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ABSTRACT

Large knowledge bases consisting of entities and relationships be-
tween them have become vital sources of information for many
applications. Most of these knowledge bases adopt the Semantic-
Web data model RDF as a representation model. Querying these
knowledge bases is typically done using structured queries utilizing
graph-pattern languages such as SPARQL. However, such struc-
tured queries require some expertise from users which limits the ac-
cessibility to such data sources. To overcome this, keyword search
must be supported. In this paper, we propose a retrieval model for
keyword queries over RDF graphs. Our model retrieves a set of
subgraphs that match the query keywords, and ranks them based
on statistical language models. We show that our retrieval model
outperforms the-state-of-the-art IR and DB models for keyword
search over structured data using experiments over two real-world
datasets.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—retrieval models, search process

General Terms

Algorithms, Design, Experimentation

1. INTRODUCTION
The continuous growth of knowledge-sharing communities like

Wikipedia and the advances in automated information-extraction
from Web pages [5, 23] have made it possible to build large-scale
knowledge bases. Examples of such knowledge bases include YAGO
[26], DBpedia [1] and Freebase [7]. These repositories contain en-
tities such as people, movies, books, etc. and the relationships be-
tween them such as bornIn , actedIn , isAuthorOf and so on.
Such data is typically represented in the form of subject-predicate-
object triples of the Semantic-Web data model RDF [22], where
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Subject (S) Property (P) Object (O)

Traffic hasWonPrize Academy_Award
Innerspace hasWonPrize Academy_Award
Innerspace hasGenre Comedy
Joe_Dante directed Innerspace
Toy_Story hasWonPrize Academy_Award
Road_Trip hasGenre Comedy
Toy_Story hasGenre Comedy
Tom_Hanks actedIn Toy_Story
Diner hasWonPrize Academy_Award
Diner type Comedy_films
Steve_Guttenberg actedIn Diner
The_Pink_Panther type Criminal_comedy_films
The_Pink_Panther hasWonPrize Academy_Award
Police_Academy type Comedy_films
Steve_Guttenberg actedIn Police_Academy
The_Darwin_Awards type Comedy_films

Table 1: A set of RDF triples from a movie knowledge base

subjects and objects are entities and predicates are relationships
between pairs of entities. An RDF collection conceptually forms
a large graph, which we refer to as an RDF graph, with nodes cor-
responding to subjects and objects and edges denoting predicates.
Table 1 shows a set of RDF triples from a movie knowledge base.

RDF data can be queried using a conjunction of triple patterns,
where a triple pattern is a triple with variables and the same variable
in different patterns denotes a join condition. For example, the
information need of finding comedies that have won the Academy
Award can be expressed using the following 2 triple-patterns: <?x
hasGenre Comedy; ?x hasWonPrize Academy_Award> .

Structured queries like the one above are very expressive, yet
very restrictive. They require the users to be familiar with the un-
derlying data and a structured-query language like SPARQL. Em-
powering users to search RDF graphs using keywords only can in-
crease the usability of such data sources. In addition, it enables
adapting the-state-of-the-art IR searching and ranking techniques.

In this paper, we develop a retrieval model that enables users
to search RDF graphs using keywords. Our model takes as an in-
put a keyword query and returns a ranked list of RDF subgraphs.
By retrieving subgraphs instead of just entities, we treat triples in
a holistic manner and we explicitly take into account the relation-
ships between the entities. This can be particularly beneficial for
both result retrieval and result representation. As an example, con-
sider running the query "comedy academy award" against the RDF
collection in Table 1. One possible result to such a query retrieved
by our model is the 2-triple subgraph <Innerspace hasGenre

Comedy; Innerspace hasWonPrize Academy_Award> .
To be able to process keyword queries over RDF graphs, we as-

sociate each triple with a set of keywords derived from the subject
and object of the triple, as well as representative keywords for the

237



predicate. We explain how we do this in Section 3. To retrieve
all subgraphs that match a given keyword query, we utilize a back-
tracking algorithm over graphs, which is described in Section 4.

Once candidate subgraphs have been retrieved, we need to rank
them. We try to identify the structured-information need intended
by the keyword query. For instance, consider the query "comedy
academy award". It is likely that the user is looking for movies of
genre comedy that have won the Academy Award. Thus, we need
to rank the subgraphs that match this information need higher. Our
ranking model is based on statistical language-models and it uti-
lizes the distribution of terms in the whole knowledge base as a
means of inferring the structured-information need of a user key-
word query. For instance, given that the term ’comedy’ appears of-
ten in the object of triples with predicate hasGenre and the terms
’academy’ and ’award’ appear often in the object of triples with
predicate hasWonPrize , we can infer that the most likely struc-
tured triple-pattern query intended by the keyword query "comedy
academy award" is <?x hasGenre Comedy; ?x hasWonPrize

Academy_Award> . We thus rank subgraphs that match this im-
plicit structured-query higher. We explain our ranking model in
Section 5.

To show the effectiveness of our retrieval model, we create a
benchmark for keyword queries over two real-world RDF datasets
and use it to compare our ranking model to well-known IR and DB
techniques for keyword search over structured data. Our evaluation
results are highlighted in Section 6.

2. RELATED WORK
The work on keyword search over structured data can be classi-

fied into two classes. The first class aims at mapping the keyword
query into one or more structured query. For instance, the authors
in [27] assume that the user keyword-query is an implicit represen-
tation of a structured triple-pattern query. They try to infer such
structured query using the RDF graph and retrieve the top-k most
relevant structured queries. They then provide the user with the re-
trieved queries and let her choose the most appropriate structured
query to be evaluated. Their approach involves user interaction, and
in addition suffers from a loss-of-information phenomenon since
typically k is set to a small number.

The work on query inference from a user’s natural language ques-
tion in [18] is also closely related. It utilizes natural-language pro-
cessing tools and try to parse a user’s question in order to infer the
most-likely structured query. Their technique however relies heav-
ily on the quality of the parsing process and it also suffers from the
information-loss problem highlighted above.

The second class of work on keyword search over structured data
overcomes the aforementioned issues by directly retrieving results
of the keyword query. The work on keyword search over XML data
for instance falls into this category. XKSearch [29] returns a set of
nodes that contain the query keywords either in their labels or in the
labels of their descendant nodes and have no descendant node that
also contains all keywords. Similarly, XRank [9] returns the set
of elements that contain at least one occurrence of all of the query
keywords, after excluding the occurrences of the keywords in sub-
elements that already contain all of the query keywords. However,
all these techniques assume a tree-structure and thus can not be
directly applied to graph-structured data such as RDF graphs.

Also, closely related to our work is the language-modeling ap-
proach for keyword search over XML data proposed in [14]. The
authors assume that a keyword query has an implicit mapping of
each keyword into XML element(s). Their ranking is based on
the hierarchal language-models proposed in [20] and they utilize
the distribution of terms in the elements of the XML collection to

weight the different component of the LMs. However, the setting
of XML data is quite different from that of RDF since in XML the
retrieval unit is an XML document (or a subtree). In an RDF set-
ting, we are interested in ranking subgraphs that match the user’s
query. These subgraphs are not known in advance and are com-
puted on the fly during retrieval time, and thus most of the prior
work on XML IR would not apply.

Keyword search on graphs which returns a ranked list of Steiner
trees [2, 12, 10, 8] (the exception is [17] which returns graphs)
deals with the latter problem of having a predefined retrieval unit.
However, the result ranking in each of the above is based on the
structure of the results [2, 13] (usually based on aggregating the
number or weights of nodes and edges), or on a combination of
these properties with content-based measures such as tf-idf [4, 10,
17] or language models [19].

A closely related work that combines structure and content for
ranking is the LM-based ranking model in [19] for ranking ob-
jects (entities in an RDF setting). This model however assumes
that the retrieval unit is entities only, while our ranking model goes
beyond this to treat triples in a holistic manner by taking into ac-
count the relationships between the entities. In addition, it assumes
the presence of a document associated with each Web Object or
entity, something that we lack in the case of RDF data in general.

The Semantic Search Challenge provided a benchmark for key-
word queries over RDF data, however the judgments were made
over entities built by assembling all the triples that shared the same
subject. The best performing approach [3] ranked the entities using
a combination of BM25F and additional hand-crafted information
about some predicates, properties and sites. In contrast, we retrieve
the set of subgraphs that match the query keywords and rank them.
We believe that the graph representation provides more concise an-
swers to the user information need than a set of entities.

3. SYSTEM OVERVIEW
Our knowledge base consists of a set of SPO-triples such as the

one shown in Table 1. To be able to process keyword queries, we
construct a virtual document for each triple ti which we refer to
as Di. Di contains a set of keywords that are extracted from the
subject and object of the triple, and representative keywords for the
predicates (these can be generated from extraction patterns for in-
stance [25]). For example, the triple <Innerspace hasWonPrize

Academy_Award> would be associated with the following docu-
ment: {innerspace, won, prize, academy, award}. In case there
are any textual information associated with the triple ti such as the
contextual text from which the triple was extracted [6], we can also
extract all the keywords there and add them to Di. We stem the
terms in document Di using any standard stemmer and store them
in an inverted index. In addition, we also store the term frequency
of term w in Di, which we refer to as c(w, Di).

Given a keyword query, we utilize our inverted index to retrieve,
for each query keyword, a list of matching triples. We then join
the triples from different lists based on their subjects and objects
to retrieve subgraphs with one or more triples. However, we only
construct subgraphs that contain triples from different lists, corre-
sponding to matches to different (sets of) keywords. The intuition
behind this is that we assume that the user has a precise information
need in mind that can be precisely represented using a set of triple
patterns. However, since the user cannot express her information
need using triple patterns, she represents each triple pattern using
a set of keywords. Without any knowledge about which keywords
map to which triple pattern, we need to consider all extremes: from
all keywords representing a single triple pattern up to each single
keyword representing an individual triple pattern. Thus, the results
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Subgraphs Keywords

Traffic hasWonPrize Academy_Award academy, award

Innerspace hasGenre Comedy comedy
Innerspace hasWonPrize Academy_Award academy, award

Toy_Story hasGenre Comedy comedy
Toy_Story hasWonPrize Academy_Award academy, award

Road_Trip hasGenre Comedy comedy

Diner type Comedy_films comedy
Diner hasWonPrize Academy_Award academy, award

The_Pink_Panther type Criminal_comedy_films comedy
The_Pink_Panther hasWonPrize Academy_Award academy, award

Police_Academy type Comedy_films academy, comedy
The_Darwin_Awards type Comedy_films award, comedy

Table 2: All subgraphs retrieved for the query "comedy

academy award"

to the user information need would be subgraphs with one or more
triples up to the number of keywords in the user query. Our algo-
rithm for retrieving subgraphs is described in Section 4.

For example, consider the information need of finding come-
dies that have won the Academy Award. Furthermore assume that
the user expressed this information need using the keyword query
"comedy academy award". The results for such a query would then
be single triples matching one or more query keywords, subgraphs
with 2 triples matching at least 2 query keywords and so on. Table
2 shows all subgraphs retrieved given the query from our example
RDF collection in Table 1. The second column shows the set of
matched keywords by each triple in the corresponding subgraph.

Since keyword queries introduce additional ambiguity that is not
present in the case of structured triple-pattern queries, result rank-
ing becomes very crucial. For instance, the subgraphs in Table 2
differ in their size (i.e., how many triples they contain) as well as
how many keywords they match. In addition, they also differ in
their semantics. For instance, consider the last subgraph in Ta-
ble 2. It states the fact that the movies Police_Academy and
The_Darwin_Awards are both comedy movies. The rest of the
subgraphs in Table 2 describe movies that have genre comedy and
have won the Academy Award. Recall our earlier observation that
the user keyword query is a representation of an implicit structured
triple-pattern query. Thus, in order to provide an effective ranking,
the system must infer what is the most likely structured query the
user has in mind, and rank the subgraphs based on how well they
match this implicit structured query. Our ranking model, described
in Section 5, does this by combining the structure and the contents
of the triples in the ranking function.

4. SUBGRAPH RETRIEVAL
As mentioned in the previous section, the first step is to retrieve

the set of subgraphs that match the user keyword query. In order to
avoid retrieving subgraphs that are arbitrarily long, we restrict the
subgraphs retrieved to have the following two properties:

1. The subgraphs should be unique and maximal. That is, each
subgraph retrieved should not be a subset of any other sub-
graph retrieved.

2. The subgraphs should contain triples matching different sets
of keywords. That is, no triples in the same subgraph would
match the exact same set of keywords. If two triples match
the same set of keywords, they are parts of two different pos-
sible results to the user query, and should be considered as
parts of two separate subgraphs.

Our subgraph-retrieval algorithm starts by retrieving the lists of
all triples matching the query keywords. That is, given a query

Algorithm 1 RETRIEVESUBGRAPHS(E)

1: for each edge t ∈ E do

2: X ← {t ∈ A(t)}
3: EXTENDSUBGRAPH({t}, X)
4: end for

Algorithm 2 EXTENDSUBGRAPH(G, X)

1: while X 6= φ do

2: Remove an arbitrary chosen edge t from X
3: if L({t}) * L(G) and L(G) * L({t}) then

4: X ′ ← X ∪ {t′ ∈ NEIGHBORS(t, G)}
5: EXTENDSUBGRAPH(G ∪ {t}, X ′)
6: end if

7: end while

8: if MAXIMAL(G) 6= true then

9: print G
10: return

11: end if

q = {q1, q2, ..., qm} where qi is a single keyword, we utilize our
inverted index to retrieve lists {L1, L2, ..., Lm} where Li is the list
of all triples that match the keyword qi (see Table ??). Let the set
of all unique triples in all the lists be E. This set E can be viewed
as a disconnected graph which we refer to as the query graph .
Recall that each triple can be viewed as an edge where its subject
and object are nodes.

We adapt the backtracking algorithm for network-motif detec-
tion in [28] to retrieve the subgraphs from the query graph. The
modified algorithm utilizes adjacency lists for edges. Given an
edge ti from list Li, its adjacency list A(ti) would contain all
neighbor edges tj from all other lists Lj . Two edges are consid-
ered neighbors if they share a common node. That is, given an
edge ti = <si pi oi>, an edge tj = <sj pj oj> would be a
neighbor of ti if si = sj , si = oj , oi = sj or oi = oj . In order
to retrieve only unique subgraphs, we associate with each edge ti

an id and we only add a neighbor to the adjacency list of ti if its id
is greater than that of ti. Also, to ensure that we do not consider
joining triples that match the same set of keywords, we only add
a neighbor tj to the adjacency list A(ti) of triple ti if and only if
ti /∈ Lj and tj /∈ Li. Finally, we loop over all edges and generate
all unique subgraphs using the following two algorithms.

Algorithm 1 loops over all the edges and for each edge t extracts
its neighbors from its adjacency list A(t). Algorithm 2 takes as
an input a subgraph and a list of neighbors and recursively tries to
add edges to this subgraph. The condition in line 3 of Algorithm 2
ensures that only edges that belong to at least one different list other
than the lists the edges of the current subgraph G belong to are
considered. This ensures that we construct only subgraphs whose
edges match different sets of keywords. The function L(G) returns
the set of lists the edges of a subgraph G belong to. Once an edge
is added to the current subgraph, we also add its neighbors that
are not neighbors of edges in G to the current list of neighbors
and continue. The function NEIGHBORS(t, G) retrieves all
neighbors of an edge t that are not neighbors to edges in G. Finally,
the function MAXIMAL(G) ensures that the retrieved subgraph
is unique and maximal.

5. RANKING MODEL
In the previous section, we presented a graph-searching algo-

rithm that retrieves a set of subgraphs matching a given keyword
query. We now explain how we rank these subgraphs. Our rank-
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ing model is based on statistical language-models (LMs) [21] and
works as follows. Given a query Q = {q1, q2, ..., qm} where qi

is a single term and a subgraph G = {t1, t2, ..., tn} where tj is
a triple, we rank the subgraph G based on the query likelihood or
the probability of generating the query Q given the subgraph G’s
LM. Assuming independence between the query terms, the query
likelihood P (Q|G) is computed as follows:

P (Q|G) =

m∏

i=1

P (qi|G) (1)

where P (qi|G) is the probability of the term qi in the LM of G.
The LM of subgraph G is computed as a mixture model of the LMs
of its constituent triples as follows:

P (qi|G) =

n∑

j=1

1

n
P (qi|tj) (2)

That is, the probability of a term qi in the subgraph LM is the
average of its probability in the triples LMs. Note that more than
one triple in subgraph G can match the same keyword qi and thus
averaging over all the triples is a natural choice. The LM of a triple
tj can then be directly computed using the document of the triple .
Recall from Section 3 that each triple tj is associated with a virtual
document Dj which is composed of all the terms associated with
the triple. However, this approach completely ignores the struc-
ture of the triples and treats every triple as a bag-of-words. For in-
stance, consider the query "comedy academy award" to find come-
dies that have won the Academy award. Now, consider the 2 sub-
graphs G1 = <Innerspace hasGenre Comedy; Innerspace

hasWonPrize Academy_Award> and G2 = <The_Darwin_Awards

type Comedy_films; Police_Academy type Comedy_films>

matching the query. Given the intended information need of the
query, we should rank the subgraph G1 higher.

In our ranking model, we try to take into consideration the struc-
ture of the triples as an additional evidence of how well they match
the structured-information need intended by the keyword query.
This is motivated by our earlier remark that we built our retrieval
model on: a user keyword query is a representation of an implicit
structured triple-pattern query. Considering our example query "com-
edy academy award", the term ’comedy’ most likely refer to the
triple pattern <?x hasGenre Comedy> given the fact that the
term ’comedy’ appears more often in the documents of triples of
the form <s hasGenre Comedy> . Similarly, the terms ’academy’
and ’award’ would likely refer to the pattern <?x hasWonPrize

Academy_Award> . Thus, it would be desirable to assign higher
probability mass to triples that match these patterns (i.e., triples
with predicate hasGenre for the keyword ’comedy’ and hasWonPrize
for the keywords ’academy’ and ’award’).

To this end, we set the probability of a term qi in the triple tj’s
LM or P (qi|tj) in equation 2 to P (qi|Dj , rj). That is, the proba-
bility of a term in a triple LM does not only depend on the docu-
ment of the triple tj , but also on its predicate which we denote by
rj . Applying Bayes’ rule, we have:

P (qi|Dj , rj) =
P (qi|Dj)P (rj |qi, Dj)

P (rj |Dj)
(3)

Furthermore, we set P (rj |qi, Dj) as a linear combination of the
following two components [24, 16, 15]:

P (rj |qi, Dj) = βP (rj |qi) + (1− β)P (rj |Dj) (4)

The first component in equation 4 is the probability that the pred-
icate rj is relevant to the term qi whereas the second component is
the probability that the predicate of triple tj is rj . The latter can

be set to the extraction accuracy of triple tj for instance. Since this
value is not generally present in RDF knowledge bases, we assume
that we are always fully confident in the extraction quality of any
triple, and set P (rj |Dj) to 1. The parameter β is a weighting pa-
rameter that controls the effect of each component on the ranking
and can be set using training queries.

Substituting equation 4 in equation 3 and simplifying, we have:

P (qi|Dj , rj) = βP (qi|Dj)P (rj |qi) + (1− β)P (qi|Dj) (5)

where P (qi|Dj) is the probability of generating the term qi from
the triple document Dj which can be estimated using a maximum
likelihood estimator after smoothing with the collection probability
as follows:

P (qi|Dj) = α
c(qi, Dj)

|Dj |
+ (1− α)

c(qi, Col)

|Col|
(6)

where c(w, Dj) is the term frequency of term w in document Dj ,
|Dj | is the length of document Dj (i.e., the sum of the term fre-
quencies of all terms in Dj), Col is the whole collection con-
structed by concatenating all the documents of all the triples in
the knowledge base and |Col| is the length of the whole collec-
tion. Finally, the parameter α is a smoothing parameter and is set
according to Dirichlet prior smoothing [30].

The only remaining component to estimate in equation 5 is the
probability of relevance of the predicate rj to the query term qi. In
order to estimate this probability, we first construct a document Rj

for each predicate rj in the knowledge base concatenating the doc-
uments of all the triples with such predicate. For instance, given the
predicate hasGenre , we construct a document which is a concate-
nation of all the documents of all triples of the form <s hasGenre

o> . Once we have constructed a document Rj for each predicate
rj , we set the probability of relevance of rj to a term qi or P (rj |qi)
in equation 5 to the P (Rj |qi) (i.e., the probability of relevance of
the document Rj to the term qi). Applying Bayes’ rule, the proba-
bility P (Rj |qi) can be estimated as follows:

P (Rj |qi) =
P (qi|Rj)P (Rj)

P (qi)
=

P (qi|Rj)P (Rj)∑
k

P (qi|Rk)P (Rk)
(7)

where P (w|Rj) is the probability of generating the term w given
the document Rj which is estimated using a maximum-likelihood
estimator as in equation 6 and P (Rj) is the prior probability of
the document Rj being relevant to any term, which we set uni-
formly. For example, using the above technique, the probability
P (hasGenre|comedy) would be higher than P (actedIn|comedy)
given the fact that the keyword ’comedy’ appears much more often
in the documents of triples that have predicate hasGenre than
those that have predicate actedIn .

6. EXPERIMENTAL EVALUATION

6.1 Setup
We evaluated our retrieval model using a comprehensive user-

study over two RDF datasets. The first dataset was derived from the
LibaryThing community, which is an online catalog about books.
The second dataset was derived from the Internet Movie Database
(IMDB). The data from both sources was automatically parsed and
converted into RDF triples.

Recall that our retrieval model assumes that each triple ti is as-
sociated with a document Di. The triples documents were con-
structed by using keywords derived from the triple entities, and
representative words for the relations. For example, the relation
isMarriedTo was represented using the terms {marry, wife, hus-

band, spouse, etc}. This was done manually since we did not
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#entities Example entity types #triples Example relations #unique terms

LibraryThing Dataset

48,000 book , author 700,000 wrote , hasFriend , 21,821
user , tag hasTag , type

IMDB Dataset

59,000 movie , actor 600,000 actedIn , directed , 80,584
director , producer , won , marriedTo ,
country , language produced , hasGenre

Table 3: Overview of the datasets

have that many relations in our datasets, but for bigger datasets,
the representations of relations can be generated automatically us-
ing a dictionary, or by utilizing the textual extraction-patterns in
case the triples were extracted using some IE technique from free-
text[25]. Once each triple was associated with a set of keywords,
we stemmed all the keywords using the Stanford stemmer, removed
stop words and created an inverted index over the triples. Table 3
gives an overview of the datasets.

Due to the lack of an appropriate query benchmark for keyword

search over RDF data, we had to create a benchmark and gather rel-
evance assessments ourselves. The queries we used for evaluation
were a subset of the query benchmark in [6]. The benchmark there
contains a set of structured queries, possibly augmented with key-
words, along with their descriptions. We extracted 30 queries from
there, 15 for each dataset and represented each query using a set of
keywords. We opted for 30 queries only since we pooled 50 results
per each query, and gathered relevance assessment for each result
using at least 4 different human judges. Overall, we had about
15,000 unique relevance assessments for the 30 queries. All eval-
uation queries, results and relevance assessments are available at
http://www.mpii.de/~elbass/demo/rdftext.txt.

We compared our ranking model, which we refer to as the Struc-

tured LM approach, to 3 competitors: 1) a baseline language-modeling
approach (Baseline LM), 2) the Web Object Retrieval Model (WOR)
[19] and 3) the BANKS system [2]. We chose these 3 competitors
since they represent the family of approaches applicable to our set-
ting, namely: keyword search over structured data. The rest of the
approaches sketched in Section 2 do not directly apply to our set-
ting and thus were omitted from our preliminary evaluation.

6.2 Relevance Assessments
For each evaluation query, we retrieved the top-50 results re-

trieved using each one of the 4 models described above. We then
pooled all the results together and presented the set of all unique re-
sults from the pool to 13 human judges in no particular order, along
with the query description. The judges were all computer-scientists
in two different research institutes. For the case of results retrieved
using WOR, we presented the entity name as a result and provided
the judges with a link to the Wikipedia article for that entity (in
case there was one) in order to help them decide whether a result
is relevant or not. For the rest of the results, we just presented the
subgraphs for judgment.

We asked the judges to assess the results on a 4-levels scale:
3 corresponding to results that completely match the information
need as given by the query description, 2 corresponding to results
that do not completely match the information need but are still
highly related to it, 1 corresponding to results that do not really
match the information need of the query, but the results still make
sense and add valuable information to the user and finally 0 corre-
sponding to trivial, or nonsense results. Each result was evaluated
by 4 different judges. The levels of agreement between the judges
as measured by the Kappa coefficient were 0.449 for the Library-
Thing dataset and 0.542 for the IMDB dataset. We also computed

Model NDCG @20 NDCG @10 NDCG @5

Structured 0.764 0.817 0.840

BANKS 0.637 0.647 0.639

WOR 0.576 0.596 0.621

Baseline 0.397 0.368 0.351

Table 4: Average NDCG values for both datasets

Model NDCG @20 NDCG @10 NDCG @5

Librarything

Structured 0.861 0.880 0.889

BANKS 0.762 0.734 0.710

WOR 0.621 0.624 0.623

Baseline 0.395 0.361 0.333

IMDB

Structured 0.667 0.754 0.791

BANKS 0.513 0.560 0.569

WOR 0.530 0.567 0.618

Baseline 0.399 0.376 0.370

Table 5: Average NDCG values with parameter learning

the agreement for relevant and irrelevant results only (i.e., assum-
ing that levels 3,2,1 are relevant and 0 is irrelevant). We obtained a
Kappa coefficient of 0.397 for LibraryThing and 0.671 for IMDB
which are in line with the numbers reported for standard TREC
evaluation campaigns. For instance, the TREC legal track for 2006
reports a Kappa value of 0.49 on 40 queries, the opinion detection
task in 2009 reports a Kappa value of 0.34, and the TREC 2004
Novelty track reports a value of 0.54 for sentence relevance.

6.3 Evaluation Results
We conducted 3 experiments: an overall evaluation using all

evaluation queries, a training experiment to set the parameters of
the models that involve ones, and a cross-validation to predict how
well our parameter-learning approach would generalize.

Overall Evaluation. In the first experiment, we report the aver-
age NDCG values (Normalized Discounted Cumulative Gain [11])
over all 30 evaluation queries at levels 20, 10 and 5 using all 4
different models in Table 4. The values for the Structured LM ap-
proach and the BANKS system reported in the table are the ones
achieved when the models parameters were set to their optimum
values (i.e., β = 0.9 for the Structured LM approach and λ = 1
for BANKS).

As can be seen from Table 4, the Structured LM approach sig-
nificantly outperforms (p− value < 0.05 with a one-tailed t-test)
all other methods in terms of NDCG values at all levels. In the next
experiment, we explain how to set the models parameters using
training queries.

Training Results. In the second experiment, we used one dataset
for training and the other for testing. That is, the 15 queries for the
IMDB dataset were used as a training set to learn the optimal pa-
rameter setting for the Structured LM approach and BANKS. The
15 queries for LibraryThing were then used to test the performance
of the different methods. We did the same thing using the Library-
Thing queries for training and the IMDB queries for testing. The
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learning procedure was as follows. For the Structured LM ap-
proach, we computed the average NDCG at level 50 over the 15
training queries, setting the parameter β to a value between 0 and
1. We achieved the highest average NDCG@50 for both datasets
when β was set to 0.9. For BANKS, we did the same thing us-
ing the same set of training queries and setting the parameter λ to a
value between 0 and 1, and we achieved the highest average NDCG
at level 50 when λ was set to 1. Table 5 shows the average NDCG
values over the test queries at levels 20, 10 and 5.

Similar to the first experiment, the Structured LM approach sig-
nificantly outperforms (p− value < 0.05 with a one-tailed t-test)
all other methods in terms of NDCG values at all levels for both
datasets. In order to test how well our training strategy generalizes,
we performed a cross-validation experiment which we report next.

Cross-Validation Results. The third experiment was a cross-
validation experiment to show how well the parameter learning pro-
cedure we described above generalizes over unseen datasets. We
performed a leave-one-out cross validation, where 14 out of the 15
queries for each dataset were used as a training set to determine the
the value of the parameter β, and then the left-out query was used
for testing. We repeated the same process such that each evalua-
tion query is used for validation once, and we averaged the NDCGs
over all the validation queries. For BANKS, we also performed
a cross-validation to validate the learning of its parameter λ, and
again averaged the NDCGs over all the queries. For the IMDB
dataset, the results were identical to those reported in Table 5 for all
approaches, and for the LibraryThing dataset, the results were also
the same as in the training experiment, except for a slight change
in the case of the Structured LM approach (with NDCG values of
0.814, 0.833 and 0.841 at levels 20,10 and 5, respectively). That
is, similar to the results of the first two experiments, the Structured
LM approach outperforms all other methods for both datasets.

7. CONCLUSION
We proposed a retrieval model for keyword queries over RDF

graphs. Our retrieval model adopts backtracking algorithms to re-
trieve subgraphs matching the query keywords. Our model pro-
vides a result ranking based on a novel structure-aware language-
modeling approach. We have shown through a preliminary, yet
comprehensive user-study that our retrieval model outperforms well-
known techniques for keyword search over structured data.
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