
Static Pruning of Terms in Inverted Files

Roi Blanco and Álvaro Barreiro

IRLab, Computer Science Department
University of Corunna, Spain

rblanco@udc.es, barreiro@udc.es

Abstract. This paper addresses the problem of identifying collection
dependent stop-words in order to reduce the size of inverted files. We
present four methods to automatically recognise stop-words, analyse the
tradeoff between efficiency and effectiveness, and compare them with a
previous pruning approach. The experiments allow us to conclude that in
some situations stop-words pruning is competitive with respect to other
inverted file reduction techniques.

1 Introduction

Inverted files are the data structures employed by most modern retrieval systems
[14] to associate index terms (words, stems, phrases, bigrams, etc. . .) with doc-
ument occurrences. Indexes are organised into posting lists containing several
pointers which carry the correspondence information. Fast query evaluation is
normally done by repeatedly accessing the on-disk index file and fetching the in-
formation for every query term. Disk accessing times are the bottleneck for most
retrieval systems, and there had been many solutions to improve query evalua-
tion times without affecting retrieval effectiveness, such as lossless compression
techniques [7]. More recently, a new family of lossy compression algorithms,
namely pruning, has emerged to try to improve the efficiency while retaining
high effectiveness values. Pruning techniques aim at removing unnecessary in-
formation by determining a set of non relevant pointers in each posting list and
ruling them out of the retrieval. If the pointer set is dependent on each query,
it is called dynamic pruning [13], whereas if the pruning can be made off-line it
is said to be static. Recent works demonstrated that static pruning can produce
very compact indices whilst not suffering from an unacceptable precision loss [2].
Also, this technique has been applied in web retrieval [4].

This paper presents several techniques for reducing the size of the inverted
file by identifying a stop-words set dependent on the collection. The main dif-
ference between this method and the one described in [2] (hereinafter Carmel’s

method) is that the whole term is removed from the index instead of deleting
single occurrences. We introduce several techniques based on the terms’ infor-

mativeness value, in particular inverse document frequency (idf) and residual
inverse document frequency (ridf), and a novel method based on the term dis-

criminative value. Discarding a whole term determines that the index term is

not useful in every possible context (query). Although this claim may seem too
aggressive (or naive), except for a predetermined and well-known set of function
words, we found out that in some scenarios these algorithms prove to be compet-
itive or even better than the methods based on the pruning of term-document
occurrences. Other works ([2],[4]) size the amount of pruning as the percentage
of pointers removed from the inverted file, and in [2] Carmel et al. advanced that
it is not known how static pruning would behave in conjunction with the tra-
ditional lossless compression methods, and that further research was needed in
order to clarify it. This paper also presents the experiments and results assessing
the relationship between the amount of pointers and the real space savings, for
five well known coding algorithms. We advance a good and stable behaviour of
the static pruning methods for every coding scheme tested. Experiments also
report on query times in a real retrieval platform.

The rest of the paper is organised as follows: section 2 describes Carmel’s
method, section 3 introduces the term pruning methods, the experiments and
results are presented in section 4 and the paper ends with a conclusions and
further work section.

2 Static index pruning of posting entries

Carmel et al. in [2] proposed and successfully tested a method for removing
information from an inverted file. The algorithm operates in a per-term basis,
selecting the less necessary information from every single posting list in order
to reduce the total index size.

There are two parameters involved in the so-called top-k pruning algorithm:
k and ǫ. The procedure to select which postings are removed from the index
is as follows. First, for every term in the lexicon, the algorithm computes the
contribution of every document occurrence to the final score using the score
function of the retrieval system. Then it retrieves the k-th highest score zt and
sets a threshold τt = ǫ ∗ zt. Finally, every document occurrence which score is
lower than τt is dropped out from the posting list.

It is worth to point out that this is an idealised pruning algorithm, as the
top k documents scores for a query with less than 1

ǫ terms are guaranteed to
be the same, within an error of ǫ, when the original or pruned inverted file is
used. However, the algorithm has the problem of obtaining negligible pruning
levels. In order to obtain any significant index reduction it is necessary to shift
every document occurrence score in the term lists, by subtracting a global mini-
mum score to every document score. The real procedure is to apply the pruning
algorithm after this ad-hoc modification of the inverted file. This accomplishes
excellent results but the aforementioned property is not proved to hold. As well,
there is another variation of the algorithm, namely δ-top answers, that consists
of keeping the entries whose score value under a query q is at least δ times the
highest score of all the documents under q. The implementation we employed
here considered the BM25 score [11] instead of Smart’s tf-idf (used in [2]) and we

decided to skip any shifting implying that higher pruning levels were obtained
by setting a higher ǫ value.

3 Static index pruning of term posting lists

Traditionally, stop word removal aims at identifying noisy terms that may hurt
precision, and to the best of our knowledge it has not been used for efficiency
purposes.

It is clear that removing high-frequency terms from an uncompressed in-
verted file may lead to substantial space savings, as they tend to engross most
of the occurrences (according to Zipf’s law). How this may affect to compressed
inverted files is disccussed in [14]. The claim is that the higher the frequency
of the word, the better a parametrised compression model such as Golomb will
adapt to it, so the less space it will consume in a compressed form. In general, it
is a commonly accepted idea that stop-words should be in the inverted file since
removing high-frequency words would result in very small space savings. How-
ever, we believe that if it is possible to obtain a good ranking of terms according
to their importance, it would be interesting to establish the tradeoff between
retrieval accuracy and the index reduction implied by the removal of the less

important terms. In fact, some authors [10] report that building a manual ex-
tended stop-list speeds searches. We propose to study this effect with techniques
that obtain informativeness (3.1) and discriminative (3.2) rankings.

3.1 Stop-words list based on idf and ridf

The inverse document frequency is a term informativeness measure, therefore it
can be used to produce a ranking of bad terms (those with lower idf values). We
used a common idf normalisation introduced by Robertson and Sparck-Jones
in [9] that performed well for identifying dynamic stop-words in [6]. If D is the
total number of documents in the collection, and df the number of documents
the term t appears in (document frequency), then the idf for term t is:

idf = log

(

D − df − 0.5

df + 0.5

)

(1)

Residual idf is defined in [3] as the difference between the observed idf (IDF)
and the idf expected under the assumption that the terms follow an independence
model, such as Poisson (ˆIDF). To the best of our knowledge it has not been used
for identifying collection-dependent stop-words, although in [8] it is employed
successfully for named entity recognition. If tf is the total number of tokens for
a term t, then the ridf devised by a Poisson distribution is

RIDF = IDF − ˆIDF = − log(
df

D
) + log(1 − e−

tf
D) (2)

Church and Gale [3] claim that the more a term deviates from Poisson, the
more dependent on hidden variables, and more useful the term is to discrimi-
nate between documents containing it on the basis of the hidden dependencies.

In order to compute the idf and ridf values for every term appearing in the
collection, it is only necessary to traverse the lexicon file once.

3.2 Stop-words list based on Salton’s Term Discrimination Model

Salton’s Term Discrimination Model (TDM) [12] is one of the first computa-
tionally attractive attempts to find an effective ranking of words, based on the
analysis of the Discriminative Value (DV) of a term and it was used for au-
tomatic indexing. The model is embodied into the vector-space framework for
Information Retrieval and its use has been limited to small collections (Cran-
field, Medlars, Time). However, the usefulness of the model has not been clearly
stated in the following years, nor it has been applied in large TREC collections.
This paper proposes to revisit the original model and to determine to which
extend it may be worthy as a tool for finding stop-words.

The Term Discrimination Model measures the importance of every index
term based on the influence it has on a document space. The main assumption
is that a document space with distant vectors is preferable for retrieval. A good
document space is one that maximises the average separation between every
pair of vectors, because it would be easier to distinguish among the retrieved
documents. Under this claim, and given that terms act as dimensions of the
document space, it is possible to rank the index terms according to how much
each term affects the density of the vector space, i.e. how good as discriminators

they are. The DV of a term t is defined as how much the removal of t from the
vector space decreases the total space density.

Let {t1 . . . tT } and {d1 . . . dD} be the term and the document set respectively,
where every document di is represented by a term frequency component vector
〈tfi1, tfi2 . . . tfiT 〉. The calculation of every document-to-document distance as
a measure of the space density is computationally unaffordable for very large
collections. One possible variation could be a definition of the density measure
related to documents-to-centroid distances. In this case, the DV for a term tk is

DVk =
D

∑

i=1

distance(dk
i , ck) −

D
∑

i=1

distance(di, c) = Qk − Q, (3)

where Q is the space density, Qk is the space density after the term tk is re-
moved, dk

i is the document obtained after removing the term tk from di, c is the
document centroid and ck is the document centroid resulting after the removal
of the term tk.

A straight implementation of eq. 3 is very time consuming. For every term,
it requires the computation of the similarities between every document and the
centroid, forcing to traverse T times a direct file of D documents. Next it follows
a reformulation of eq. 3 that allows to save most of the operations by storing
some data in main memory and reducing drastically the total computation time.
First, let TF k

j (TFj) be the j-th component of the centroid ck (c):

TFj = 1
D

∑D
i=1 tfij ; TF k

j = TFj if j 6= k; TF k
j = 0 if j = k.

Equation 3 can be rewritten as follows, where tfk
ij is the j-th component of

dk
i .

DVk =

D
∑

i=1

T
∑

j=1

tfk
ij × TF k

j

|dk
i | × |ck|

−

D
∑

i=1

T
∑

j=1

tfij × TFj

|di| × |c|
, (4)

Let wi =
∑T

j=1 tfijTFj , which is a value that can be precomputed for each
di, then

T
∑

j=1

tfk
ij × TF k

j =

{

wi if tk /∈ di

wi − tfikTFk if tk ∈ di,
(5)

and Qk can be expressed as

Qk =

D
∑

i\tk∈di

wi − tfikTFk

|ck| × |dk
i |

+

D
∑

i\tk /∈di

wi

|ck| × |dk
i |

(6)

Taking into account that |dk
i | = |di| if tk /∈ di, and that

∑

i\tk /∈di

wi

|di|
=

∑D
i=1

wi

|di|
−

∑

i\tk∈di

wi

|di|
, then Qk can be finally rewritten as:

Qk =
1

|ck|

D
∑

i\tk∈di

(

wi − tfikTFk

|dk
i |

−
wi

|di|

)

+

D
∑

i=1

wi

|di|

 (7)

Since Q is constant, the Qk values will suffice to compute the rank produced
by the TDM. The reformulation of Qk introduced in eq. 7 allows the computation
of this rank with just one single pass to a direct file to calculate the wi and |di|
values, and another one to the inverted file to recalculate every single term

contribution. If we use the cosine normalisation, then |di| =
√

∑T
j=1 tf2

ij , |c| =
√

∑T
j=1 TF 2

j , implying that |dk
i | =

√

|di|2 − t2ik, |ck| =
√

|c|2 − TF 2
k . Finally

we propose another last modification to this model, in which the contribution
1

|ck|

∑D
i=1

wi

|di|
is dropped out from eq. 7. This factor is dominant in the final value

of Qk and very dependent on the |ck| value. This is a problem in large collections
because the method is too biased for high frequency terms (concretely on the
factor TFj appearing on |ck|), ranking them higher.

This efficient implementation of the Term Discrimination Model requires
2|D| + |T | extra pointers to store the document lengths, the wi (for each docu-
ment) and the TFj (for each term) values. Considering 16-byte double precision
floats, these amounts sum up to approximately 12 MB for the 2 Gigabyte TREC
web collection.

The approach described here will be referred as tdm1 and we denote as tdm2

another variation that employs a term frequency normalisation factor in the
fashion of BM25 [11]:

ˆtfij =
(k1 + 1)tfij

tfij + k1

(

(1 − b) + b len(di)
avglen

) (8)

In equation 8, len(di) stands for the number of tokens in the document di, avglen
is the average document length in the collection and we used the recommended
values for k1 = 1.2 and for b = 0.75. In the implementation of tdm2 we considered
the simplification of not recomputing the average document length every time a
term is removed from the collections. Once the term frequencies are computed
according to eq. 8 the process follows as described for tdm1.

4 Experiments and Results

4.1 Experimental Setting

We report our empirical findings using the five pruning methods described in
sections 2 and 3. The evaluation tries to assess how the mean average precision
(MAP) and precision at ten (P@10) vary as the number of deleted occurrences
from the inverted file increases. Intentionally, we chose settings that devise high
precision values in order to measure the decrease in precision when augmenting
the pruning level. We used Porter’s algorithm for stemming. BM25 (eq. 9) was
selected as the scoring function for every method, as it has proved to be robust
in the IR literature:

score(d, Q) =
∑

t∈Q

log2

(

D − dft + 0.5

dft + 0.5

)

(k1 + 1)tf

K + tf

(k3 + 1)qtf

k3 + qtf
(9)

where qtf is the frequency of the term in the query, K = k1((1− b)+ b dl

avgl), and
dl and avgl are the document and average document length respectively. The
recommended values [11] are: k1 = 1.2, k3 = 1000 and b = 0.75.

We experimented with TREC topics from 401 to 450 in the LATimes and
WT2g collections, short queries (title) and long queries (title plus description).
Note that the narrative field was discarded as it hurts precision using these
settings. Regarding to Carmel’s method, the k value was set to 10, and the
different pruning levels were obtained by modifying ǫ.

For the TDM-based methods, another condition was taken into account in
order to smooth the correlation between the frequency range and the discrimina-
tion value. We introduced a document frequency threshold based on the size the
collection: only terms with document frequency in the collection greater than
400(2000) where pruned for the LATimes(WT2g) collection.

A second class of experiments try to assess the real tradeoff between the
pruning level and the disk space occupied by the inverted file, using different
posting-list compression methods. We experimented with five different coding
algorithms [7] for the document pointers: three non-parametrised methods (γ,
δ, variable byte), a local parametrised method (Golomb coding), and a context-
sensitive method (interpolative coding). Within-document term frequencies were
coded with unary code, except for the case of variable byte where they were
coded with variable bytes as well.

Finally, a third experiment measured the real query time performance of
the system for one term-based method (ridf) and Carmel’s method, to try to
determine the final speedup effect of pruning on a retrieval platform.

Indexing and retrieval was carried out using the Terrier IR platform1 v1.0.0,
developed at the University of Glasgow. The pruning and compression program
suite was implemented on top of it.

4.2 Precision vs. pruning

Figures 1 to 4 show MAP and P@10 results for the LATimes collection, for
both short and long queries. The precision curves end when the number of
terms deleted forces any query to be empty. In general, all the methods that
prune terms are able to increase initial MAP and P@10 values. Overall, tdm1

achieved the highest values in precision with a pruning level around 20%-30%.
If Fox’s stop-list [5] is applied the results are: MAP 0.2695(0.2524) and P@10
0.2933(0.2911) for long(short) queries at a 26.7% pruning level. The best values
achieved with the tdm1, MAP 0.2839(0.2544) and P@10 0.3224 (0.3022), are
better than those attained by Fox’s stop-list. Term pruning methods present a
good behaviour at certain levels, being ridf remarkably stable and smooth and
tdm1 very good at increasing precision, although at the cost of being too ag-
gressive. The other two methods, tdm2 and idf are very correlated and perform
slightly worse than ridf for most of the cases.

 0.2
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29

 0 10 20 30 40 50 60 70

Carmel
tdm1
tdm2

idf
ridf

Fig. 1. MAP vs. %pruning for LATimes & long queries

Tables 1 and 2 summarise the results for the WT2g collection. Results are
analogous to the ones obtained in the LATimes, although short queries benefit
more from precision gains. It is remarkable that Carmel’s method is able to
improve P@10 values in the WT2g collection at very high pruning levels (short
queries only).

Every method presented needs to set some threshold in order to stop prun-

ing, be it the ǫ parameter (Carmel’s method) or the percentage of pruning (term
pruning methods). We carried out a third experiment in order to find an au-
tomatic threshold using Fox’s stop-list as relevance information, i.e. good stop-
words. The procedure is as follows: the list of terms is sorted according to a first

1 http://ir.dcs.gla.uk/terrier

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 10 20 30 40 50 60 70

Carmel
tdm1
tdm2

idf
ridf

Fig. 2. P@10 vs. %pruning for LATimes & long queries

measure and split into several intervals bounded by the relevant (trusted) stop-
words. For every term and using a second measure, its informativeness value v1

and the value of the lower bound of its corresponding interval v2 are compared. If
v2 ≥ v1 the term is pruned. Combining the ridf (first) and tdm2 (second) mea-
sures this approach gives, for long(short) queries, MAP values of 0.2685(0.2490)
and P@10 values of 0.3044(0.2889) at a 56% pruning level in the LATimes col-
lection. These precision values are obtained automatically and comparable with
the ones obtained by Fox’s stop-list alone, but at a higher pruning level.

Table 1. Precision vs. %pruning WT2g & long queries

pruning
0% 10% 15% 20% 25% 30% 40% 50% 60% 65%

tdm1 MAP 0.2966 0.3006 0.3062 0.3074 0.2892 0.2704 0.2473 0.2151 0.2054 –
P@10 0.4780 0.4780 0.4780 0.4860 0.4660 0.4460 0.3980 0.3440 0.3143 –

tdm2 MAP 0.2966 0.2985 0.2942 0.2925 0.2755 0.2741 0.2602 0.2436 0.2166 0.2054
P@10 0.4780 0.4620 0.4600 0.4680 0.4360 0.4400 0.4080 0.3780 0.3583 0.3208

idf MAP 0.2966 0.2987 0.2945 0.2928 0.2749 0.2733 0.2599 0.2410 0.2163 –
P@10 0.4780 0.4640 0.4620 0.4700 0.4380 0.4380 0.4100 0.3760 0.3204 –

ridf MAP 0.2966 0.3000 0.3050 0.2970 0.2922 0.2962 0.2881 0.2625 0.2325 0.2322

P@10 0.4780 0.4800 0.4880 0.4640 0.4600 0.4640 0.4560 0.4320 0.3760 0.3653

pruning
0% 9.3% 14.0 % 19.1% 24.2% 30.3% 39.4% 52.1% 58.1 % 66.0%

Carmel MAP 0.2966 0.2789 0.2779 0.2712 0.2634 0.2591 0.2606 0.2405 0.2283 0.2188
P@10 0.4780 0.4480 0.4460 0.4540 0.4440 0.4480 0.4400 0.4280 0.4220 0.4200

4.3 Index compression vs. index pruning

Figure 5 shows the real tradeoff between pruning level and disk space usage
(WT2g collection). The graphs reflect how the inverted file size decreases when
the number of pruned pointers increases using different coding methods. Sizes
are relative with respect to the original inverted index except in the last graph,
where the size is absolute. Only the posting list file is considered since the space
reduction due to the lexicon file is not significant. The behaviour is stable for

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0 10 20 30 40 50 60

Carmel
tdm1
tdm2

idf
ridf

Fig. 3. MAP vs. %pruning LATimes & short queries

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0 10 20 30 40 50 60

Carmel
tdm1
tdm2

idf
ridf

Fig. 4. P@10 vs. %pruning LATimes & short queries

every compression algorithm, which proves that measuring the pruning level as
the number of deleted occurrences is a valid indicator of the final compressed
file, despite of the coding method used. The best reduction is obtained for the
method based on ridf although with minor differences. The final figure shows the
relative performance of the different coding algorithms, measured in megabytes
(pruning values obtained with ridf).

It is possible to explain the values in figure 5 as follows. Real coding of posting
lists is based on document gaps. A document gap is the difference between
two consecutive document identifiers in the same list. For a given term with
consecutive document identifiers a, b, c the cost of coding its postings would be
φ(b−a)+φ(c−b) and for bit-based coding methods φ(x) = O (log(x)). Carmel’s
method may prune the document occurrence with identifier b resulting in a coded
posting list reduction from log(b−a)+log(c−b) to log(c−a). Methods that prune
every term occurrence do not leave this log(c − a) gap in the posting list when
they operate, as they remove the whole list, thus they may yield less average
bits per gap values. The first slope in the graphs is due to the fact that the
first terms in being pruned are the ones with highest document frequency, which
happen to be the ones with the highest within-document term frequencies. When
those frequencies are coded in unary (φ(x) = x) the space saved when they are
removed is more noticeably. In fact, if the frequencies are coded with gamma,

Table 2. Precision vs. %pruning WT2g & short queries

pruning
0% 10% 15% 20% 25% 30% 35% 40% 50% 55%

tdm1 MAP 0.2540 0.2688 0.2719 0.2661 0.2524 0.2470 – – – –
P@10 0.4180 0.4540 0.4560 0.4620 0.4480 0.4271 – – – –

tdm2 MAP 0.2540 0.2635 0.2641 0.2600 0.2498 0.2490 0.2393 0.2351 0.2172 –
P@10 0.4180 0.4360 0.4360 0.4300 0.4040 0.4060 0.3800 0.3620 0.3553 –

idf MAP 0.2540 0.2635 0.2644 0.2602 0.2503 0.2495 0.2408 0.2351 0.2172 0.2109
P@10 0.4180 0.4380 0.4380 0.4300 0.4080 0.4040 0.3780 0.3600 0.3480 0.3163

ridf MAP 0.2540 0.2619 0.2640 0.2636 0.2594 0.2572 0.2524 0.2509 0.2333 0.2254

P@10 0.4180 0.4400 0.4360 0.4204 0.4143 0.4204 0.4020 0.3939 0.3633 0.3653

pruning
0% 9.27% 14.0% 19.1% 24.2% 31.0% 39.6% 45.2% 52.1% 58.9%

Carmel MAP 0.2540 0.2634 0.2632 0.2622 0.2606 0.2558 0.2548 0.2526 0.2397 0.2301
P@10 0.4180 0.4360 0.4360 0.4360 0.4380 0.4420 0.4400 0.4500 0.4580 0.4500

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Gamma Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Delta Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Golomb Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Variable Byte Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Interpolative Coding

Carmel
idf

ridf

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(M
B

)

Ridf Pruning

gamma
delta

golomb
VB
IC

Fig. 5. Effect on Inverted File size vs. %pruning

the slope softens. It is interesting to notice that Carmel’s method follows this
behaviour too, which indicates that if ǫ is low, it is only able to delete occurrences
of terms with high document frequency.

In the case of variable byte coding, 90% of the pointers require just one byte
and therefore there is no noticeable difference among the methods. Variable
byte is clearly the worst method with respect to inverted file size, although it is
interesting because of its faster decompression times.

4.4 Query times vs. pruning

Figure 6 reports on average query times for ridf and Carmel’s method on the
LATimes collection with fifty queries (topics from 401 to 450). There is a query
processing time reduction which is more important in the case of long queries.
The different behaviour between the methods is due to the number of disk ac-
cesses, main bottleneck for query evaluation in retrieval systems. Every query
term is processed if the inverted file is pruned with Carmel’s method, and this
is the reason why query processing time varies smoothly with respect to the
pruning level. In the ridf -based pruning method, query processing times can be
drastically reduced at pruning levels that maintain or even improve the precision
values.

5 Conclusions and future work

We implemented several pruning techniques based on the informativeness and
discriminative value of terms. We also evaluated the behaviour of precision with
respect to pruning, and the final effect in index file reduction and query pro-
cessing times. Those methods have been compared with the well-known pruning
method introduced by Carmel et al. [2]. We found out that tdm1 is good if only
high values of precision are desired, although it is very aggressive, and ridf is
easy to implement and very stable. In general, pruning whole terms is better
for maintaining or improving MAP, and it keeps precision values at high prun-
ing levels with long queries, whereas pruning pointers is better with respect to
P@10. In particular, Carmel’s method behaved very well for P@10 and short
queries in the WT2g collection. Therefore, methods that prune terms could be
useful in applications such as indexing collections for PDAs and mobile devices,
and desktop search.

One future research line is to design a pointer-based pruning method that
operates selectively over posting lists, driven by a global term rank. Another
topic of research is to address the problem of pruning while allowing for phrasal
queries. None of the methods presented here is appropriate for processing phrasal
queries. To tackle these problems it is necessary to develop an explicit pruning
method for this purpose [4] or to combine a pruned inverted file with a next-word
index [1].

Acknowledgements. The work reported here was co-funded by SEUI and FEDER

under project MEC TIN2005-08521-C02 and “Xunta de Galicia” under project

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

carmel long queries
ridf long queries

carmel short queries
ridf short queries

Fig. 6. Average query processing time (ms) vs. %pruning

PGIDIT06PXIC10501PN. Roi Blanco is supported by a grant of DXID of the “Xunta de

Galicia”. We also thank the support of the “Galician Network of NLP&IR” (2006/03).

References

1. D. Bahle, H. Williams, and J. Zobel. Efficient phrase querying with an auxiliary
index. In Proc. of ACM SIGIR 2002, pages 215–221.

2. D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. Maarek, and A. Soffer.
Static index pruning for information retrieval systems. In Proc. of ACM SIGIR

2001, pages 43–50.
3. K. Church and W. Gale. Poisson mixtures. Natural Language Engineering,

2(1):163–190, 1995.
4. E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. Silva, P. Calado, and

M. A. Nascimento. Improving web search efficiency via a locality based static
pruning method. In Proc. of WWW 2005, pages 235–244.

5. C. Fox. A stop list for general text. SIGIR Forum, 24(1-2):19–21, 1990.
6. R.T.W. Lo, B. He, and I. Ounis. Automatically building a stopword list for an

information retrieval system. In Proc. of DIR’05, Utrecht, Netherlands, 2005.
7. A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer Academic

Publishers, Norwell, MA, USA, 2002.
8. J. D. M. Rennie and T. Jaakkola. Using term informativeness for named entity

detection. In Proc. of ACM SIGIR 2005, pages 353–360.
9. S. Robertson and K. Sparck Jones. Relevance weighting of search terms. JASIS,

27:129–146, 1976.
10. S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Text REtrieval

Conference, pages 151–162, 2000.
11. S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at

TREC-4. In Text REtrieval Conference, pages 21–30, 1996.
12. G. Salton, C. S. Yang, and C. T. Yu. A theory of term importance in automatic

text analysis. JASIS, 26(1):33–44, 1975.
13. H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. IP&M,

31(6):831–850, 1995.
14. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

