
Assigning Documents to Master Sites
in Distributed Search

Roi Blanco
Yahoo! Research
Barcelona, Spain

roi@yahoo-inc.com

B. Barla Cambazoglu
Yahoo! Research
Barcelona, Spain

barla@yahoo-inc.com

Flavio P. Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com
Ivan Kelly

Yahoo! Research
Barcelona, Spain

ivank@yahoo-inc.com

Vincent Leroy
Yahoo! Research
Barcelona, Spain

leroy@yahoo-inc.com

ABSTRACT
An appealing solution to scale Web search with the growth
of the Internet is the use of distributed architectures. Dis-
tributed search engines rely on multiple sites deployed in
distant regions across the world, where each site is special-
ized to serve queries issued by the users of its region. This
paper investigates the problem of assigning each document
to a master site. We show that by leveraging similarities
between a document and the activity of the users, we can
accurately detect which site is the most relevant to place a
document. We conduct various experiments using two docu-
ment assignment approaches, showing performance improve-
ments of up to 20.8% over a baseline technique which assigns
the documents to search sites based on their language.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Design, Experimentation, Performance

Keywords
Multi-site web search engine, distributed index, document
assignment

1. INTRODUCTION
Web search requires building very large data centers, com-

prising a large number of computer resources [2]. As the
Web grows in size and extent, it becomes necessary for a
search engine to increase its capacity, and one typical solu-
tion is to rely upon more resources of an existing data cen-
ter. One important drawback of this solution is requiring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

larger data centers over time, which presents severe limita-
tions regarding space, energy provision, and connectivity. A
viable alternative is to design the search engine to enable
new, smaller data centers to be incorporated when more ca-
pacity becomes necessary. This design has the advantage of
not requiring data centers to grow over time. Designing a
search engine to distribute its functionality across multiple
data centers, however, is not trivial since most techniques
used in commercial search engines to date rely upon tightly
coupled computer resources to operate efficiently. Recent
work has focused on moving away from this paradigm and
devising techniques that enable the design of efficient dis-
tributed search engines [1, 6].

A distributed search engine is comprised of geographically
distributed data centers (sites), and users submit queries to
the closest location, where closest can be either with respect
to geographic or network distance. Upon receiving a user
query, a site either processes a query locally or forwards it to
other sites for processing. Techniques for deciding when to
forward a query are consequently critical to the performance
of such a distributed search engine [1, 7].

Forwarding queries, however, introduces extra latency to
the processing of a query, so ideally a site is able to pro-
cess many of its received queries locally to avoid the extra
latency of processing remotely. To enable sites to process
many queries locally, it is necessary to select documents to
index in a site that are among the top results of queries that
are submitted to the site. At the same time, to avoid repli-
cating all documents across all sites, which leads to sites
growing with the Web, it is necessary that we carefully se-
lect the documents that a site indexes. Such a mechanism
to select documents for a site must use some metric of rele-
vance to determine the importance of documents to a given
geographic region. Some previous work has proposed tech-
niques for distributed index construction [12, 14] and par-
titioning [10, 11, 13, 15] over a cluster of computers within
a search site, thus targeting a local setting. The only work
we are aware of that targets distributed settings is the one
of Brefeld et al., which uses machine-learning techniques to
replicate documents across sites and are able to forward only
4% of the queries while indexing in each site 55% of docu-
ments, on average [4].

Contributions. We argue for an approach consisting
of two steps for the construction of the distributed indexes.
The first step is assigning a document to exactly one site,

67

Master
Selection

Web Crawler

UsersIndexer Query
Processor

Site 1

Indexer Query
Processor

Site 2

Users

Index
Replication

Query
Forwarding

Figure 1: Architecture of a distributed search engine

the document’s master site. The master site is responsible
for indexing the document, which ensures that each crawled
document exists in the global search index. The second step
consists of enabling sites to replicate documents in a site
that is not the master site to enhance the performance of
the search engine. Having a master for each document sim-
plifies the design of the replication strategy: each site can
make local decisions about replication and document mas-
ters guarantee that at least one site indexes a given crawled
document. As our experiments show, assigning documents
to sites using document content alone is difficult and con-
sequently popularity information is key for efficient replica-
tion. Separating mastership and replication, consequently,
leads to a more efficient utilization of indexer resources, since
sites replicate documents only once they have sufficient evi-
dence of interest from their local users.

This work focuses on the selection of document masters
and replication techniques are outside the scope. An effi-
cient master selection strategy assigns documents to sites
where users are most likely to access them. Having master
sites also enables other sites to arbitrarily add and delete
documents for which they are not masters without compro-
mising the coverage of the search engine. Since master sites
index the documents assigned to them, we guarantee that
every crawled document is indexed by at least one site.

In our evaluation, we consider three approaches to par-
tition the index across master sites. The first one assigns
documents to sites using their language, and we use it as a
baseline. The second approach uses KL divergence to eval-
uate the similarity between the distribution of terms in the
new document and a description of each site. This descrip-
tion can be either extracted from the queries of the users,
or from the documents given as results. Finally, we consider
a metric based on cache invalidation to estimate the impact
of the document on each site of the search engine. We eval-
uate these techniques over a large document collection and
a query set obtained from a commercial search engine. Our
results indicate a 20.8% overall improvement over our base-
line, as well as up to 88% of the optimal performance under
some document popularity conditions. This result provides
evidence that a tight integration with the search engine with
access to user feedback significantly improves the accuracy
of documents’ placement.

Roadmap. The remainder of this paper is organized as
follows. Section 2 discusses the high-level architecture we
consider for distributed search engines. In Section 3, we
present the document assignment techniques we evaluated.
We describe the experimental setup in Section 4 and report
our results in Section 5. Section 6 contains a discussion of

practical implementation aspects. Finally, we discuss related
work in Section 7 and conclude the paper in Section 8.

2. ARCHITECTURE
We consider a distributed search engine deployed in sev-

eral regions across the world. We refer to the sites of a
distributed search engine as S, while D is the set of docu-
ments it processes. Fig. 1 presents an overview of the search
engine. We now describe the different components of the
search engine as well as their interactions.

2.1 Crawler
A search engine discovers and acquires content through

a crawler. The main research challenge in multi-site Web
crawling is to partition the Web document collection across
multiple search sites so that pages can be crawled faster, due
to the improved network proximity between the search sites
and Web servers. Gao et al. formulates this problem as a
geographically focused Web crawling problem [8].

In this paper, we do not evaluate crawling performance.
Hence, for the sake of simplicity, we consider the case of a
single crawler. Once a document has been fetched by the
crawler, it is sent to an indexer in order to be added to the
inverted index of the search engine. The transition from the
crawler to an indexer is the main focus of this paper. The
index is divided among the sites of the distributed search
engine. Hence, the crawler has to decide which sites should
index the document. In Brefeld et al.’s work [4], the crawler
selects multiple sites for each document through a machine
learning model. In this paper, we propose an approach to
select a unique site for each document. We call this site
the master site of the document. We formally define this
problem in Section 3.1.

2.2 Query processor
Processing queries in a distributed search engine is a chal-

lenging task. The result quality is crucial to ensure user sat-
isfaction. The results computed by the search engine should
not be affected by the distribution of the index among sev-
eral sites. The main technique investigated so far is query
forwarding [1, 7]. A search site first computes results us-
ing its local index and then determines through heuristics if
the other sites may have different documents that would be
ranked higher. If that is the case, the query is forwarded in
order to compute more accurate results. The heuristic may
overestimate the scores of the other sites to achieve a result
similar in quality to that of a centralized setup.

While forwarding a query can improve the quality of the
results, this may increase the response time of the search

68

engine as well as the computational load. It is therefore cru-
cial to reduce the number of forwarded queries. This can be
done both by improving the accuracy of the score estimation
heuristics and by ensuring that documents relevant to the
users of a site are present in its local index. In this paper, we
assume the existence of a query forwarding algorithm with
an associated heuristic [1, 7]. The content of the index of
a site is the direct consequence of the master selection per-
formed by the crawler. Hence, we evaluate the accuracy of
the master selection process by computing the proportion of
results served by a site that was present in its local index.

2.3 Indexer and replicator
An indexer extracts terms from documents and generates

an inverted index in order to match documents to queries.
Each site has its own indexer which receives documents from
the crawler according to the master selection process. An
indexer has a maximum capacity, due to storage, memory,
or computational limits. Artificially limiting the size of an
index can also be an efficient way of reducing the query re-
sponse time, as smaller indexes are faster to process. Each
document is assigned to a master which is responsible for
keeping the document in its index. The forwarding mech-
anism implemented by the query processor ensures that a
document matching a query is always taken into account in
ranking, even when the document is indexed in another site.

The popularity of Web pages follows a power law, a few
Web pages are extremely popular and constitute most of the
search results. If these documents were indexed only by their
master site, any query matching one of them and issued at
another site would always have to be forwarded. This would
degrade the performance of the search engine. As a conse-
quence, the master selection process is used in conjunction
with a replication algorithm. After indexing the documents
that are assigned to itself, each site uses its remaining index
capacity to index other documents that are assigned to other
sites but are frequently accessed by its users. This process
replicates popular documents at each site. Still, contrary
to Baeza-Yates et al.’s approach [1], the set of replicated
documents is not statically determined and common to all
sites. Each site can locally decide which documents to repli-
cate, and this decision takes into account the activities of
the users of that site in particular. The replication decisions
are local. As each document has a master that maintains it
in its index, a replicated document can be deleted without
synchronization with the other sites, it will not be evicted
from the distributed search engine.

This paper focuses on the problem of selecting a master for
each document. While the replication mechanism is crucial
for the performance of the search engine, we leave this study
as part of future work. Since the master of a document is in
charge of maintaining it, it is important to accurately assign
it to the site where users are most likely to access it.

3. DOCUMENT ASSIGNMENT

3.1 Problem definition
We consider the problem of selecting exactly one site for

each document while crawling. This site is referred to as the
master of the document, and it is responsible for keeping
this document in its index. The existence of a master site
guarantees the recall of the search engine and simplifies the

index replication process.

master : D → S

Without loss of generality, defining the choice of a master
site is equivalent to providing the crawler with a function
mScore such that:

mScore : D × S → R
master(Dj) = arg max

Si∈S
mScore(Dj ,Si)

The goal of the master selection process is to place docu-
ments in sites where they are likely to be requested by users.
Therefore, mScore(Dj ,Si) should produce higher scores when
it predicts that the document Dj matches the interests of
the users of site Si.

3.2 Document language
The language of a document is a good indicator of which

region could be interested in it. Regional documents are
more likely to be requested from the countries whose lan-
guage is the same. Brefeld et al. [4] use the languages as
one of the features of a machine learning algorithm. They
observe that the language of a document has a large impact
in the precision of the document’s placement. In our exper-
iments, we use a commercial language classifier to assign a
language to each document.

Using past search engine activity, we compute the fol-
lowing conditional probability: given that a document in a
language Lj is returned as a result to a user, what is the
probability that the user is from site Si? The index parti-
tioner computes the language of new documents and assigns
each of them to the site with the highest probability. In
this case, we approximate mScore with p(Si|Lj). In the
evaluation, we refer to this solution as lang.

3.3 Document assignment by likelihood
While the language of a document leverages, to some ex-

tent, the content of the document, the language is a coarse-
grain information. It would be possible to achieve a better
precision by taking into account all the terms in the docu-
ment. Hence, we propose to compute mScore using a prob-
ability estimation. In general, the optimum placement for a
document Dj at a master site Si depends on the queries that

will be issued in the future Qf
i in which Dj appears among

the top results. We make use of two sources of information:
Ci is a random vector that represents the content of site Si,
and Qi is a random vector representing the most recent re-
cent query stream processed by Si. Both these informations
can be extracted from the cache of the search engines or its
query logs. That is, we want to select the most probable site
maximizing the following log-likelihood:

log p(Si|Dj) =

∫
log p(Si|Qf

i , Dj)p(Q
f
i |Dj)dQ

f
i

=

∫
log p(Ci, Qi|Dj , Q

f
i) + log p(Qf

i |Dj)dQ
f
i .

In order to estimate Qf
i , we make use of Qi as an approx-

imation of the future query stream, and we have

log p(Si|Dj) ≈
∫

log p(Ci, Qi|Dj , Qi) + log p(Qi|Dj)dQi (1)

≈ log p(Ci|Dj) +
1

|Qi|
∑

qz∈Qi

log p(qz|Dj) . (2)

69

Here, we assume that the queries in the stream are condi-
tionally independent given a document.

This formulation has two components: one that uses the
contents of a given site and its relatedness to the docu-
ment p(Ci|Dj) and another one that uses the available query
stream Qi as a source of evidence. We relate the former
probability with the term distribution of the site, and the
latter as the fraction of queries that are invalidated by a
given document, as explained next. We experiment how
both probabilities perform for the problem of master assign-
ment independently and we combine them later on.

3.3.1 Document as a query
Our first classification method stems directly from the es-

timation of p(Ci|Dj) (Eq. (2)), which assigns a document
Dj to a master site Si based on the likelihood of observing
the content Ci at the site Si given the content of Dj . It
is possible to compute the likelihood of the content to the
document using a similarity function, in the same way stan-
dard language models for IR score documents with respect to
their likelihood to a query. In this case, the whole contents
of the site plays the role of the document and the document
to be indexed as the query. We employ a bag of words rep-
resentation for the document to be indexed where Ci is the
concatenation of all content of Si. The rationale is that if
the contents of the documents returned by a site matches
the queries it receives, we should assign a new document to
the data center that has the closest term distribution.

To estimate p(Ci|Di), we employ the language-model-based
KL divergence [16], which measures how similar a certain
distribution is (query) with respect to a reference distribu-
tion (document). We smooth the unigram language model
counts of both the document and site contents using Dirich-
let priors smoothing [17]. This ranking function contains a
tunable parameter µ that controls the amount of probability
mass that is assigned to unseen terms:

mScore(Dj ,Si ;µ) = KL(Dj ||Ci;µ).

In our experiments, we consider two different ways to rep-
resent the content of a search site. For the first one, which
we call KL-d, we use the content of the documents returned
as results to the users of the site. The second approach,
KL-q, directly uses the term distribution of user queries to
represent the content of the site, as an approximation of the
most recent term distribution. It is important to notice that
both of these approaches are directly driven by user activity
and not influenced by the master selection process. An al-
ternative approach could be to use the documents indexed
by a site to represent its content. A drawback of this ap-
proach is that previous indexing decisions would influence
the future ones and mis-classification error would affect fu-
ture decisions degrading the performance over time. We
therefore discarded this possibility in our experiments and
focus on using the term distribution in the cache contents
only.

3.3.2 Cache invalidation
The second classification method estimates the probability

of p(Qi|Dj) (Eq. (1)). The likelihood of the query stream
to the document has been studied in the past in the con-
text of cache invalidation. Search engines cache the results
served to the users in order to avoid computing multiple
times the answer to a given query. While this increases the

performance of the search engine, it also raises the problem
of results staleness [?], especially in the case of incremental
indexing. Cache entries need to be invalidated in order to
reflect the changes in the index. Blanco et al. [3] experiment
different cache invalidation policies to strike a good balance
between the risk of serving stale results and the hit-rate of
the cache. In practice, upon adding a document to the index,
the search engine matches the terms in the document with
queries present in the cache and if the document is expected
to be in the top-k of a query, its cache entry is invalidated.
Then, we define p(Qi|Dj) as the fraction of queries in the
cache of Si that would be invalidated by Dj , that is, Dj

would be in the top-k results of those queries:

mScore(Dj ,Si) =
1

|Qi|
∑
qz :Qi

I(qz||Dj) ,

where I(qz||Dj) is 1 if Dj would be in the top-k results for
qz and 0 otherwise.

The query cache of a search site is a good indicator of the
interests of the users in its region. Hence, we propose to use
the number of cache invalidation caused by a document at a
given site as an indicator of its relevance to this site. If the
document would have had a high impact on the results of the
past queries, it is likely to appear in the future results as well.
The main advantage of this approach is that, contrary to the
approach presented in Section 3.3.1, it does not concatenate
all the queries into a bag of words. Since the co-occurrence
of terms is preserved, we expect cache invalidation to have a
slightly better performance. In the remainder of this paper,
we refer to the assignment based on cache invalidation as
cache.

4. EXPERIMENTAL SETUP

4.1 Search engine

4.1.1 Distributed search engine
We consider a distributed search engine, such as the one

described in Section 2. We devise a configuration in which
the search engine is deployed on five sites S = {S1 . . . S5},
distributed over different continents. While the sites are
located in different countries, some countries have people
speaking the same language, which complicates the assign-
ment of documents. We assume that the query processor
of the search engine implements a query forwarding scheme
(Section 2). As a consequence, given a query and a doc-
ument collection, the results computed by the distributed
search engine are equal to the ones returned by a centralized
one, and do not depend on the site that the query originates
from. Thus, we perform our experiments using a centralized
commercial search engine, but label each query with the site
it originates from and label each document with the site that
is selected as the document’s master.

4.1.2 Ranking function
The ranking function of a search engine is a key compo-

nent, as it directly impacts the quality of the results returned
to the users. While the main focus or our work is not re-
lated to the relevance of the results of the search engine, it is
important to consider a realistic ranking function because it
impacts the distribution of the documents’ popularity. We
rely on the following ranking function to assign a score to a

70

document d with respect to a query q:

score(d , q) = λ× relevance(d , q) + (1− λ)× quality(d)

The ranking function assesses both the relevance of the doc-
ument and its quality, and weights them using the λ pa-
rameter. We use BM25 to compute the relevance, while
the quality of a document is evaluated through a link-based
metric. We optimize its parameters using a separate training
dataset that contains queries with relevance information and
keep the best parameters for our own test evaluation. While
BM25 and KL divergence are both effective ranking func-
tions and therefore, exhibit correlations in their behavior,
it is important to notice that we use a completely different
setup to rank documents in the search engine and to assign
documents to sites. Hence, our results are not specific to a
ranking function and can be applied in more general cases.

4.2 Dataset

4.2.1 Documents
We use a random sample of 31, 599, 910 Web pages ob-

tained from the Web crawl of a commercial search engine.
We randomly split the documents into a training and a test-
ing set, holding 75% and 25% of the documents, respectively.

4.2.2 Queries
We rely on query logs to simulate user activity. The log

consists of consecutive queries issued in a single day to differ-
ent frontends of a commercial search engine. We only con-
sider queries of less than 20 terms where the users clicks a
result on the first page of results. The queries are converted
to lower case, and duplicate terms are removed. Each query
is labeled with the country of the user who issued the query.
We generate a collection of queries for each site of the search
engine by keeping queries originating from the country of
the site and, when this is not sufficient, from neighboring
countries. We sample a total of 7, 023, 102 queries, which
we equally split for training and testing for each region. As
queries are sorted in arrival order, the first half of the queries
constitute the training set, while the rest forms the test set.

4.2.3 Document popularity
In our experiments, we assume that the top-10 documents

returned by the search engine to a query are all relevant.
We evaluate the training queries on an index containing the
training documents. The popularity of a document is the
number of times it occurs in the results of a query. We
display the distribution of the popularity of the documents
in the training set in Fig. 2. As already observed in many
search engine studies (e.g., by Brefeld et al. [4]), the dis-
tribution follows a power law: a few documents are very
popular while many documents have a very low frequency
in top search results. From all the documents in the training
set, only 4, 370, 608 appear at least once in the results of the
training queries. The documents in the test set exhibit a
similar popularity pattern, where 2, 729, 205 of them appear
in the results of the test queries. Given the large amount
of diversity in document popularity, it seems that a reac-
tive replication scheme may be more efficient than a static
replication scheme, determined at the discovery time of the
document. Precisely predicting the popularity of a new doc-
ument is indeed a difficult problem. In the approach we pro-
pose, the search engine first selects a single master site for a

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

O
c
c
u

re
n

c
e

s

Total Popularity

Figure 2: Document popularity distribution in the
training set

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 100 1000 10000 100000

A
v
e
ra

g
e
 S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n

Total Popularity

Figure 3: Divergence of document popularity distri-
bution in the training set

document, and then replicates the documents depending on
the observed popularity of the document.

As each query is labeled with the search engine site it
originates from, it is also possible to study the popularity of
documents with respect to the users of each site. In partic-
ular, we are interested in knowing if documents are equally
popular among all the sites, or if they only of interest to users
from a particular site. For each document, we compute the
normalized standard deviation of its popularity among the
five sites of the search engine. We average the divergence of
the documents that exhibit the same total popularity and
display the results in Fig. 3. Given the power law distri-
bution of the document popularity, the right part of the
graph contains a lot of noise, as the averages are computed
from very few samples. Nevertheless, the results show a
clear trend: popular documents present a lower deviation in
their popularity among the different sites. This means that
popular documents are more likely to be queried by users
from different sites. Still, the average standard deviation
remains high (above 0.2), even for very popular documents.
This shows that, while some documents are accessed uni-
formly by users from all sites, many popular documents are
accessed by users of a given site in particular. This ob-
servation confirms the validity of our approach, the access
pattern of documents shows that they indeed have a natural
master site. Furthermore, as some documents, while being
very popular, remain local to one site, this also argues in fa-
vor of local replication decisions, as opposed to using global
popularity statistics.

71

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80

P
o
p
u
la

ri
ty

Popularity Rank (low to high)

Figure 4: Popularity of the languages

5. EXPERIMENTS

5.1 Metrics and theoretical baselines
The main focus of our work is the selection of a master site

for each document indexed by the search engine. We rely on
existing query forwarding algorithms to process the queries
(Section 2). Therefore, we do not evaluate the quality of
the results returned by the search engine. As explained by
Brefeld et al. [4], distributed search engines should achieve
a good trade-off between the amount of data indexed by
each site and the proportion of forwarded queries. In the
approach we propose, a document is only indexed by its
master site. Hence, the total size of the indexes is fixed.
Our main evaluation criterion is the locality of the results
delivered by a search site. The first metric we use to evaluate
the quality of our results is the proportion of documents
returned as results by a site that are part of its index:

locality(Si) =
1∑

Qj∈Qi
|result(Qj)|

∑
Qj∈Qi

|results(Qj) ∩ Di|,

where Di is the set of test documents assigned to Si, Qi is
the set of test queries submitted to Si, and results(Qj) is the
set of documents that the search engine returns as a result
to query Qj .

This metric reflects the activity of the search engine, as
each query is taken into account with the same weight. How-
ever, making an error in the assignment of a popular doc-
ument has more impact, since it affects more queries. We
define a second metric that takes into account each docu-
ment with an equal weight. For each document, we sort the
sites according to the popularity of the document at each
one of them. A perfect master assignment would index the
document at the first site of this list. We compute the rank
of the site selected by the feature in this list and score it
using NDCG [9]. We then average this value over the col-
lection of documents.

From this information, we also compute theoretical base-
lines in order to facilitate the interpretation of our results:
best always indexes a document at the site where it is most
popular, worst indexes at the site where the document is
least popular, and rand selects a site at random.

5.2 Language
We observe 81 different languages in our training data.

In Fig. 4, we display the popularity of each language in the
query results. The most popular language represents 58%
of the results of the queries and the second one has a 20%

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s5

la
n

g
u

a
g

e
 d

is
tr

ib
u

ti
o

n

sites

l80

l79

l78

l77

other language

Figure 5: Distribution of the most popular lan-
guages at the different sites

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60 70 80
S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n

Popularity Rank (low to high)

Figure 6: Divergence of the languages with respect
to their popularity

share. This clearly demonstrates an imbalance in the pop-
ularity of the languages, i.e., some languages are dominant
and widely used while others are very rare. The language
classifier assigns the unknown label to 2.2% of the results.

We examine the distribution of languages in the results of
each site in Fig. 5. The overall most popular language, l80,
represents a large fraction (over 30%) of the results returned
by each site. However, the second most popular language,
l79 is mostly used by the users of the sites s2 and s3. Over
50% of the results returned by s4 are not in one of the most
frequent languages. This suggests that users in these region
tend to use multiple less common languages.

For each language, we compute the probability that the
query originated from each site, as explained in Section 3.2.
Fig. 6 displays the divergence of these probabilities for the
five sites, while Fig. 7 compares the highest probability with
the others. These results show that while some languages
are clearly localized and match a particular site, many of the
most popular languages have a more uniform usage. The
lower the divergence of the popularity at each site, the more
difficult it is to precisely assign documents to sites solely
based on their language. This is problematic as popular
languages are difficult to assign, and they represent most of
the documents in the Internet.

5.3 Document as a query
We evaluate the performance of KL divergence in assign-

ing documents to sites using different smoothing parameters
µ. In Fig. 8, we display the performance of the assignment
using the locality metric. It appears that computing KL di-
vergence with respect to the terms in the result documents,

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

P
ro

b
a
b
ili

ty

Popularity Rank (low to high)

1st
2nd
3rd
4th
5th

POI

Figure 7: Probabilities of the languages with respect
to their popularity

 0.42

 0.425

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 10 100 1000 10000 100000 1e+06 1e+07

A
v
e

ra
g

e
 L

o
c
a

lit
y

parameter value

KL-q
KL-d

Figure 8: Influence of the µ parameter in KL diver-
gence performance

KL-d, is not affected by the parameter value and maintains a
constant performance. On the contrary, KL-q, which takes
into account the terms in the queries, exhibits the maximum
performance for µ ≈ 500,000. We confirm these results by
cross-validating on different subsets of the test collections.
The performance measurements through NDCG lead to the
same conclusions. Hence, we do not report them here. Note
that when comparing the performance of KL divergence with
other approaches, we only consider the best parameter.

5.4 Cache invalidation
We generate a cache of results at each site using the train-

ing queries and documents. For each query, this cache records
the number of results as well as the ranking score obtained
by the last result. We then simulate the addition of the test
documents to the index of each site. Following the strategy
of Blanco et al. [3], we count the number of cache entries
invalidated at each location, weighted by the number of oc-
currences of the query. Fig. 9 depicts the distribution of
the number of invalidations. These results are very similar
to the distribution of document popularity and clearly indi-
cate a power-law distribution. This result is not surprising,
as the cache invalidation process is very close to the ranking
process of the search engine.

We evaluate the divergence of the number of invalidations
at each site and present the results in Fig. 10. Once again,
this distribution resembles the divergence of the popular-
ity of documents. The similarity between cache invalidation
and query processing is encouraging: if the query distribu-
tion of the users does not vary too much, the distribution of

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

O
c
c
u
re

n
c
e
s

Total Popularity

Figure 9: Distribution of the number of invalidations

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 100 1000 10000
A

v
e

ra
g

e
 S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n
Total invalidations

Figure 10: Divergence of cache invalidation distri-
bution

cache invalidations should be a good indicator of the popu-
larity of documents for future queries. However, cache inval-
idation suffers from the same problem as query processing:
some documents have a very low popularity and are never
returned in query results. Similarly, a large fraction of docu-
ments do not generate any cache invalidation. In our exper-
iments, 648,184 documents cause cache invalidations in at
least one site. This means that cache can be used to infer
a prediction for 24% of the test documents. From these, we
also need to remove the documents that do not match any
query of the test set although they invalidate cache entries
in the training set. This leaves us with 531,646 documents
to measure the performance of cache.

5.5 Comparison
Table 1 (left) presents the performance of all the features

on the full document test dataset. As cache cannot be ap-
plied on all documents, we perform a separate comparison.
The first observation is that the best locality achievable is
72.9%. As the most popular documents are queried from dif-
ferent sites, it is not possible to obtain 100% locality without
any replication. Still, this score, while impossible to achieve
in practice, remains very high. A random assignment pro-
vides 20% locality, since the search engine is deployed on
five sites. As few very popular documents are queried from
all five sites of the search engine, the worst possible score
is not 0%, but 1.2%. lang, in spite of being a simple fea-
ture, achieves 38, 1%. KL-d and KL-q achieve better perfor-
mance, with 42, 3% and 45, 3% locality, respectively. While
these three features all leverage the content of the document
to compute a prediction, KL divergence is more reliable as it
learns directly from the behavior of the users. In particular,

73

feature All documents Invalidation subset
locality NDCG locality NDCG

best 72.9% 0.500 70.6% 0.500
worst 1.2% 0.031 1.4% 0.031
rand 20.0% 0.194 20.0% 0.194
lang 38.1% 0.344 39.5% 0.342
KL-d 42.3% 0.355 46.2% 0.359
KL-q 45.3% 0.362 48.7% 0.368
cache NA NA 52.0% 0.368

Table 1: Overall performance

as lang mostly relies on a dictionary, it does not benefit
from particular words such as names and locations. KL-q
outperforms KL-d, which indicates that mining the queries
of the users is more reliable than mining the results. This
may seem counterintuitive, as this metric is applied on the
terms of a new document to index. Hence, it would seem
more natural to compare it with terms in other documents.
Nevertheless, the queries seem to contain less noise, which
increases the precision of the assignment.

Table 1 (right) shows results computed on the set of doc-
uments that trigger at least one cache invalidation. These
documents have higher quality and are more likely to be
accessed in several sites. This explains why best scores
are lower while all other features, except for rand, obtain
higher results. cache obtains the best locality score with
52%. This can be explained by the similarity of the cache
invalidation process to the computation of search results.

In Figs. 11 and 12, we evaluate the locality achieved by
the features with respect to the popularity of the document.
In order to avoid noise, we group together different ranges of
popularity. The more popular a document is, the lower best
scores. Indeed, popular documents have a higher probability
to be accessed from different locations. On the left part of
the plot, we can see that while lang has a constant behav-
ior, KL-d, KL-q and cache obtain better results on popular
documents. One of the explanations could be that popu-
lar documents have a higher quality, which provides these
last three features with more terms to leverage. Unpopular
documents have more random access patterns and are less
reliable due to the lack of samples of users accessing them.
Interestingly, around a popularity of 1,000, cache achieves
a performance very close (88%) to the optimal best. The
right part of the plot, for very high popularity, exhibits a dif-
ferent behavior. All features but best obtain lower scores.
On of the possible explanations to this phenomenon is that
very popular documents are more universal and are accessed
from all locations. Hence, this could be caused by a tempo-
rary event that would have reflected in the queries.

5.6 Combination
Our experiments show that cache generates the most ac-

curate document placement. However, it cannot be applied
on all documents, as some of them do not generate any query
invalidation. One simple possibility to increase the precision
of master selection overall is to rely on cache when this
information is available, and otherwise use a more general
method, such as KL-q. This leads to a locality performance
of 46.0%, which constitutes an improvement of 20.8% over
the language baseline.

As explained in Section 3.3, KL-q, KL-d and cache can
be interpreted as probabilities and can therefore be com-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

A
v
e
ra

g
e
 L

o
c
a
lit

y

Total popularity

best
worst

random
lang
KL-d
KL-q

Figure 11: Performance with respect to document
popularity (all documents)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000
A

v
e
ra

g
e
 L

o
c
a
lit

y

Total popularity

best
worst
rand
lang
KL-d
KL-q

cache

Figure 12: Performance with respect to document
popularity (invalidation subset)

bined with different coefficient. We evaluate this possibility
over a wide range of coefficients. Nevertheless, as shown
in Fig. 12, these three predictors exhibit a similar behav-
ior and only little gain can be achieved by combining them.
We obtain a maximum locality of 52.6% on the documents
that generate cache invalidations by combining cache and
KL-q. This is unexpected, as both these metrics are based
on terms in the queries. More interestingly, combining them
has a higher impact on the NDCG performance. This means
that combining predictors has a smoothing effect, as fewer
false decisions are made.

6. PRACTICAL CONSIDERATIONS
Throughout this paper, we consider different metrics to

assign sites to new documents. We evaluate them on a large
collection of data to assess their efficiency. In this section,
we discuss the practical implementation aspects.

6.1 Language
The document placement policy is by far the easiest to

implement. The only requirement is the presence of a clas-
sifier that assigns a document to a language depending on
the terms it contains. Most of this information is static. It
may be interesting to regularly enrich it with new popular
terms, in particular if they differentiate users from different
regions. Given its simplicity, this method achieves a reason-
able precision. It can be used in contexts where there is little
access to the information of the data centers, as reasonable
approximations about the language statistics of regions can
be obtained from demographic studies. However, if more in-

74

formation can be obtained from the search engine, it is more
cost efficient to implement more complex measurements as
mistakes in document placement cause query forwarding.

6.2 Document as a query
The computation of KL divergence requires statistics about

the content of the different search sites. In this paper, we
propose two sources of information: the queries of the users
and the content of the results. Aggregating the terms of
queries is simpler than extracting data from the documents.
Indeed, the later would be a two steps process, in which the
list of results is used to extract the documents and obtain
their content. To reduce the cost of extracting this infor-
mation, it is possible to leverage the text from the snippets
computed by the search engine. This information does not
contain the full document and could constitute an interest-
ing trade-off between document information and query in-
formation. Furthermore, snippets of documents are usually
cached by search engines, making their access faster.

Our experiments show that using queries to summarize
the content of a search site is more efficient. In practice, each
search site needs to transfer term statistics about its query
log to the crawler. This data should be updated regularly
to reflect changes of user interest. This is not problematic,
as this data is small, typically in the order of hundreds of
megabytes, and can be easily compressed.

6.3 Cache invalidation
Contrary to the other approaches, the number of cache

invalidations caused by a document cannot be computed lo-
cally by a crawler. A search engine cache typically contains
millions of entries, which makes its replication on the crawler
impractical [3]. Consequently, the crawler has to transmit
the document to each search site to determine how many
invalidations this causes. Blanco et al. [3] propose an ap-
proach to summarize the content of a document and reduce
the amount of data transmitted to the cache. Using term fre-
quency statistics, they select the terms that have the highest
impact in the ranking function of the search engine. At the
cost of a few invalidations misses, this significantly reduces
the size of the data representing a document. In this paper,
we do not evaluate the impact of such techniques on the in-
dex partitioning. Nevertheless, this constitutes a potential
optimization for the system, as it would reduce the size of
the data transmitted to computed the invalidation scores.

While relying on the number of cache invalidations to es-
timate the relevance of a document may seem to generate
more communications than the other approaches, it is im-
portant to notice that cache invalidation is a desirable mech-
anism in a search engine. This is particularly true if the
index is updated incrementally. Therefore, if such a mech-
anism is already in place, it is possible to use invalidation
statistics without generating any additional traffic.

Our experiments demonstrate that metrics based on cache
invalidation provide the most accurate information to place
documents among several search sites. The main goal of a
placement strategy is to increase the locality of the com-
putation of results. Hence, even a small improvement in
locality can significantly reduce the traffic caused by query
forwarding, as well as the additional processing it incurs.
It is difficult to accurately evaluate these costs without im-
plementing a real prototype. Depending on the amount of
queries with respect to the number of new documents, the

cache invalidation mechanism may compensate part of its
bandwidth usage, or even save on network usage overall. Fi-
nally, forwarding queries also increases the latency observed
by the users. Thus, any gain in document placement accu-
racy translates into an improvement in quality of service.

7. RELATED WORK
The inverted index partitioning problem is considered by

many works in literature [10, 11, 13, 15]. The two com-
monly used techniques are to partition the index based on
document ids or term ids. The main challenge addressed by
these works is to distribute the index over a parallel comput-
ing system such that both the storage and query processing
loads are evenly distributed. All these works assume that
the index is distributed over a search cluster located within
a single search site. Our work investigates the problem in a
geographically distributed setting, where the main problem
is to reduce the workload of the search system rather than
establishing a load balance across search sites.

In practice, in a multi-site web search engine, partition-
ing of the index can be performed based on the language
or the region of documents. So far, all research works in-
vestigated the very simple region-based index partitioning
strategy [1, 7]. In these works, the index in each data cen-
ter is built over the documents that are in the geographical
neighborhood of the data center with partial replication of
popular documents on all sites. Our technique goes one step
beyond these works by taking into account the past query
distributions observed in local search sites.

The closest work to ours is the work of Brefeld et al., which
proposes a machine learning model to replicate Web docu-
ments across data centers [4]. The main difference between
this work and our approach is that we aim to achieve an
effective one-to-one mapping between documents and sites,
whereas the model in [4] replicates a document on many
sites. Brefeld et al. rely mostly on the language and the
region of a document to assign it to several sites. As shown
in our experiments in Section 5.2, this can be problematic,
as popular languages are used by many users in different re-
gions. In our dataset, the most popular language constitutes
over 30% of the results of each search site. An approach
purely based on languages is likely to index all documents
in this language in all different sites. As a consequence, a
large proportion of the indexes will be used to reference low
quality documents, solely on the basis of their language. We
believe that it is preferable to rely on observed documents
popularity before replicating it on many location. Hence,
we propose a two phase approach, in which we first select a
master, and then replicate the document using real popular-
ity observations. Assigning a master site to each document
ensures that it remains in the index, while giving the pos-
sibility to the other sites to replicate the document without
synchronizing. Our experiments confirm that the language
of a document is indeed quite accurate for assigning masters
to documents. However, we go one step further by using
the distribution of terms in the document to build a more
accurate predictor. Finally, our work is more practical in
that it does not rely on a learning model, but instead uses
some simple statistical evidence about user interests.

In this paper, we rely on KL divergence [17] to evaluate the
similarity between a document and the content of a site. In
the early stages of our work, we also considered alternative
approaches. Callan et al. use inference networks to select

75

collections of documents relevant to a given query [5]. In the
context of distributed search, this avoid forwarding a query
to a site that does not contain any potential result. This
algorithm could also be used to determine which site would
be most likely to contain a document, and therefore would be
a suitable master. We performed evaluations using inference
networks. The performance is quite close to the one of KL
divergence. Hence, we do not report on these numbers.

8. CONCLUSION
We evaluated two different document assignment tech-

niques for multi-site distributed Web search engines. Com-
pared to a naive baseline, which assigns documents to sites
based on documents’ language, our techniques achieved a
large improvement (20.8%) in increasing the locality of doc-
uments. Using cache invalidation knowledge, we achieve up
to 88% of the optimal performance when documents are suf-
ficiently popular. This directly impacts the amount of query
forwarding needed to compute results, thus improves the
quality of service and reduces the cost of the search engine.

The next steps involve designing a dynamic index replica-
tion scheme. This work will be facilitated by the presence of
a master for each document. This setup favors dynamic poli-
cies, in which documents can be easily added and removed
from the index to reflect users’ interests. Depending on the
replication mechanism, it may also be possible to design a
master migration procedure, to transfer the responsibility of
a document from the master site to a site hosting a replica.
We believe that this approach is quite promising as, by adap-
tively re-partitioning our index, we will be able to capture
the temporal patterns of document accesses.

Acknowledgement
This work has been partially supported by the COAST project
(ICT-248036), funded by the European Community.

9. REFERENCES
[1] R. Baeza-Yates, A. Gionis, F. Junqueira,

V. Plachouras, and L. Telloli. On the feasibility of
multi-site web search engines. In Proceedings of the
18th ACM Conference on Information and Knowledge
Management, pages 425–434, 2009.

[2] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: the Google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[3] R. Blanco, E. Bortnikov, F. P. Junqueira, R. Lempel,
L. Telloli, and H. Zaragoza. Caching search engine
results over incremental indices. Proceeding of the 33rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
82–89, 2010.

[4] U. Brefeld, B. B. Cambazoglu, and F. P. Junqueira.
Document assignment in multi-site search engines. In
Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, pages
575–584, 2011.

[5] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 21–28, 1995.

[6] B. B. Cambazoglu, V. Plachouras, and
R. Baeza-Yates. Quantifying performance and quality
gains in distributed web search engines. In Proceedings
of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 411–418, 2009.

[7] B. B. Cambazoglu, E. Varol, E. Kayaaslan,
C. Aykanat, and R. Baeza-Yates. Query forwarding in
geographically distributed search engines. In
Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 90–97, 2010.

[8] W. Gao, H. C. Lee, and Y. Miao. Geographically
focused collaborative crawling. In Proceedings of the
15th International Conference on World Wide Web,
pages 287–296, 2006.

[9] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20:422–446, 2002.

[10] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
Mining query logs to optimize index partitioning in
parallel web search engines. In Proceedings of the 2nd
International Conference on Scalable Information
Systems, pages 1–9, 2007.

[11] A. MacFarlane, J. A. McCann, and S. E. Robertson.
Parallel search using partitioned inverted files. In
Proceedings of the 7th International Symposium on
String Processing Information Retrieval, pages
209–220, 2000.

[12] B. Ribeiro-Neto, E. S. Moura, M. S. Neubert, and
N. Ziviani. Efficient distributed algorithms to build
inverted files. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
105–112, 1999.

[13] B. A. Ribeiro-Neto and R. A. Barbosa. Query
performance for tightly coupled distributed digital
libraries. In Proceedings of the 3rd ACM Conference
on Digital Libraries, pages 182–190, 1998.

[14] B. A. Ribeiro-Neto, J. P. Kitajima, G. Navarro,
C. R. G. Sant’Ana, and N. Ziviani. Parallel generation
of inverted files for distributed text collections. In
Proceedings of the 18th International Conference of
the Chilean Computer Science Society, pages 149–157,
1998.

[15] A. Tomasic and H. Garcia-Molina. Query processing
and inverted indices in shared: nothing text document
information retrieval systems. The VLDB Journal,
2(3):243–276, 1993.

[16] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval.
In Proceedings of the tenth international conference on
Information and knowledge management, CIKM ’01,
pages 403–410, New York, NY, USA, 2001. ACM.

[17] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to information retrieval.
ACM Trans. Inf. Syst., 22:179–214, April 2004.

76

