
Document identifier reassignment through

dimensionality reduction

Roi Blanco and Álvaro Barreiro

AILab. Computer Science Department, University of Corunna, Spain
roi@mail2.udc.es, barreiro@udc.es

Abstract. Most modern retrieval systems use compressed Inverted Files
(IF) for indexing. Recent works demonstrated that it is possible to re-
duce IF sizes by reassigning the document identifiers of the original col-
lection, as it lowers the average distance between documents related to
a single term. Variable-bit encoding schemes can exploit the average gap
reduction and decrease the total amount of bits per document pointer.
However, approximations developed so far requires great amounts of time
or use an uncontrolled memory size. This paper presents an efficient so-
lution to the reassignment problem consisting in reducing the input data
dimensionality using a SVD transformation. We tested this approxima-
tion with the Greedy-NN TSP algorithm and one more efficient variant
based on dividing the original problem in sub-problems. We present ex-
perimental tests and performance results in two TREC collections, ob-
taining good compression ratios with low running times. We also show
experimental results about the tradeoff between dimensionality reduction
and compression, and time performance.

Keywords: Document identifier reassignment, SVD, indexing, compres-
sion.

1 Introduction

Large-scale Information Retrieval (IR) systems need an indexing mechanism for
efficient retrieval. The most extended data structure used is the inverted file

(IF). This IF is a traversed representation of the original document collection,
organised in posting lists. Each entry in the inverted file contains information
about a single term in the document collection. The format of the posting lists
reflects the granularity of the inverted file, addressing in which documents and
positions the term appears. In this work we suppose a document level granularity,
therefore the posting list for term ti is:

< ti; fti
; d1, d2, . . . , dfti

>, di < dj∀i < j (1)

where fti
stands for the frequency of the term ti (number of documents in

which ti appears), and di is the document identifier. As the notation implies,
the document identifiers are ordered.

II

Since this structure requires a large amount of storage space, posting lists
usually are compressed. Several works aimed at efficiently encoding the docu-
ment identifiers contained in each entry. Posting lists are stored as a sequence of
differences between consecutive documents identifiers (d-gaps). This method im-
proves compression, as variable-length encoding schemes represent small integers
with less bits than large ones. Small d -gaps are more frequent than large ones, so
inverted files can be compressed efficiently. Recent works have tried to increase
the number of small d-gaps by reordering the document identifiers, hoping that
the average d-gap is lowered. This process is done after the collection is traversed
and the inverted file is built. These works are presented in [2] and [9], in the fol-
lowing of this paper, the B&B (Blandford and Blelloch) and the TSP approach

(Travelling Salesman Problem) respectively. Results show that the document
identifier reassignment technique is effective in lowering the average d-gap, and
therefore allowing gains in compression ratios. Both solutions build a weighted

similarity graph G where the nodes vi, vj represent the document identifiers i, j
and an edge (vi, vj) represents the similarity between documents i and j.

The B&B algorithm recursively splits G into small subgraphs Gl,i = (Vl,i, El,i)
representing smaller subsets of the collection until every subgraph becomes a
singleton. After that, the technique performs a reordering of the document iden-
tifiers, by depth-first traversal. The TSP approaches the problem by considering
it a Travelling Salesman Problem which can be solved by several ways pointed in
graph literature. The objective is to find the traverse that minimizes the d-gaps
by reassigning document identifiers according to the order in which they were
visited.

Unfortunately these solutions lack of efficiency, and they turn nonviable for
large collections in terms of space and time. In [10] the authors could only
test the B&B algorithm in a collection of 60.000 documents, while the TSP
implementation in [9] needs 2.17 GB of main memory and 23 hours to process a
collection of 132.000 documents.

On the other hand, the work in [10] proposes a different approach by assign-

ing the document identifiers on the fly during the inversion of the text collec-
tion. For this approach a transactional representation form of the documents
is used, which stores for each document di a set of 4-byte integers representing
the MD5 Message-Digest [8] of each term appearing in di. Using this representa-
tion, two families of algorithms were developed to compute an efficient document
assignment: the top-down assignment and the bottom-up assignment. The top-
down assignment schemes start with the whole collection and recursively split it
into sub-collections, inserting similar documents into the same sub-collections.
After this phase, the algorithm merges the sub-collections obtaining a single
and ordered group of documents, which is used to compute the assigning or-
der. Bottom-up schemes start from a set of documents, extracting disjoint se-
quences containing similar documents. Each sequence is ordered, and the final
assignment is computed by considering an arbitrary order between sequences.

Considering a document collection in transactional form D̃ = {d̃1, d̃2, . . . , d̃N},
the space storage needed by the top-down methods in the asymptotic analysis is

III

O(|D̃| log(|D̃|)) and for the bottom-up approaches is O(|D̃|) which gives super-
lineal and lineal order respectively. However, the total space is also dependant
on a factor |S̄|, that stands for the average size of documents. For the collec-
tion used in the experiments reported in [10], the Google Programming Contest
collection, |S̄| has a value of 256 terms.

In this paper we propose a way to make the reassignment methods oper-
ational by arranging the input data into a lower dimensionality space, which
reflects the major association patterns between documents and terms. Further-
more, the space storage needed can be parameterized so this technique has good
behaviour also in collections where the average document size is high. To achieve
this dimensionality reduction, we used the Singular Value Decomposition (SVD)
technique. This way we built a representation of the document similarity ma-
trix (the graph G). Instead of working with the original d× d similarity matrix
(where d is the number of documents in the collection), we use a d× k matrix,
where k is a chosen constant. Using the reduced dimension we can precalculate
the amount of memory used by the reassignment algorithm. In addition it is pos-
sible to lower/upper the memory bounds, finding a compromise between space
usage and performance. We tested our implementation with the TSP Greedy-NN
algorithm and give evidence of the feasibility of the technique in some TREC col-
lections. We also implemented and tested a more time efficient version, dividing
the original problem in a number of similar sub-problems.

The rest of the paper is organised as follows. Section 2 describes the TSP
algorithm. Section 3 shows the way of reducing the document similarity ma-
trix dimensionality by computing its singular value decomposition and how we
applied this result to the reassignment problem. Section 4 describes the experi-
mental conditions and the tests results of our approach. In Section 5 we discuss
the leading lines in further research derived from this work. Section 6 presents
some conclusions from the experimental results.

2 The TSP approach to the document reassignment

problem

Given that we will illustrate the use of the dimensionality reduction technique
for document reassignment with the TSP algorithm, we briefly review the work
in [9].

2.1 The document reassignment problem as a TSP

An inverted file can be seen as a posting list set. Each list contains the infor-
mation for a single term appearing in the document collection, expressed as
a sequence of encoded d-gaps Gt = {g1, . . . , gft

}. The document reassignment
problem tries to find the bijective function f that

– maps each document identifier into a new identifier in the range [1 . . . d]
– minimizes the average document gap.

IV

Similarity between documents is defined as the number of common terms,
and maintained in a similarity matrix Sim, where Simij represents the similarity
between the document i and the document j.

Shieh et al. [9] proposed a gap-reduction strategy based in the transformation
of the problem into a Travelling Salesman Problem (TSP). The TSP is stated
as follows: given a weighted graph G = (V, E) where e(vi, vj) is the weight for
the edge from vi to vj , find a minimal path P = {v1, v2, . . . , vn} containing
all the vertexes in V , such as if P ′ = {v′1, v

′

2, . . . , v
′

n} is another path in G,∑n
i=2 e(vi, vi−1) ≤

∑n
i=2 e(v′i, v

′

i−1).
Considering Sim an weighted adjacency matrix, it is possible to build a Doc-

ument Similarity Graph (DSG) expressing the similarities between documents.
This graph can be traversed by a gap-reduction strategy based on the similarity
factor between documents. The idea is assigning close document identifiers to
similar documents as this will likely reduce the d-gaps in common terms post-
ings. This traversing problem can be transformed into a TSP just by considering
the complement of the similarity as the weight in the TSP. The solution found by
the TSP is the path that minimizes the sum of the distances between documents,
therefore the algorithm is an appropriate strategy to the document reassignment
problem.

2.2 Heuristic approximations

The TSP is an NP -complete problem, so some polynomial-time heuristic approx-
imations were modified for the reassignment problem. These algorithms were
classified as greedy algorithms and spanning tree algorithms. We tested our low-
dimension approximation with the Greedy-NN algorithm.

Greedy-NN algorithm
1: Input:

The Graph G
The Vertex set V
The weighted Edges set E

2: Output:
A global path P maximizing the similarity between vertexes

3: Select the edge e(vi, vj) ∈ E with the largest weight;
4: Add vi and vj to P ;
5: vlast ← vj ;
6: while (|P | 6= |V |) do
7: Choose vk ∈ V and vk /∈ P such that e(vlast, vk) is maximal;
8: Add vk to P ;
9: vlast ← vk;
10: end while
11: return P ;

The Greedy-NN (Nearest Neighbor) expands the path by adding the closest ver-
tex to the tail of the current path. In each iteration the algorithm adds a new

V

vertex (document) chosen that its similarity is the largest with the last vertex
in the path. This approximation is high time consuming. Each vertex is inserted
only once in the path P and at iteration i the algorithm does d − i compar-
isons (the remaining documents) involving the term size t of both documents.
Therefore the overall complexity is O(d2t).

2.3 Implementation considerations

The TSP approximation for the identifier reassignment problem was evaluated
in [9]. The solution demonstrated good improvements in the compression ratio,
although it presented some design challenges and poor performance time and
space results.

First, this approach requires a big amount of space. The similarity matrix is
symmetric (Simij = Simji) and the elements in the diagonal are not relevant,

so it is easy to prove that we need to store d(d−1)
2 similarity pointers (O(|d2|)).

Even with a suitable coding schema this amount can become unmanageable, so a
matrix partitioning technique has to be developed. Second, building this matrix
can be very expensive if it does not fit into memory, as each update has to access
the disk twice, involving big delays.

Experimental results were presented for two medium sized collections (FIBS
and LATimes in TREC disk 5), to prove the effectiveness of this mechanism.
These tests are summarized in table 1.

Table 1. Statistics of the pure TSP approach on two TREC collections reported by
Shieh et al. [9]

Collection FIBS LATimes

Size of the Collection 470 MB 475 MB
Number of distinct terms 209,782 167,805
Number of distinct documents 130,471 131,896
Temporal Cost 19.63 h 23.28h
Space Cost 2.10 GB 2.17 GB

It is important to remark that the work in [9] provides bar graphs that show
an approximated gain of one bit per gap when reassigning with the Greedy-NN
for delta and gamma coding. The temporal costs include the process of building
the similarity matrix, greeding and recompressing the inverted file. However,
the results show that this full TSP approach may be unacceptable for very large
collections, as it takes 23 hours and 2.17 GB to process a 475 MB collection.

VI

3 Document reassignment by dimensionality reduction

Approaches proposed so far aimed at reducing the d-gaps using different repre-
sentations of the full inverted file. Shieh et al. [9] and Blandford and Blelloch [2]
built a full document similarity graph and traversed it by different algorithms
such as the TSP and recursive splitting. Silvestri et al. [10] used an on the

fly assignment technique with temporal and spacial complexity linear or super-
linear on the number of documents, but also dependant on the average document
length.

We propose a new approach based on dimensionality reduction in which
reordering algorithms can operate efficiently. We aim at:

– allowing a controlled and efficient memory usage for such algorithms
– giving consistent results through different document and collection sizes and

heuristics
– not being outperformed by the original working framework.

We tested our approach with the TSP reassignment algorithm described in sec-
tion 2 with good results (section 4). In this section, the application of SVD to
the document identifier reassignment problem is presented.

3.1 Single Value Decomposition

Singular Value Decomposition (SVD) is a well known mathematical technique
used in a wide variety of fields. It is used to decompose an arbitrary rectangular
matrix into three matrices containing singular vectors and singular values. This
matrices show a breakdown of the original relationships into linearly independent
factors. The SVD technique is used as the mathematical base of the Latent
Semantic Indexing (LSI) IR model [3].

Analytically, we start with X , a t× d matrix of terms and documents. Then,
applying the SVD X is decomposed into three matrices:

X = T0S0D
′

0 (2)

T0 and D0 have orthonormal columns, and S0 is diagonal and, by convention,
sii ≥ 0 and sii ≥ sjj∀i ≥ j. T0 is a t × m matrix, S0 is m × m and D′

0 is
m × d where m is the rank of X . However it is possible to obtain a k-ranked
approximation of the X original matrix by keeping the k largest values in S0 and
setting the remaining ones to zero obtaining the matrix S with k×k dimensions.
As S is a diagonal matrix with k non-zero values, the corresponding columns of
T0 and D′

0 can be deleted to obtain T , sized t×k, and D′, sized k×d, respectively.
This way we can obtain X̂ which is a reduced rank k approximation of X :

X ≈ X̂ = TSD′ (3)

X̂ is the closest rank k approximation of X in terms of the Euclidean or
Frobenious norms, i.e. the matrix which minimizes ||X − X̂||2N where || · ||2N is
the involved norm.

VII

The i-th row of DS gives the representation of the document i in the reduced
k-space and the similarity matrix Θ(X) is k-approximated by Θ(X̂):

Θ(X) ≈ Θ(X̂) = X̂ ′X̂ = DS2D′, (4)

where X̂ ′ is the transposed matrix of X̂ and D′ is the transposed of D.
If Dd×k = {zij} and {si} is the set of diagonal elements of S, it is easy to

prove that

Θ(X̂)ij =
k−1∑

γ=0

ziγzjγs2
γ (5)

Therefore it is possible to calculate Θ(X̂)ij only storing the set of k elements
{si} and the d × k matrix D instead of computing and writing the full rank
matrix Θ(X)d×d.

The output of the SVD of X , X̂ has been used in the computation of Θ(X̂) =
X̂ ′ · X̂. The same result could be obtained by calculating the SVD of Θ(X) =
X ′ ·X due to the uniqueness property of SVD [1]. Since SVD computes the best
rank k approximation, it is proved that the best rank k approximation of Θ(X)
is obtained starting from X and without the need of computing Θ(X).

3.2 SVD in the document reassignment problem

Document
Collection

IF builder

Inverted
File

SVD DS matrix Reassignment
(TSP)

Recompressing

Stats &
Comparison

Fig. 1. Block diagram for the indexing and reassignment system

Figure 1 describes the system built for testing this approach. The inverted file
builder mechanism outputs the X data matrix to a SVD module. This module
produces the matrices Dd×k and Sk×k that allow the computation of Θ(X̂),
therefore there is no longer needed to store the similarity matrix Θ(X)d×d. The
reassignment module uses the SVD output matrix to compute the TSP approach
described in section 2.2. As k is a constant factor, we can conclude that the
space usage of the algorithm now is O(d), i.e., linear in collection size and not
dependant on document size. The output of the TSP reassignment module is
used by an inverted file recoding program which exploits the new locality of the
documents to enhance the d-gaps compression. Finally, some statical information

VIII

is taken to make suitable comparisons between compression ratios achieved by
the original encoding and those obtained after reassignment.

The main difference in this model is that computing the similarity between
two documents di and dj involves k operations (

∑k−1
γ=0(DS)iγ(DS)jγ) and storing

k real pointers per document, making a total of k × d for the full matrix. This
representation can fit smoothly into memory by adjusting the parameter k and
uses considerably less space than the original d × d matrix. Even more, the
space usage can be precalculated so suitable scalable algorithms can be easily
developed. Considering 32 bits per float (real number), our implementation uses
4× k × d bytes of main memory.

One point to consider is the heuristic for choosing the starting node on the
Greedy-NN algorithm which was also employed to solve the TSP. The algorithm
(section 2.2) first chooses the edge (vi, vj) that has the maximum value. This
involves the computation of the similarity for every document pair (di, dj). In our
approach selecting the first node this way takes more operations than the rest of
the algorithm itself. Hence, we propose a less time-expensive heuristic, consisting
in calculating, after dimensionality reduction, each (di, di) self-similarity and
choosing the document (node) with the largest value.

4 Experiments and results

We performed several experiments for testing the low-dimension approach on
the two TREC document collections described in table 1. These collections were
not preprocessed, so indexing and reordering did include stop words and terms
were not stemmed. The machine used was a 2.5 GHz AMD with 40 GB ATA
disk and 1GB of main memory, running Linux OS. The original index file was
built with MG4J [6] from the University of Milan, a free Java implementation
of the indexing and compression techniques described in [12] and originally im-
plemented in the MG software [5]. For the SVD module we used the SVDLIBC
[11], a C library based on the SVDPACKC library. We wrote the reassignment,
recoding and statistical software in Java. It should be pointed that we needed
to modify the MG4J software to output data directly to the SVDLIBC module.
Also some modifications were made that allowed us to encode document pointers
with interpolative coding.

The first experiment assessed the performance of the system with the Greedy-
NN algorithm, in terms of average bits per compressed document pointer (d-
gap). The document collections were inverted, the IF was inputted to the SVD
module and the program computed the Greedy-NN in the reduced dimension
for the reassignment task. After reordering the collection, the inverted file was
recompressed. The software measured the average bits per gap in the inverted
file, before and after reordering and recompressing, which reflects the amount of
compression gained by reordering the document collection. We ran several tests
varying the following parameters:

– the parameter k which reflects the desired dimensionality reduction

IX

– coding schemes for document pointers: delta coding, gamma coding or in-
terpolative coding [7][12].

Best results are obtained considering X as a binary matrix in the reassign-
ment process. The elements of X represent the presence or absence of a term in
a given document. The recompressing module acts over the original index file
which contains in-document term frequency and frequency of the term in the col-
lection values. Results are given in bits per document gap because it is a measure
independent of these indexing options. As stated in 3.2, the memory usage leads
to 4× d × k bytes, concretely 0.497707× k MB for the FBIS and 0.503143× k
MB for the LATimes (for k = 200 less than 101 MB in both collections).

Table 2. LATimes bits per gap results

k

Random Original 200 100 50 20 10 5 1

Gamma 8.15 7.77 6.71 6.75 6.79 6.89 6.99 7.13 7.44
Delta 7.65 7.25 6.29 6.36 6.39 6.48 6.57 6.73 7.02

Interpolative 6.08 5.88 5.25 5.26 5.28 5.29 5.33 5.44 5.57

Table 3. FIBS bits per gap results

k

Random Original 200 100 50 20 10 5 1

Gamma 7.84 6.74 6.20 6.24 6.31 6.46 6.63 6.81 7.07
Delta 7.35 6.35 5.80 5.86 5.92 6.07 6.23 6.42 6.69

Interpolative 5.83 5.25 4.98 4.99 5.01 5.06 5.17 5.21 5.33

Tables 2 and 3 show the results for the different coding schemes. Columns
refer to bits per document gap results for: random reassignment, original doc-
ument identifiers and reassignment after reducing the dimensionality with dif-
ferent k values. Assigning values to k similar to those used in retrieval [4], the
low-dimension algorithm operates with gains that give good benefits in bits per
gap. As expected, the method behaves better as the k value increases. Also, the
figures seem to have an asymptotic behaviour. With k=200, for the LATimes
collection (FIBS collection) we achieved a 13.65% (8.02%) gain in compression
ratio respect to the original document identifier order with the gamma encoding,
13.2%(8.7%) for the delta encoding, and 11.32% (5.15%) for the interpolative
coding. These values are 17.67% (21.92%), 17.8%(21.1%) and 13.66% (14.58%)
repectively for both collections and the three encoding schemes, respect to a
random reassignment. Computing the Greedy-NN TSP with the reduced space
approximation Θ(X̂) gives worthy compression ratios in every case. The gains in
the FBIS collection are worse than the ones in the LATimes, although starting

X

from a randomized order the result is inverted. This is the expected behaviour if
the FBIS collection exhibits a better original document order. One point to re-
mark is that even in tha case of interpolative coding, where the starting point is
much better, the method is able to produce gains in bit per document gap. Our
tests did not include the computation of the full dimension solution as presented
in [9], because it requires the development of matrix partition techniques and
partial reading/writing, which is the task that we want to avoid. Shie et al [9]
provided bar graph results for gamma and delta encoding in the LATimes and
FBIS collections. However, exact compression values depends on the indexing
software and particular indexing options. This information is not explicitly pro-
vided, thus it is not possible to make exact comparisons between their published
full-dimension results and the k-dimension solutions.

Time measurement is divided in three parts: inverted file construction, SVD
running time and reordering and recompressing time. As the system was built
upon different modules, the different software pieces employ a lot of temporal
I/O transfer time, which also is measured, so results are given in elapsed time

in tables 4 and 5. Inversion takes 5m 20s for the FIBS collection and 6m 03s
for the LATimes collection and it is not shown in the tables. Although the SVD
software performs well for the collections and k values used, the TSP greedy
algorithm running time still rises to high values. Anyway, we conclude that it is
possible to achieve good compression ratios with reasonable time performance
with our technique.

Table 4. FIBS running times

k

200 100 50 20 10 5 1

SVD 34m 58s 15m 01s 5m 42s 3m 18s 2m 09s 1m 33s 58s

Reorder and recompress 8h 30m 4h 20m 1h 48m 58m 20s 31m 13s 17m 55s 7m 5s

Table 5. LATimes running times

k

200 100 50 20 10 5 1

SVD 42m 31s 20m 37s 11m 25s 4m 5s 2m 33s 1m 55s 1m 09s

Reorder and recompress 8h 33m 4h 24m 2h 15m 58m 18s 32m 05s 18m 31s 7m 30s

Another advantage of the approach is that it is possible to propose more
efficient reordering algorithms in time performance. We developed a simple new
algorithm based on the division of the original problem in c subproblems, here-
inafter c-GreedyNN. It operates as follows: first, it divides the DS matrix (which
represents the document similarities in the k space) in c blocks of [d/c] docu-
ments each. Then, each block is reordered by running the greedy algorithm.

XI

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

T
im

e
(in

 s
ec

on
ds

)

c, number of blocks

"LATimes"
"FIBS"

Fig. 2. Running times for the c-GreedyNN with the LATimes and FIBS collections
under k=200 and delta coding

Finally, a block order is decided by running another greedy with c documents
each one selected from different blocks. For a simpler explanation we consider d
an exact multiple of c. Analytically, the Greedy-NN after dimensionality reduc-

tion does d comparisons to select the first document, and d(d−1)
2 for reordering,

resulting in d
2 (d + 1) comparisons involving k multiplications each. The new ap-

proach chooses c block-representatives and then performs c greedy runs with d/c

documents, resulting in d + c(
d

c
(d

c
−1)

2) = d
2 (d

c
+ 1) comparisons, so the overall

number of operations is reduced in a 1/c factor. Experimental results with dif-
ferent values of the number of blocks c are presented in figure 2 and tables 6
and 7. Results are provided for the LATimes and FIBS collections, k = 200 and
delta coding. Tables 6 and 7 also show that the compression factor increases as
the number of blocks decreases, with a goal value of 6.29 (5.80) for the LATimes
(FIBS) collection, which is the value of considering the matrix as one whole
block.

Running times are as expected from the analytical form and comparable as
the ones presented in [10], and they give acceptable compression values. The
method enhances the original compression ratio 7.25 (6.35) and the randomly
ordered collection ratio 7.65 (7.35) with a minimum time usage, which can also
be parametrized by selecting the c and k values.

XII

Table 6. LATimes bits per gap and running time (k=200 and delta coding)

c

70 100 150 200 300 400 500 1000 2000

Bits per gap 6.68 6.72 6.77 6.81 6.87 6.92 6.95 7.02 7.09

c-GreedyNN & recompress 18m8s 9m50s 5m8s 3m21s 1m57s 1m25s 1m7s 42s 47s

Table 7. FIBS bits per gap and running time (k=200 and delta coding)

c

70 100 150 200 300 400 500 1000 2000

Bits per gap 5.98 6.00 6.02 6.05 6.09 6.12 6.14 6.22 6.3

c-GreedyNN & recompress 17m37s 9m35s 4m59s 3m15s 1m53s 1m21s 1m5s 40s 45s

5 Future work

In a first experimental line, immediate research involves three task:

– experimentation with different heuristics for selecting the first document in
the Greedy-NN algorithm

– experimentation with web collections
– implementation of the solutions presented in [10] using the low-dimension

scaling presented here and analysis of the behavior in collections with more
than 600 terms per document in average, such as the LATimes or FIBS.

Another future working line is the following: as long as the TSP in the reduced
dimension space performs well, we may pursue a formal characterization to the
distance of the optimal solution reached, with this sort of heuristic solutions. On
the other hand, dividing the TSP graph into c blocks allows effective reordering
without compromising the index reduction. So, it is necessary to study different
block-reordering strategies.

6 Conclusions

We presented a smart approximation for the document identifier reassignment
problem by using a previous dimensionality reduction with SVD. Results pre-
sented provide time-efficient methods that yields good inverted file reduction
gains. Concretely, we implemented the TSP Greedy-NN approach in the reduced
dimension space and one variant, that applies this solution to sub-collections of
the original data, reordering them next. It is possible to emphasize that the
obtained data allows the exposition of future lines of work, as the design of algo-
rithms and heuristics that could provide a better characterization of the result
respect to the optimum compressed inverted file.

Acknowledgements:
The work reported here was co-founded by the ”Secretaŕıa de Estado de Uni-
versidades e Investigación” and FEDER funds under research projects TIC2002-
00947 and Xunta de Galicia under project PGIDT03PXIC10501PN.

XIII

References

1. B. T. Bartell, G. W. Cottrel and R. K. Belew. Latent Semantic Indexing is an
optimal special case of Multidimensional Scaling. In Proceeding of the 15th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 161-167, 1992.

2. D. Blandford and G.Blelloch. Index compression through document reordering. In
Proceedings of the IEEE Data Compression Conference (DCC’02), pp. 342-351,
2002.

3. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman.
Indexing by Latent Semantic Analysis. In Journal of the American Society for In-
formation Science, 41(6):391-407, 1990.

4. S. T. Dumais. Latent Semantic Indexing (LSI): TREC-3 Report. In NIST Special
Publication 500-225: Proceedings of the Third Text REtrieval Conference (TREC-3),
November 1994.

5. http://www.cs.mu.oz.au/mg/ Managing Gigabytes.
6. http://mg4j.dsi.unimi.it/ MG4J (Managing Gigabytes for Java).
7. A. Moffat, A. Turpin. Compression and Coding Algorithms, Kluwer 2002.
8. R. Rivest, RFC 1321: The md5 algorithm.
9. W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann and C.-P. Chung. Inverted file compres-

sion through document identifier reassignment. Information Processing and Man-
agement, 39(1):117-131, January 2003.

10. F. Silvestri, S. Orlando and R. Perego. Assigning identifiers to documents to en-
hance the clustering property of fulltext indexes. In Proceeding of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 305-312, 2004.

11. http://tedlab.mit.edu/~dr/SVDLIBC/ SVDLIBC.
12. I. H. Witten, A. Moffat and T. C. Bell. Managing Gigabytes - Compressing and

Indexing Documents and Images, 2nd edition. Morgan Kaufmann Publishing, San
Francisco, 1999.

