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Abstract Recent studies demonstrated that it is possible to reduce Inverted Files (IF) sizes

by reassigning the document identifiers of the original collection, as this lowers the distance

between the positions of documents related to a single term. Variable-bit encoding schemes

can exploit the average gap reduction and decrease the total amount of bits per document

pointer. This paper presents an efficient solution to the reassignment problem, which consists

in reducing the input data dimensionality using a SVD transformation, as well as considering

it a Travelling Salesman Problem (TSP). We also present some efficient solutions based on

clustering. Finally, we combine both the TSP and the clustering strategies for reordering

the document identifiers. We present experimental tests and performance results in two text

TREC collections, obtaining good compression ratios with low running times, and advance

the possibility of obtaining scalable solutions for web collections based on the techniques

presented here.

Keywords Document identifier reassignment . SVD . Indexing . Compression . TSP .

Clustering

1. Introduction

Large-scale Information Retrieval (IR) systems need an indexing mechanism for efficient

retrieval. The most extended data structure used is the inverted file (IF). This IF is a traversed

representation of the original document collection, organized in posting lists. Each entry

in the inverted file contains information about a single term in the document collection.

The format of the posting lists reflects the granularity of the inverted file, addressing in

which documents and positions the term appears. In this work we assume a document level
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granularity, therefore the posting list for term ti is:

< ti ; fti ; d1, d2, . . . , d f ti >, di < d j∀i < j (1)

where fti stands for the frequency of the term ti (number of documents in which ti appears),

and di is the document identifier. As the notation implies, the document identifiers are ordered.

Since this structure requires a large amount of storage space, posting lists usually are

compressed. Several studies have addressed the efficient encoding of document identifiers

contained in each entry (Witten et al., 1999). Posting lists are stored as a sequence of differ-

ences between consecutive document identifiers (d-gaps). This method improves compres-

sion, as variable-length encoding schemes represent small integers with less bits than large

ones. Small d-gaps are more frequent than large ones, so inverted files can be compressed

efficiently. Recent work has tried to increase the number of small d-gaps by reordering the

document identifiers, hoping that the average length of the coded d-gaps would be lowered.

The reassignment of document identifiers has been addressed by two different strategies:

splitting the collection with graph-partitioning or clustering algorithms and obtaining a new

order which exploits locality (Blandford and Blelloch, 2002; Silvestri et al., 2004), and consid-

ering the task as a graph-layout problem (Shieh et al., 2003). In the work presented in Blanco

and Barreiro (2005), the heuristic that considers the problem as a Travelling Salesman Prob-
lem (TSP) introduced in Shieh et al. (2003) allowed an efficient solution of the reassignment

after reducing the input data dimensionality using a Singular Value Decomposition (SVD)

transformation. The TSP-based strategy considers the reassignment of document identifiers

as a graph-traversal problem and finds a path according to a global minimum. Although the

strategy is not explicitly based on locality, it has obtained very appealing results in practice.

As it is shown later in Section 2, this path is the one that maximizes the bitwise intersection

of the document vectors. In Section 6 we give an explanation for the good behaviour of the

TSP heuristic for this problem.

The main reason why a SVD reduction is useful in this context, is that the TSP technique

needs to compute similarity values between documents for choosing the edges that will

connect the nodes in the final path. Thus, SVD computation deals with a necessary efficiency

matter given the dimensions of the space of terms by documents, while also being the best

choice for matrix transformation, as it obtains the best similarity measure in a reduced-

dimensionality space.

This paper extends the work presented in Blanco and Barreiro (2005) by reviewing and

reimplementing two clustering algorithms previously adapted to the reassignment problem

(Silvestri et al., 2004), in order to evaluate the two different approaches within the same

conditions. In the proposal presented in Silvestri et al. (2004) the assignment of docu-

ment identifiers is done on the fly, i.e. without the existence of a prior built inverted file.

In fact, this is the main reason why the baseline for the evaluation of the approach is a

random order and not the original collection ordering. In our work we measure the im-

provements after the reassignment of document identifiers with respect to the random order

and the identity (original) collection. Then, we present a new technique that combines the

two strategies in such a way that the best tradeoff between compression and efficiency is

achieved.

The rest of the paper is organized as follows. Section 2 describes the TSP-based solutions

in depth. Section 3 shows the way of reducing the dimension of the document similarity

matrix by computing its Singular Value Decomposition and how we applied this result to

the reassignment problem. Section 4 applies the SVD technique again, but after dividing
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the original problem into subproblems. We postpone the introduction of the clustering so-

lutions and the technique that combines the TSP and clustering until Section 5, because the

implementations, experiments and results of each technique are included in their correspond-

ing section. The paper continues with the discussion and future work in Section 6, and ends

with a conclusions section.

2. The TSP approach to the document identifiers reassignment problem

Given that we will illustrate the use of the dimensionality reduction technique for document

reassignment with the TSP-based solutions, we briefly review the work in Shieh et al. (2003).

2.1. The document identifiers reassignment problem as a TSP

An inverted file can be seen as a posting list set. Each list contains the information for

a single term appearing in the document collection, expressed as a sequence of encoded

d-gaps Gt = {g1, . . . , g ft }. The document reassignment problem tries to find the bijective

function f that

– maps each document identifier into a new identifier in the range [1 . . . d]

– minimizes the cost in bits of coding the posting lists

Similarity between documents is defined as the number of common terms, and maintained

in a similarity matrix Sim, where Simi j represents the similarity between the document i and

the document j .

Shieh et al. (2003) proposed a gap-reduction strategy based in the transformation of

the problem into a Travelling Salesman Problem (TSP). The TSP is stated as follows:

given a weighted graph G = (V, E) where e(vi , v j ) is the weight of the edge from vi to

v j , find a minimal path P = {v1, v2, . . . , vn} containing all the vertexes in V , such as if

P ′ = {v′
1, v

′
2, . . . , v

′
n} is another path in G,

∑n
i=2 e(vi , vi−1) ≤ ∑n

i=2 e(v′
i , v

′
i−1).

Considering Sim a weighted adjacency matrix, it is possible to build a Document Simi-

larity Graph (DSG) expressing the similarities between documents. This graph can be tra-

versed by a gap-reduction strategy based on the similarity factor between documents. The

idea is to assign close document identifiers to similar documents, as this will likely re-

duce the d-gaps in common terms postings. This traversing problem can be transformed

into a TSP just by considering the complement of the similarity as the weight in the TSP.

The solution of the TSP is the path that minimizes the sum of the distances between doc-

uments, therefore the algorithm is an appropriate strategy to the document reassignment

problem.

2.2. Heuristic approximations

The TSP is an NP-complete problem, so some polynomial-time heuristic approximations

were modified for the reassignment problem. These algorithms were classified as greedy

algorithms and spanning tree algorithms. We tested our low-dimension approximation with

the Greedy-NN algorithm.

When describing the heuristic approximation, we consider the TSP as obtaining the path

that maximizes the similarity sum between consecutive documents. The Greedy-NN (Nearest

Neighbor) expands the path by adding the closest vertex to the tail of the current path. In each

iteration the algorithm adds a new vertex (document), by choosing the most similar vertex to
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Table 1 Statistics of the pure
TSP approach on two TREC
collections reported by Shieh
et al. (2003)

Collection FBIS LATimes

Size of the collection 470 MB 475 MB

Number of distinct terms 209,782 167,805

Number of distinct documents 130,471 131,896

Temporal cost 19 h37′ 23 h16′

Space cost 2.10 GB 2.17 GB

the last one in the path. This approximation is high time consuming. Each vertex is inserted

only once in the path P and at iteration i the algorithm does d − i comparisons

Greedy-NN algorithm
1: Input:

The Graph G
The Vertex set V
The weighted Edges set E

2: Output:
A global path P maximizing the similarity between vertexes

3: Select the edge e(vi , v j ) ∈ E with the largest weight;

4: Add vi and v j to P;

5: vlast ← v j ;

6: while (|P| �= |V |) do
7: Choose vk ∈ V and vk /∈ P such that e(vlast, vk) is maximal;

8: Add vk to P;

9: vlast ← vk ;

10: end while
11: return P;

(the remaining documents) involving the term size t of both documents. Therefore the overall

complexity is O(d2t).

2.3. Implementation considerations

The TSP approximation for the identifier reassignment problem was evaluated in Shieh

et al. (2003). The solution demonstrated significant improvements in the compression ratio,

although it presented some design challenges and poor performance time and space results.

First, this approach requires a big amount of space. The similarity matrix is symmetric

(Simi j = Sim ji ) and the elements in the diagonal are not relevant, so it is easy to prove that

we need to store d(d−1)
2

similarity pointers (O(d2)). Even with a suitable coding schema this

amount can become unmanageable, so a matrix partitioning technique has to be developed.

Second, building this matrix can be very expensive if it does not fit into memory, as each

update has to access the disk twice, involving big delays.

Experimental results were presented for two medium sized collections (FBIS and LATimes

in TREC disk 5), to prove the effectiveness of this mechanism. These tests are summarized

in Table 1.

It is important to remark that the work in Shieh et al. (2003) provides bar graphs that show

an approximated gain of one bit per gap when reassigning with the Greedy-NN for delta

and gamma coding. The temporal costs include the process of building the similarity matrix,
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running the greedy algorithm and recompressing the inverted file. However, the results show

that this full TSP approach may be unacceptable for very large collections, as it takes 23 hours

and 2.17 GB to process a 475 MB collection.

3. Document identifiers reassignment by dimensionality reduction and the TSP
strategy

The TSP strategy achieves very good compression ratios. For this reason, we propose a new

approach based on dimensionality reduction in which the TSP algorithm can operate effi-

ciently. This technique is based on the application of a SVD transformation to the input data,

in order to obtain a new representation of the data structures that allows the reordering of the

document identifiers in a dimensionality-reduced space. Once the new ordering is obtained,

the posting lists in the inverted file are recompressed, using the document identifiers given

by the assignment function. It is worth noting the different nature of this SVD application

in Information Retrieval with respect to other typical SVD IR usages, like the LSI retrieval

model.

3.1. Singular Value Decomposition

Singular Value Decomposition (SVD) is a well known mathematical technique used in a wide

variety of fields. It is used to decompose an arbitrary rectangular matrix into three matrices

containing singular vectors and singular values. These matrices show a breakdown of the

original relationships into linearly independent factors. The SVD technique is used as the

mathematical base of the Latent Semantic Indexing (LSI) IR model (Deerwester et al., 1990).

Analytically, we start with X , a t × d matrix of terms and documents. Then, applying the

SVD X is decomposed into three matrices:

X = T0S0 D′
0 (2)

T0 and D0 have orthonormal columns, and S0 is diagonal and, by convention, sii ≥ 0 and

sii ≥ s j j∀i ≥ j . T0 is a t × m matrix, S0 is m × m and D′
0 is m × d where m is the rank

of X . However it is possible to obtain a k-ranked approximation of the X original matrix

by keeping the k largest values in S0 and setting the remaining ones to zero, thus obtaining

the matrix S with k × k dimensions. As S is a diagonal matrix with k non-zero values, the

corresponding columns of T0 and D′
0 can be deleted to obtain T , sized t × k, and D′, sized

k × d, respectively.

This way we can obtain X̂ , which is a reduced rank k approximation of X :

X ≈ X̂ = T SD′ (3)

X̂ is the closest rank k approximation of X in terms of the Euclidean or Frobenious norms,

i.e. the matrix which minimizes ||X − X̂ ||2N where || · ||2N is the involved norm.

The i-th row of DS gives the representation of the document i in the reduced k-space and

the similarity matrix �(X ) is k-approximated by �(X̂ ):

�(X ) ≈ �(X̂ ) = X̂ ′ X̂ = DS2 D′, (4)

where X̂ ′ is the transposed matrix of X̂ and D′ is the transposed of D.
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Fig. 1 Block diagram for the indexing and reassignment system

If Dd×k = {zi j } and {si } is the set of diagonal elements of S, it is easy to prove that

�(X̂ )i j =
k−1∑
γ=0

ziγ z jγ s2
γ (5)

Therefore it is possible to calculate �(X̂ )i j solely by storing the k elements of the

{si } set and the d × k matrix D, instead of computing and writing the full rank matrix

�(X )d×d .

The output of the SVD of X , X̂ has been used in the computation of �(X̂ ) = X̂ ′ · X̂ .

The same result could be obtained by calculating the SVD of �(X ) = X ′ · X due to the

uniqueness property of SVD (Bartell et al., 1992). Since SVD computes the best rank k
approximation, it is proved that the best rank k approximation of �(X ) is obtained starting

from X and without the need of computing �(X ).

3.2. SVD in the document reassignment problem

Figure 1describes the system built for testing this approach. The inverted file builder mecha-

nism outputs the X data matrix to a SVD module. This module produces the matrices Dd×k

and Sk×k that allow the computation of �(X̂ ), therefore it is no longer needed to store the

similarity matrix �(X )d×d . The reassignment module uses the SVD output matrix to compute

the TSP approach described in Section 2.2. As k is a constant factor, we can conclude that

the space usage of the algorithm is O(d) now, i.e. linear in collection size and not dependent

on document size. The output of the TSP reassignment module is used by an inverted file

recoding program which exploits the new locality of the documents to enhance the d-gaps

compression. Finally, some statical information is taken into account to make suitable com-

parisons between compression ratios achieved by the original encoding and those obtained

after reassignment.

The summarized steps are detailed next, where SVDGreedyNN is a modified version of

the Greedy-NN algorithm that uses the �(X̂ ) matrix for computing the similarity measure

between vertexes vi and v j .
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SVD-based reassignment of document identifiers
1: Input:

The Document Collection C
The k SVD parameter

2: Output:
A reordered Inverted File

3: originalIndex ← createIndex(C);
4: reducedMatrix ← SVD(originalIndex, k);
5: documentOrder ← SVDGreedyNN(reducedMatrix);
6: newIndex ← recompress(C, documentOrder);
7: return(newIndex);

The main difference in this model is that computing the similarity between two documents

di and d j requires k operations (
∑k−1

γ=0(DS)iγ (DS) jγ ) and storing k real pointers per docu-

ment, making a total of k × d for the full matrix. This representation can fit smoothly into

memory by adjusting the parameter k and uses considerably less space than the original d × d
matrix. Furthermore, the space usage can be precalculated so suitable scalable algorithms

can be easily developed. Considering 32 bits per float (real number), our implementation

uses 4 × k × d bytes of main memory.

One point to consider is the heuristic for choosing the starting node on the Greedy-

NN algorithm which was also employed to solve the TSP. The algorithm (Section 2.2)

first chooses the edge (vi , v j ) that has the maximum value. This involves the computa-

tion of the similarity for every document pair (di , d j ). In our approach selecting the first

node this way involves more operations than the rest of the algorithm itself. Hence, we

propose a less time-expensive heuristic, consisting in calculating, after dimensionality re-

duction, each (di , di ) self-similarity and choosing the document (node) with the largest

value.

3.3. Experiments and results

We performed several experiments for testing the low-dimension approach on the two TREC

document collections described in Table 1. These collections were not preprocessed, so

indexing and reordering did include stop words and terms were not stemmed. The machine

used was a 2.5 GHz AMD with 40 GB ATA disk and 1 GB of main memory, running Linux

OS. The original index file was built with MG4J from the University of Milan, a free Java

implementation of the indexing and compression techniques described in Witten et al. (1999)

and originally implemented in the MG software (http://www.cs.mu.oz.au/mg/). For the SVD

module we used SVDLIBC (http://tedlab.mit.edu/∼ dr/SVDLIBC/), a C library based on the

SVDPACKC library. We wrote the reassignment, recoding and statistical software in Java. It

should be pointed out that we needed to modify the MG4J software to output data directly

to the SVDLIBC module. Also some modifications were made that allowed us to encode

document pointers with interpolative coding.

The first experiment assessed the performance of the system with the Greedy-NN algo-

rithm, in terms of average bits per compressed document pointer (d-gap). The document

collections were inverted, the IF was inputted to the SVD module and the program computed

the Greedy-NN in the reduced dimension for the reassignment task. After reordering the

collection, the inverted file was recompressed. The software measured the average bits per

gap in the inverted file, before and after reordering and recompressing, which reflects the
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amount of compression gained by reordering the document collection. We ran several tests

varying the following parameters:

– the parameter k which reflects the desired dimensionality reduction

– coding schemes for document pointers: delta coding, gamma coding, golomb coding or

interpolative coding (Moffat and Turpin, 2002).

Best results are obtained considering X as a binary matrix in the reassignment process.

The elements of X represent the presence or absence of a term in a given document. The

recompressing module acts over the original index file which contains within-document term

frequency and frequency of the term in the collection. Results are given in bits per document

gap because it is a measure independent of these indexing options. As stated in Section 3,

the memory usage leads to 4 × d × k bytes, concretely 0.497707 × k MB for the FBIS and

0.503143 × k MB for the LATimes (for k = 200 less than 101 MB in both collections).

We have experimented with different coding algorithms that had been successfully used

for inverted file compression. These algorithms cover some of the different categories for

static coding methods (Moffat and Turpin, 2002): two global non-parameterized methods

(gamma γ and delta δ (Elias, 1975)), one global parameterized (Golomb code (Golomb,

1966)), and one local context-sensitive (interpolative coding (Moffat and Stuiver, 2000)).

Elias delta and gamma codes (Elias, 1975) do not take into account any data from the

document collection, as they drive the same representation for an integer x regardless its

frequency. For the gamma code the implied probability for a gap of length x is

Pr (x) = 1

2x2
; (6)

for the case of delta code the probability is

Pr (x) = 1

2x(log x)2
. (7)

The associated code lengths for x are 1 + 2�log x and 1 + 2�log log x + �log x respec-

tively. On the other hand, global Golomb coding (Golomb, 1966) makes use of the density

of pointers in the inverted file and is dependent on a parameter b. Golomb coding is optimal

if the implied probability follows a geometric distribution:

Pr (x) = (1 − p)(x−1) p. (8)

The code length for an integer x is �(x − 1)/b + �logb bits. The b parameter can be chosen

so the average number of bits for coding the inverted file is minimized (Gallager and van

Voorhis 1975) and it depends on the geometric distribution. Finally, the interpolative coding

(Moffat and Stuiver, 2000) is a context-sensitive model that takes into account the clustering

properties of the collection. The behaviour of the interpolative code is nearly as efficient as

the Golomb code in the worst case, although it can lead to greater gains of compression when

coping with contiguous sets of integers.

Tables 2 and 3 show the results for the different coding schemes. In the rows labeled

with each of the coding methods, columns refer to bits per document gap results for: ran-

dom reassignment, original document identifiers and reassignment after reducing the dimen-

sionality with different k values. Actually, the default starting point for any rearrangement

is the pre-existing order, which already includes an element of clustering because of the
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Table 2 LATimes bits per gap results and execution times

k

Random Original 200 100 50 20 10 5 1

Gamma 8.15 7.77 6.71 6.75 6.79 6.89 6.99 7.13 7.44

Delta 7.65 7.25 6.29 6.36 6.39 6.48 6.57 6.73 7.02

Interpolative 6.08 5.88 5.25 5.26 5.28 5.29 5.33 5.44 5.57

Golomb 5.82 5.81 5.79 5.79 5.79 5.79 5.79 5.79 5.79

SVD – – 42′31′′ 20′37′′ 11′25′′ 4′05′′ 2′33′′ 1′55′′ 1′09′′

Reorder – – 8h33′ 4h24′ 2h15′ 58′18′′ 32′05′′ 18′31′′ 7′30′′

Table 3 FBIS bits per gap results and execution times

k

Random Original 200 100 50 20 10 5 1

Gamma 7.84 6.74 6.20 6.24 6.31 6.46 6.63 6.81 7.07

Delta 7.35 6.35 5.80 5.86 5.92 6.07 6.23 6.42 6.69

Interpolative 5.83 5.25 4.98 4.99 5.01 5.06 5.17 5.21 5.33

Golomb 5.61 5.60 5.59 5.59 5.59 5.59 5.59 5.59 5.59

SVD – – 34′58′′ 15′01′′ 5′42′′ 3′18′′ 2′09′′ 1′33′′ 58′′

Reorder – – 8h30′ 4h20′ 1h48′ 58′20′′ 31′13′′ 17′55′′ 7′05′′

chronology of the documents. However, in previous studies (Blandford and Blelloch, 2002;

Silvestri et al., 2004), the authors used the random reassignment as a baseline, and for com-

parison issues this column is included here as well. By assigning values to k similar to

those used in retrieval (Dumais, 1994), the low-dimension algorithm operates with gains

that produce improvements in bits per gap. As expected, the method behaves better as the

k value increases. Also, the tables seem to show a asymptotic behaviour. With k = 200, for

the LATimes collection (FBIS collection) we achieved a 13.65% (8.02%) gain in compres-

sion ratio with respect to the original document identifier order with the gamma encoding,

13.24%(8.66%) for the delta encoding, and 11.32% (5.15%) for the interpolative coding.

These values are 17.67% (21.92%), 17.80% (21.10%) and 13.66% (14.58%) respectively

for both collections and the three encoding schemes, with respect to a random reassign-

ment. Computing the Greedy-NN TSP with the reduced space approximation �(X̂ ) gives

worthy compression ratios in every case. The gains in the FBIS collection are worse than

the ones in the LATimes, although starting from a randomized order the result is inverted.

This is the expected behaviour if the FBIS collection exhibits a better original document

order. One point to remark upon is that even in the case of interpolative coding, where the

starting point is much better, the method is able to produce gains in bit per document gap.

Regarding the compression ratios with Golomb coding, it performed the best for the ran-

dom assignment, and it is clear that it does not benefit from the locality of the documents.

The reason for this behaviour is that the Golomb code is not affected by the skewness of

the document distribution, as it renders a geometric distribution (Moffat and Turpin, 2002).

However, interpolative coding with reordering is the option that achieves best compression

results.

Our tests did not include the computation of the full dimension solution as presented

in Shieh et al. (2003), because it requires the development of matrix partition techniques
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and partial reading/writing, which are the tasks we want to avoid. Shieh et al. (2003) pro-

vided bar graph results for gamma and delta encoding in the LATimes and FBIS collec-

tions. However, exact compression values depend on the indexing software and particu-

lar indexing options. This information is not explicitly provided, thus it is not possible to

make exact comparisons between their published full-dimension results and the k-dimension

solutions.

The last two rows of Tables 2 and 3 are devoted to running times. Time measurement

is divided in three parts: inverted file construction, SVD running time and reordering and

recompressing time. Times are given for delta coding only, as the tables illustrate the time

variation within the k parameter. The time variance due to k, is only dependent on SVD

and reordering times, so times with delta coding only are suitable for this purposes (re-

compressing time is about 16 seconds for both collections). As the system was built upon

different modules, the different software pieces employ a lot of temporal I/O transfer time,

which is also measured, so results are given in elapsed time. Inversion takes 5′ 20′′ for

the FBIS collection and 6′ 03′′ for the LATimes collection and it is not shown in the ta-

bles. Although the SVD software performs well for the collections and k values used, the

TSP greedy algorithm running time still rises to high values. Hence, we conclude that it is

possible to achieve good compression ratios with reasonable time performance with our

technique. In the rest of the paper, we will show results for one compression method,

as the experiments are aimed at clarifying if the different reordering variants give better

bits per gap values, along with their respective temporal cost, without focusing on coding

methods.

4. The c-blocks algorithm

In order to further exploit the advantages of the TSP strategy and the dimensionality reduction,

we developed a simple new algorithm based on the division of the original problem in c
subproblems, hereinafter c-GreedyNN. Later on, we will be able to compare the performance

between this algorithm and others based on collection partitioning.

The c-GreedyNN algorithm operates as follows: first, it divides the DS matrix (which

represents the document similarities in the k space) in c blocks of [d/c] documents each.

Then, each block is reordered by running the greedy algorithm. Finally, a block order is

decided by running another greedy with c documents, each one selected from different

blocks. For a simpler explanation we consider d an exact multiple of c. Analytically, the

Greedy-NN after dimensionality reduction does d comparisons to select the first document,

and d(d−1)
2

for reordering, resulting in d
2

(d + 1) comparisons involving k multiplications each.

The new approach chooses c block-representatives and then performs c greedy runs with d/c

documents, resulting in d + c(
d
c ( d

c −1)

2
) = d

2
( d

c + 1) comparisons, so the overall number of

operations is reduced in a 1/c factor. Experimental results with different values of the number

of blocks c are presented in Tables 4 and 5.

Results are provided for the LATimes and FBIS collections, k = 200 and delta coding.

Tables 4 and 5 also show that the compression factor increases as the number of blocks

decreases, with a goal value of 6.29 (5.80) for the LATimes (FBIS) collection, which is the

value of considering the matrix as one single block.

The algorithm is efficient in running time, as expected from the analytical form, and it

gives acceptable compression values. We ran all the experiments with k = 200, as it proved

to drive the best performance results as well as the slowest reordering times, so lowering

those times while keeping good compression ratios is a challenge for the c-blocks algorithm.
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Table 4 LATimes bits per gap and running time (k = 200 and delta coding)

c

70 100 150 200 300 400 500 1000 2000

Bits per gap 6.68 6.72 6.77 6.81 6.87 6.92 6.95 7.02 7.09

c-GreedyNN & recompress 18′08′′ 9′50′′ 5′08′′ 3′21′′ 1′57′′ 1′25′′ 1′07′′ 42′ 47′′

Table 5 FBIS bits per gap and running time (k = 200 and delta coding)

c

70 100 150 200 300 400 500 1000 2000

Bits per gap 5.98 6.00 6.02 6.05 6.09 6.12 6.14 6.22 6.30

c-GreedyNN & recompress 17′37′′ 9′35′′ 4′59′′ 3′15′′ 1′53′′ 1′21′′ 1′05′′ 40′′ 45′′

The method enhances the original compression ratio 7.25 (6.35) for the LATimes (FBIS)

collections and delta coding. These improvements are higher when comparing to the randomly

ordered collection compression ratio 7.65 (7.35). The tradeoff between the final compression

achieved and the time usage, can be parameterized by selecting the c and k values.

5. Clustering strategies

5.1. Clustering solutions to the document identifiers reassignment problem

Recent work addressed the document identifiers reassignment problem with clustering tech-

niques. The main idea is to enhance the locality in the collection by assigning similar docu-

ments to the same cluster, and hoping that the d-gaps are lowered if documents on the same

cluster are assigned close identifiers. For this particular case, two families of algorithms were

developed to compute an efficient document assignment: the top-down assignment and the

bottom-up assignment. The top-down assignment schemes start with the whole collection

and recursively split it into sub-collections, inserting similar documents into the same sub-

collections. After this phase, the algorithm merges the sub-collections obtaining a single

and ordered group of documents, which is used to compute the assigning order. Bottom-up

schemes start from a set of documents, extracting disjoint sequences containing similar doc-

uments. Each sequence is ordered, and the final assignment is computed by considering an

arbitrary order between sequences.

The first top-down algorithm was introduced by Blandford and Blelloch (2002), who

developed a technique that improved the compression ratio in about 14% in TREC text

collections. The technique employs a similarity graph as described in Section 2.1, and operates

in three different phases. The first phase constructs the document-document similarity graph

from the original inverted file. The second part of the algorithm calls to a graph partitioning

package which implements the Metis (Karypis and Kumar, 1995) algorithm for splitting

recursively the similarity graph produced by the first part. Finally, the algorithm applies

rotations to the clustered graph outputted by the second part in order to optimize the obtained

order. The final assignment of the document identifiers is obtained by simply depth-first

traversing the resulting clustering tree. As it is stated in Blandford and Blelloch (2002),

constructing a full similarity graph is O(n2), so the raw technique may not be suitable for
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very large collections. Nevertheless, the efficiency of the algorithm can be controlled by two

parameters: τ and ρ. The first parameter, τ , acts as a threshold for discarding high-frequency

terms, i.e., if a term ti has a number of document occurrences |ti | > τ it is discarded for the

construction of the similarity graph. Actually the algorithm works with a sample of the full

similarity graph. The parameter ρ stands for how aggressively the algorithm sub-samples

the data: if the index size is n it extracts one element out of �nρ. By tuning τ and ρ the

technique may lead to a tradeoff between efficiency and time and memory usage.

The work in Silvestri et al. (2004) proposes a different approach by assigning the document

identifiers on the fly during the inversion of the text collection. This is done by calculating

a transactional representation form of the documents, which stores for each document di

a set of 4-byte integers representing the MD5 Message-Digest (Rivest, 1992) of each term

appearing in di . Using this representation, a new top-down algorithm called bisecting is

presented and evaluated, as well as two bottom-up algorithms: the k-means and k-scan.

These techniques were tested in the Google Programming Contest collection. As the whole

collection is ordered while indexing, the baseline chosen for measuring the performance

of these algorithms was a randomized collection. Our previous results with the FBIS and

LATimes presented in Section 3.3, showed that randomly ordering the collection always

yields worse compression ratios than those obtained with the natural order, i.e. leaving the

collection with its original numbering of documents. This motivated us to reimplement these

algorithms, but in a scenario of reassignment of document identifiers, with the existence of

an inverted file, rather than performing the assignment on the fly.

In our implementation of the clustering algorithms the construction of the inverted file

makes unnecessary the transactional hashing of the terms. In order to improve the computa-

tional times of the document-to-document similarities, we worked not only with the inverted

file, but also with the direct file. This structure can be seen as an inverted file where the

index keys are the documents, and the posting lists contain term identifiers. It is worth noting

that this direct file is also compressed with the techniques used to compress the inverted

file.

5.2. Bisecting and k-scan

In this section, we adapt the bisecting and k-scan algorithms from Silvestri et al. (2004)

to the reassignment scenario. The bisecting algorithm belongs to the top-down family, and

operates as follows: first, it randomly selects two documents as the centres of mass of a

two-partition of the collection. Next, it assigns every document in the input data to one of

the two partitions, according to the similarity between the document and the centre of mass.

The technique keeps these two partitions equally sized, so many documents at the end of the

input may fall into an undesired cluster. This partitioning scheme is called recursively until

the input partition only contains one element. The merging phase is done by comparing the

borders of the two partitions. If the similarity between the document at the right border of

cluster D′ and document at the left border of cluster D′′ is less or equal than the similarity

between the document at the right border of cluster D′′ and document at the left border

of cluster D′, in the final order cluster D′′ must precede D′. Otherwise D′ must precede

D′′. In the pseudo-code, ⊕ represents the concatenation of two sets containing document

identifiers.

The k-scan is a simplified version of the popular k-means clustering algorithm. The algo-

rithm sorts the elements of the collection by descending document length, and chooses the

largest unselected document as the cluster representative. Then it assigns the |D|/k − 1

unselected documents which are most similar to the cluster representative. There is an
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internal order in each cluster, given by this similarity measure. The selection of the

cluster representative and the assignment of the documents to that cluster is repeated k
times.

Algorithm Bisecting(D)
1: Input:

The document set D
2: Output:

A list with the final order

3: if |D| > 1 then
4: c1 ← randomDocument(D);

5: c2 ← randomDocument(D \ c1);

6: D′ ← {c1};
7: D′′ ← {c2};
8: for all d ∈ D \ {c1, c2}
9: if (|D′| ≥ |D|

2
) ∨ (|D′′| ≥ |D|

2
) then

10: Assign d to the smallest partition;

11: else
12: if similarity(c1, d) ≥similarity(c2, d) then
13: D′ ← D′ ∪ d;

14: else
15: D′′ ← D′′ ∪ d
16: endif
17: endif
18: endfor
19: D′

ord ← Bisecting(D′)
20: D′′

ord ← Bisecting(D′′)
21: if sim(right(D′

ord),left(D′′
ord))

≤ sim(right(D′′
ord),left(D′

ord)) then
22: Dord ← D′′

ord ⊕ D′
ord

23: else
24: Dord ← D′

ord ⊕ D′′
ord

25: endif
26: return Dord

27: else
28: return D;

The work in Silvestri et al. (2004) shows that the space storage and the computational cost

of the bisecting algorithm are both superlineal O(|D| log(|D|)) in the asymptotic analysis.

For k-scan, the space occupied is lineal O(|S||D|) and the complexity is O(|D|k), where |S|
is the average document length.

5.3. Experiments and results

The experiments were designed to assess the performance of the clustering techniques and

compare them to the TSP-based approaches, measuring the improvements in compression

ratios with respect to both the original and randomized collections. The similarities between

documents were measured with the Jaccard distance, repeating the conditions described in

Silvestri et al. (2004). In order to exploit the SVD transformation previously computed,

Springer



512 Inf Retrieval (2006) 9:499–517

we repeated the experiments measuring the similarities between documents with the inner

product in the reduced dimensionality space. In these cases, the k parameter in the SVD

transformation was fixed to 200, as this value proved to be worthy (Sections 3.3 and 4).

Hereinafter, the k parameter appearing in the tables refers to the number of scans of D in the

k-scan algorithm. In this set of experiments the compression of the posting lists was done

with delta coding.

k-scan algorithm
1: Input:

The set of documents D
The number of sequences k

2: Output:
k ordered sequences representing the final order

3: result ← �
4: Sort D by descending lengths;

5: for i = 1 . . . k do
6: center ← first(D);

7: for all d j ∈ D do
8: sim[ j] ← similarity(center, d j );

9: end for
9: M ← D

k − 1 documents with higher sim value;

10: result ← result ⊕ {center} ⊕ M
11: D ← D \ (M ∪ {center})
12: end for
13: return result;

The bisecting algorithm achieves different gains in bits per gap in each run, due to the

random centre selection for the different executions, although they are stable around a certain

value. In 10 runs of the algorithm, for the LATimes collection the values obtained fall in the

range [6.82, 6.87] for the Jaccard distance and [7.24, 7.32] for the inner product. Comparing

the worse values in these ranges to the original (random) collection order 7.25 (7.65), the

bisecting method obtains a gain in compression ratio of 5.24%(10.19%) for the Jaccard

Distance and − 0.97% (4.30%) for the inner product.

The main point to consider is that the gains with respect to the natural order are very small,

or they may not exist. This observation was ratified by the results of the bisecting algorithm

in the FBIS collection, which we skip here. Comments on the difference between the results

obtained with the two different measures of similarity for every experiment can be found at

the end of this section.

Table 6(7) shows the final compression results measured in bits per gap for the LATimes

(FBIS) collection for the k-scan algorithm. The first row presents the data obtained measuring

the similarity with inner product and 200 dimensions in the reduced space, which are exactly

the same conditions as those of the experiments with the c-blocks (Section 4) and the bisecting

algorithms. The second row shows the results with the Jaccard distance. The k parameter

stands for the number of scans of the algorithm. Overall, the results give good compression

values for a large enough k value (1000). However, considering the variation of k, there is a

point where the bits per document gap stop decreasing, and slightly increase until reaching

the limit value where k = |D|, which is just ordering the collection by document length.
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Table 6 k-scan LATimes bits per gap

k

100 200 300 400 500 1000 2000 3000 30000 · · · 131896

Inner product 6.79 6.72 6.70 6.67 6.66 6.62 6.60 6.60 6.70 · · · 7.65

Jaccard 6.82 6.74 6.70 6.68 6.67 6.64 6.63 6.62 6.71 · · · 7.65

Table 7 k-scan FBIS bits per gap

k

100 200 300 400 500 1000 2000 3000 30000 · · · 130471

Inner product 6.46 6.39 6.36 6.34 6.33 6.29 6.23 6.21 6.26 · · · 7.35

Jaccard 6.54 6.47 6.44 6.41 6.39 6.29 6.23 6.22 6.27 · · · 7.35

Table 8 k-scan + TSP LATimes bits per gap (delta coding)

k

100 200 300 400 500

Inner product under 200 dimensions 6.34 6.35 6.36 6.37 6.37

Jaccard 6.25 6.28 6.29 6.30 6.30

Table 9 k-scan + TSP FBIS bits per gap (delta coding)

k

100 200 300 400 500

Inner product under 200 dimensions 5.93 5.94 5.95 5.96 5.97

Jaccard 5.84 5.87 5.87 5.89 5.89

It is remarkable that the best values obtained with the k-scan algorithm in the LATimes

collection (6.60) and the values given by the c-blocks algorithm are similar (6.68). This is not

true for the FBIS collection, where the c-blocks (5.98) algorithm obtains a better value than

the k-scan (6.23). In terms of gain with respect to the original compression ratio (6.35) this

would be 1.9% vs 5.9%. These comparisons are fair, as the metric used by the two algorithms

in this measure is exactly the same (inner product in the k = 200 space).

5.4. TSP and clustering combination

Finally, we present a technique that combines the best of the previous approaches: the real

performance in bits per gap of the TSP and the efficiency in time consumption of clustering.

The basic idea is the same as in the c-blocks algorithm (see Section 4), namely split the

collection into several parts and run the TSP in each part, so the overall running time is lowered

from several hours to just minutes. The difference lies in the way the blocks are chosen; instead

of driving a raw partition of equally-sized blocks, we select each sub-collection with the k-

scan algorithm. This way, it is expected that each partition holds similar documents, so the

TSP would improve an already good result.

Tables 8 and 9 shows the results obtained for the LATimes and FBIS collection for this

technique, respectively. The performance of the algorithm is approximately the same as
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running a Greedy-NN (TSP for the whole collection) with a 200 dimension reduced space

(the best results obtained so far). One point to consider is that this technique obtained better

results than the c-blocks in both collections. This proves that the TSP-based techniques

perform well when the collection brings a natural order with a good compression ratio,

which is harder to improve with any algorithm, but even more with the clustering approaches

tested before. Also, the reordering times for the values of k shown are in the order of the c-

blocks, because the partitions are size balanced. Of course, this also applies to the algorithms

described in the previous section, although this particular technique performs a reorder of

each sub-collection in addition to compute the clusters.

It is possible to notice that the Jaccard measure performs better than the inner product in

the bisecting and k-scan + TSP algorithms, although the inner product behaves slightly better

for the k-scan, especially with low values of k. The problem with the Jaccard distance is that

it is an undefined measure in the SVD reduced space, because it is related to the intersection

of the original terms. However, the results with the inner product are useful for comparing

fairly the clustering and c-blocks techniques.

6. Discussion and future work

The work presented here shows empirically that the TSP heuristic is a good reordering

strategy. This is supported by the implementations, tests and comparisons with clustering

algorithms and in particular by the combination of the two main techniques. As a summary of

the results presented throughout the paper, Figs. 2 and 3 show some of the results obtained by

the algorithms described here. The plots give some details on the effectiveness and efficiency

tradeoff that can be achieved with the TSP and cluster-based combinations. The x-axis shows

reordering and recompressing time in a logarithmic scale, and the y-axis represents the bits

Fig. 2 Summary results for the LATimes collection
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Fig. 3 Summary results for the FBIS collection

per gap achieved for delta coding. Each line in the plot stands for a different reordering

technique, namely TSP (Section 2), c-blocks (Section 4), k-scan (Section 5.2), bisecting

(Section 5.2) and the TSP and clustering combination using k-scan (Section 5.4).

For example, it is possible to achieve reduction in the compression ratios of 13.24% (6.29

bits per gap) (LATimes, delta coding) with a time cost of more than 8 hours driving a TSP

algorithm only, while the TSP+k-scan combination gives a ratio of 12.55% (6.34 bits per

gap) with much less computational effort (in the order of 10 min).

Despite of the fact that the TSP-based technique performs better than other approaches

and that it can be adapted to other situations to fit time consumption and memory usage (SVD

reduction, collection partitioning, and combination with clustering) it does not necessarily

give the optimal solution to the problem of reassignment of document identifiers.

In order to find better solutions than those provided by the TSP strategy, it will be necessary

to discover heuristics that take into account the exact cost function to be minimized. This

minimization must allow for the coding scheme, as the aim is to minimize the function

cost(π ) =
T∑

t=1

(
length(π (dt,1)) +

ft∑
i=1

length(π (dt,i+1) − π (dt,i ))

)
(9)

where π is the reassignment bijective function that maps each document identifier in the

range {1 . . . d} to a new one in the same interval, and length(x) gives the total number of

bits needed for coding an integer x . Most static codes represent an integer x with O(log(x))

bits. In order to obtain good compression ratios, we should minimize the d-gap products.

This way, the log of the products and the sum of the logs would be minimal, with practical

consequences in the final coded posting lists. In this context, considering the problem a

TSP, although producing good results, is only a strategy to address the document identifier
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reassignment problem. However, it is possible an explanation of why it performs well in

reducing the d-gap log.

Consider the distance matrix Ld×d where each li j measures the distance between docu-

ments i and j . Considering the documents as sets of terms, the distance can be measured as

|(di ∪ d j ) \ (di ∩ d j )|. The traversal found by the exact solution of the TSP minimizes the

function sumdist(π ) = ∑D−1
i=1 lπ (di )π (di+1). Imagine the inverted file as a t × d binary matrix

B, where a one the position bi j represents an occurrence of the term i in document j . For

each row of this binary matrix, each time a 0–1 or 1–0 switch appears, sumdist(π ) increases

by one, so the order that minimizes sumdist(π ) is the one which minimizes this number

of switches. This would maximize the bitwise intersection of document vectors, but it does

not imply minimizing the average d-gap logarithm sum. However, this ensures that the final

configuration of the binary matrix has a big number of consecutive 1s in each row, so it is

reasonable to expect a low average logarithm d-gap sum (as the logarithm does not penalize

bigger d-gaps as much as it benefits from smaller ones).

It is possible to trace a new line of active research, coming up with new heuristics based

on the optimal cost function and/or the characterization of the distance that a particular

solution achieves with respect to the optimum. This also holds for TSP solutions: as long

as this algorithm in the reduced dimension space performs well, we may pursue a formal

characterization to the distance of the optimal solution reached, with this sort of heuristic

solutions.

The combination of clustering and TSP would also hold the same scalability problem

as the TSP-only approaches described in Shieh et al. (2003) in very large collections. The

combination of TSP, SVD and clustering may be suitable for these cases, and it would be

interesting to measure the gains that these techniques are able to achieve, as the clustering

gives good results but they become higher by applying the TSP in each cluster. Moreover, this

is especially indicated for collection partitioning techniques that may produce unbalanced

clusters, such as the k-means algorithm (Jain et al., 1999). The negative effect of large clusters

would probably be softened with the SVD, so the TSP technique may run with acceptable

times.

Another scalability issue is the efficiency of the SVD step. As we have seen, the di-

mensionality reduction allows efficient implementations of the TSP-based approaches, but

when dealing with web scalability, when several Gigabytes or even Terabytes are involved,

it becomes necessary to come up with more efficient SVD implementations, see for exam-

ple Kokiopoulou and Saad (2004), or other different matrix transformations, with similar

properties as the SVD, but more efficient in computing time.

7. Conclusions

We presented a smart approximation for the document identifier reassignment problem by

using a previous dimensionality reduction with SVD. The results presented allow to report

time-efficient methods that yield good inverted file reduction gains. Concretely, we imple-

mented the TSP Greedy-NN approach in the reduced dimension space and one variant, that

applies this solution to sub-collections of the original data, reordering them next. We also

presented an implementation of two clustering techniques to the problem of reassignment

and evaluated and compared them with TSP-based reordering. Finally, in the discussion

section we showed a comparison of the different techniques and gave insights into both

theoretical aspects and scalability issues of the proposed work, as well as future research

lines.
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