A possible reason for this could be that WT2G contains more
noise (being a Web crawl), and hence there is more room for improvement there,
than in a cleaner collection like Disks 4&5. In fact, a noisy collection is a good
environment for illustrating the use of a general informativeness term weight. The
best performing POS-based term weight is using the maximum likelihood of POS



n-grams in a collection (pos ml weighted). The particularly high parameter w
values of this weight are not indicative of any special treatment (identical tuning
has been applied to all weights), but simply caused because this computation
originally gave low magnitude weights.

Table 2. Retrieval performance for MAP and P@10. * (**) denote statistical
(very strong) significance with Wilcoxon’s p < 0.05 (0.01). † denotes the POS
weight proposed in [18], included here for comparison. w is the integration pa-
rameter.

Disks 4&5 WT2G

model MAP w P@10 w MAP w P@10 w

TFIDF baseline 0.1935 - 0.3855 - 0.1933 - 0.3940 -

TFIDF pos jes† 0.2132** (+10.2%) 10 0.4000* (+3.8%) 10 0.2389** (+23.6%) 5K 0.4080* (+3.6%) 2K

TFIDF pos ml wei 0.2256** (+16.6%) 25K 0.4044** (+4.9%) 22K 0.2345** (+21.37%) 5 0.4020 (+2.0%) 1.5
TFIDF pos ml boo 0.2066** (+6.8%) 1K 0.3980* (+3.2%) 1K 0.2068* (+7.0%) 2 0.3992 (+1.3%) 2
TFIDF pos idf 0.2190** (+13.2%) 3 0.4036** (+4.7%) 2 0.2584** (+33.7%) 5 0.4160** (+5.6%) 2
TFIDF pos ridf 0.2039** (+5.4%) 3 0.3948 (+2.4%) 3 0.2515** (+30.1%) 20 0.4140* (+5.1%) 15
TFIDF pos bs 0.2068** (+6.9%) 2 0.3992 (+3.6%) 2 0.2479** (+28.2%) 15 0.4080* (+3.6%) 30

BM25 baseline 0.2146 - 0.3960 - 0.2406 - 0.4280 -

BM25 pos jes† 0.2202** (+2.6%) 2 0.4008 (+1.2%) 0.8 0.2755** (+14.5%) 5 0.4440* (+3.7%) 2

BM25 pos ml wei 0.2267** (+5.6%) 6K 0.4016 (+1.4%) 3K 0.2710** (+12.6%) 10K 0.4300 (+0.5%) 200
BM25 pos ml boo 0.2187* (+1.9%) 200 0.4008 (+1.2%) 100 0.2661** (+10.6%) 1K 0.4380* (+2.3%) 200
BM25 pos idf 0.2223** (+3.6%) 0.7 0.4000 (+1.0%) 0.2 0.2775** (+15.3%) 1.5 0.4380 (+2.3%) 0.7
BM25 pos ridf 0.2163 (+0.8%) 0.4 0.3972 (+0.3%) 0.7 0.2679 (+11.3%) 1 0.4300 (+0.5%) 1
BM25 pos bs 0.2165 (+0.9%) 0.1 0.3964 (+0.1%) 0.1 0.2693 (+11.9%) 0.2 0.4380* (+2.3%) 0.2

Table 3. BM25 & TFIDF for Disks 4&5: train with 150 topics and test with
100 topics. b and t denote best and trained values respectively. * (**), † and w
as defined in Table 2.

MAPt MAPb
w

t
w

b P@10t P@10b
w

t
w

b

TFIDF baseline 0.2398 0.2398 - - 0.4010 0.4010 - -

TFIDF pos jes† 0.2580** (+7.6%) 0.2627** (+9.5%) 15 10 0.4162 (+3.8%) 0.4162 (+3.8%) 10 10

TFIDF pos ml wei 0.2698** (+12.5%) 0.2700** (+12.6%) 23K 21K 0.4212** (+5.0%) 0.4222** (+5.3%) 22K 20K
TFIDF pos ml boo 0.2450* (+2.2%) 0.2583** (+7.7%) 5K 2K 0.4101 (+2.3%) 0.4131 (+3.0%) 1K 2K
TFIDF pos idf 0.2570** (+7.2%) 0.2639** (+10.1%) 5 3 0.4180 (+4.2%) 0.4202** (+4.8%) 3 2
TFIDF pos ridf 0.2444* (+1.9%) 0.2527** (+5.4%) 3 2 0.4121 (+2.8%) 0.4141 (+3.3%) 2 3
TFIDF pos bs 0.2456* (+2.4%) 0.2551** (+6.4%) 0.9 0.5 0.4131 (+3.0%) 0.4131 (+3.0%) 0.5 0.5

BM25 baseline 0.2621 0.2621 - - 0.4061 0.4061 - -

BM25 pos jes† 0.2690** (+2.6%) 0.2690** (+2.6%) 2 2 0.4091 (+0.7%) 0.4172 (+2.7%) 3 0.7

BM25 pos ml wei 0.2702** (+3.1%) 0.2718** (+3.7%) 7K 4500 0.4111 (+1.2%) 0.4152 (+2.2%) 2K 3K
BM25 pos ml boo 0.2540 (-3.1%) 0.2671* (+1.9%) 1K 200 0.4000 (-1.5%) 0.4151 (+2.2%) 1K 100
BM25 pos idf 0.2643 (+0.8%) 0.2678** (+2.2%) 0.9 0.4 0.4121 (+1.5%) 0.4141 (+2.0%) 0.1 0.2
BM25 pos ridf 0.2647 (+1.0%) 0.2650* (+1.0%) 0.4 0.2 0.4081 (+0.5%) 0.4131 (+1.7%) 0.7 0.2
BM25 pos bs 0.2647 (+1.0%) 0.2647 (+1.0%) 0.1 0.1 0.4020 (-1.0%) 0.4111 (+1.2%) 0.2 0.1

Table 3 shows the retrieval performance of our split train-test experiments
(best scores are bold). The values of the integration parameter wt and wb are
those that give the best MAP and P@10 in the trainset and testset respectively.
MAPt and MAPb are the MAP values obtained using wt and wb respectively



in the testset (same for P@10). Similarly to Table 2, all our POS-based weights
outperform the baseline. In addition, the POS-based weights perform consis-
tently to Table 2, with pos ml weighted performing overall better than the rest.
This consistency in the performance of the weights between Tables 2-3 is also
seen in the w values, which are very similar. These points indicate that the
proposed POS-based weights are robust with respect to the values of the in-
tegration parameter w, for two different evaluation measures, and for different
query sets. More importantly the values selected from training are portable and
result in similarly good performance when testing. Figure 1 plots the MAP of
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Fig. 1. Language Model with Dirichlet priors smoothing (baseline) & our best
POS-based term weight integrated into it (w are integration parameter values).

the LM Dirichlet runs across the smoothing range of the retrieval model (x axis),
separately for the baseline and for our best performing POS weight with three
different integration values. Integrating our POS-based weight into the model
always outperforms the baseline. This indicates that the contribution of our
weight to retrieval is not accidental, neither due to weak tuning of the baseline,
but relatively robust (for this dataset).

We compute the correlation between the proposed term weights and IDF
using Spearman’s ρ. pos idf is correlated with IDF (ρ ≈ 0.8) and pos ridf and
pos bs are very weakly negatively correlated with IDF. These results hold for
both collections. The pos ml weights are not correlated with IDF. This indicates
that the contribution of our POS-based term weights is different to that of IDF.

6 Conclusion

We proposed a new type of term weight, computed from part of speech (POS) n-
grams, which represents how informative a term is in general, based on the ‘POS
contexts’ in which it generally occurs in language. We suggested five different
computations of POS-based term weights by extending existing statistical ap-
proximations of term information measures. We applied these POS-based term



weights to IR, by integrating them into the model that matches documents to
queries. Experiments with standard TREC settings on default and tuned base-
lines showed that integrating our POS-based term weights to retrieval improved
performance at all times. Future research directions include approximating our
weights from more refined smoothing techniques, for instance Laplace or Good-
Turing smoothing, refining the integration of our weights into retrieval, namely
by treating them as prior probabilities, or applying POS-based term weighting to
‘flag’ difficult search terms in IR. Note that these weights could also be applied
to other areas, e.g., in classification, as a classification feature or threshold; in
machine translation, to look at whether POS-based term weights are consistent
in parallel text; and in summarisation, as an indication of general content.
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