
Finding the Best Parameter Setting

Particle Swarm Optimisation

Javier Parapar, Maŕıa M. Vidal, and José Santos

Information Retrieval Lab
Computer Science Department
University of A Coruña, Spain

{javierparapar,irlab,santos}@udc.es

Abstract. Information Retrieval techniques traditionally depend on the
setting of one or more parameters. Depending on the problem and the
techniques the number of parameters can be one, two or even dozens
of them. One crucial problem in Information Retrieval research is to
achieve a good parameter setting of its methods. The tuning process,
when dealing with several parameters, is a time consuming and criti-
cal step. In this paper we introduce the use of Particle Swarm Optimi-
sation for the automatic tuning process of the parameters of Informa-
tion Retrieval methods. We compare our proposal with the Line Search
method, previously adopted in Information Retrieval. The comparison
shows that our approach is faster and achieves better results than Line
Search. Furthermore, Particle Swarm Optimisation algorithms are suit-
able for parallelisation, improving the algorithm behaviour in terms of
time convergence.

1 Introduction

There are very few retrieval parameter free methods. Most of state-of-the-art
retrieval methods depend on one or more parameters which have to be set to
some values. A good parameter setting is generally a crucial factor in the perfor-
mance of the algorithms. The traditional methodology in Information Retrieval
(IR) implies the optimisation of the parameter values in a training sub-set for a
certain evaluation metric, and then testing that set of parameter values in the
test scenario. When dealing with one or two parameters, the exhaustive search
for the best parameter values is expensive but affordable; however, the compu-
tational cost of the optimisation process grows exponentially with the number of
parameters. Models with very few free parameters have limited effectiveness in
tasks where many sources of evidence exist like web search. Because of this, the
number of parameters in the current retrieval methods is increasing, difficulting
the process of searching for a good parameter setting.

This problem has been previously addressed in the literature. In [13], Taylor
et al. studied this issue for retrieval methods containing up to 375 parameters.
They agreed that the lack of efficient algorithms for parameter optimisation is
one of the bottlenecks of current IR research. In this paper we will directly

address this particular problem proposing the use of the global search method
provided by Particle Swarm Optimisation, as an efficient and effective method for
parameter optimisation for retrieval models. Particle Swarm Optimisation (PSO)
[8] is a population based stochastic optimisation technique, inspired by social
behaviour of bird flocking or fish schooling, and included in swarm intelligence
techniques [9]. PSO has been previously used for optimisation problems in other
areas. We want to evaluate in this paper how this technique can be applied in
the context of parameter optimisation in several retrieval scenarios, where the
analytic form of the retrieval functions is not necessarily known.

The remaining of the paper is as follows: Section 2 presents some related work
in the parameter optimisation task, in Section 3 we introduce our proposal and
the greedy search technique traditionally used as baseline, called Line Search;
Section 4 presents the results of the different experiments addressed and finally
conclusions are reported in Section 5.

2 Related Work

We can classify existing methods based on the necessary knowledge of the re-
trieval functions: there exist blind methods that only depend on the evaluation
metric to optimize [11] or methods that take advantage of knowing the an-
alytic form of the retrieval models or functions [13, 10]. The former methods
usually evaluate the objective function under different parameter settings and
it is normally an expensive procedure. The cost of such process can be amelio-
rated by applying some heuristics, allowing a non-exhaustive exploration of the
dimensions [2, 15]. Although these methods are expensive, they do not have any
application restriction and no extra information is needed in order to be success-
fully applied. On the opposite, the methods that take advantage of the internal
retrieval methods details have the advantage that the calculation of the overall
ranking (that is the most expensive operation) is not mandatory. Knowing the
analytical form of the retrieval methods allows to apply algorithms such as the
gradient descent [3]. As explained in [13], these methods, although theoretically
much faster, can suffer of a mismatch between the objective function used and
the ranking base metric that is finally evaluated, resulting in poor performance.
In this paper, we will be focus on the blind methods, that are more broadly
usable, considering how to improve their efficiency.

3 Optimisation Methods

As explained above, this paper proposes a new approach to parameter optimi-
sation for Information Retrieval problems. This proposal has to be compared
with standard existing approaches. As we are presenting a method that does not
require neither takes advantage of the analytical form of the retrieval methods,
we have chosen Line Search as baseline [11], as in [13]. Hence, in this Section
we briefly present the basis of Line Search and our proposal: Particle Swarm
Optimisation.

3.1 Line Search

Line Search is a general class of optimisation methods which first find a descent
direction along which the objective function will be reduced and then computes
a step size that decides how far the parameter values should move along that
direction [11]. Here, we used the Line Search procedure followed by Taylor et al.
[13], where the authors conclude that Line Search and Gradient Descent (which
takes advantage of the knowledge about the analytical form of the retrieval
function) perform similarly in terms of effectiveness.

In Line Search, from an initial random point in the parameter space, a search
in each dimension is performed, moving each time the parameter value in one
dimension while fixing the values of the other dimensions. The procedure is
summarized in the pseudo-code of Algorithm 1. For each dimension, N sample
points are selected with equal inter-distance in its axis and around the initial
parameter value (taking into account the limits of the parameter space in the
sampling). In order to assess the optimality of each point a fitness value is
calculated for each of these sample points, storing the point with the best fitness.
The fitness function will be dependent on the problem and will measure the
quality of a parameter setting for the given task. This basic procedure is repeated
for each of the dimensions or parameters (Step 1 of the algorithm).

Algorithm 1 Line Search Algorithm.
1: N=Number of sample points in each dimension, D=number of dimensions, I=Sampling interval.
2: Select an initial random point.
3: Step 1 of the algorithm (for dimension d)
4: min← max(0, initial position[d]− I

2); (0 is the parameter lower limit)

5: max← min(1, initial position[d] + I
2); (1 is the parameter upper limit)

6: increment← (max−min)
N ;

7: best position[d]← min; (Best initial position)
8: for n← 1 to N do
9: p← min+ increment ∗ n;
10: new position[d]← p;
11: if (fitness(new position[d]) < fitness(best position[d]))) then
12: best position[d]← new position[d];
13: end if
14: end for
15: return best position[d]
16: Step 2 of the algorithm
17: for d← 1 to D do
18: max dim[d]← max(initial point[d], best position[d]);
19: min dim[d]← min(initial point[d], best position[d]);

20: increment[d]← (max dim[d]−min dim[d])
N ;

21: end for
22: best position← initial position
23: for n← 1 to N do
24: for d← 1 to D do
25: new position[d]← min dim[d] + increment[d] ∗ n;
26: end for
27: if (fitness(new position) < fitness(best position)) then
28: best position← new position
29: end if
30: end for
31: return best position

In a second step of the algorithm, it is defined a line between the original
point and the new computed point. This new point is built by taking for each
dimension the parameter value with the best fitness in the first step. This line
represents the “promising” direction. Again, the same procedure is repeated,
selecting a number of equidistant points (samples) between the two extremes of
the promising segment. The point with the best fitness is selected, and if this new
point is better in terms of fitness than the original one, being the new starting
point in the next iteration of the algorithm.

So, an “iteration” is defined as one cycle through all parameters, plus the final
search along the promising direction. Thus, if there are P parameters, then the
procedure performs P + 1 line search operations per iteration. Finally, the scale
over which the samples are taken is reduced by a factor of 0.85 at the beginning of
each new iteration, allowing higher exploration in the first iterations and higher
exploitation in the final iterations.

3.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [8] is a population based stochastic optimi-
sation technique, inspired by social behaviour of bird flocking or fish schooling,
and included in swarm intelligence techniques [9]. The potential solutions, called
“particles”, fly through the problem space following the current optimum par-
ticles. The movements of the particles are guided by the best known position
of each particle in the search space as well as the entire swarm’s best known
position. The process is repeated until a satisfactory solution is discovered.

The basic PSO algorithm is summarized in Algorithm 2. Each particle i
stores its current position xti, velocity vti and its best known position pbti at time
t. Moreover, the algorithm considers the best known position of the entire swarm
(gbt).

Algorithm 2 PSO basic Algorithm.

1: Initialise all particles i with random positions x0
i in search space as well as random velocities v0i .

2: Initialise the particle’s best known position (pb0i) to its initial position.

3: Calculate the initial swarm’s best known position gb0.
4: repeat
5: for all Particle i in the swarm do
6: Pick random numbers: rp, rg ε (0, 1)

7: Update the particle’s velocity: vt+1
i

= a ∗ vti + b ∗ rp ∗ (pbti − x
t
i) + c ∗ rg ∗ (gbt − xt

i)

8: Compute the particle’s new position: xt+1
i

= xt
i + vt+1

i

9: if fitness(xt+1
i

) < fitness(pbti)) then

10: Update the particle’s best known position: pbt+1
i

= xt+1
i

11: end if
12: if fitness(pbt+1

i
) < fitness(gbt)) then

13: Update the swarm’s best known position: gbt+1 = pbt+1
i

14: end if
15: end for
16: until termination criterion is met
17: return The best known position: gb.

In the algorithm, a, b and c are constants that separately control the impor-
tance of the three directions which determine the next velocity and position of
the particle. The three components are usually referred as “inertia” (vti), “per-
sonal influence” (pbti − xti) and “social influence” (gbt − xti). By updating the
velocities with some element of randomness it is enabled the exploration by the
particles of novel areas of the search space, avoiding stagnation in local minima.
This is incorporated by means of the random values, in the (0,1) interval, of the
terms rp and rg, which imply a region of uncertainty around both positions pbti
and gbt. Recommended values for the parameters a, b and c were used [4].

One of the reasons PSO is an interesting method in many optimisation or
search problems, in comparison with the simulated evolution methods largely
used, like classic genetic algorithms, is the reduced number of parameters that
are needed to define their implementations. In a standard genetic algorithm it is
difficult to control the balance between exploration and exploitation. Even with
low selective pressures there is a high probability that the population converges
to a local optimum in few generations. Therefore, there is no guaranty that dif-
ferent areas that could be good in the space are simultaneously searched. The
niche and speciation techniques based on “fitness sharing” [5] or the distribution
of the population in races or islands that evolve independently and simultane-
ously, which periodically interchange their best genetic material, are alternatives
to minimize that problem. On the contrary, PSO intrinsically explores the search
space with a concentration of the population around the promising areas found.

4 Evaluation

In order to properly evaluate the feasibility of our proposal and comparing it
with standard techniques currently used in IR, we performed three different ex-
periments. The three experiments presented here will share the same evaluation
metric: Mean Reciprocal Rank. Next, we introduce the evaluation metric, the
TREC [14] tasks used in the evaluation together with the experiments and their
commented results. At the end of this section we also show the advantages in
terms of parallelisation of our proposal, so an additional experiment is presented
in this regard.

Known item search task is a retrieval task where the objective is to retrieve,
from the whole collection, a particular document for a given query. Mean Re-
ciprocal Rank (MRR) is a commonly used evaluation metric for the known item
search task. The MRR is the average of the reciprocal rank of each processed
query. The reciprocal rank for a particular query will be higher the higher the
desired document for that query is in the ranking list. Analytically, the MRR is
computed as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where Q is the set of queries and ranki is the position in the ranking of the
unique relevant document for the query i.

In our evaluation we will use, for both optimisation techniques (PSO and LS),
this particular evaluation metric as quality measure for assessing the goodness of
the parameter settings. The TREC 5 Confusion Track [7] was designed in order
to evaluate the effectiveness of the retrieval systems when dealing with degraded
information (output of OCR processes). In this track, three different versions
of the same collection (55,533 documents from the 1994 Federal Register) were
used by the participants. Each version corresponds with a level of degradation:
0% the original collection, 5% and 20% the other two. The designed task followed
the know item search paradigm, with a set of 49 queries with only one relevant
document assessed. MRR was used as evaluation metric for the participant runs.
Particularly, the participating teams produced 5 different runs for the original
collection, 8 different runs for 5% degraded collection and 7 different runs for
the 20% degraded collection.

The TREC 2001 Web Track [6] was designed in that time to provide a ref-
erence for evaluation of retrieval methods in large web tasks. Particularly, the
track participants used the well known WT10g corpus composed of 1,692,096
web pages and with an approximate size of 10GB. In this track, two different
tasks were proposed: the traditional topic relevance task and the homepage find-
ing task. Home page finding task is another example of known item search where
the objective is to locate in the collection the entry page of a website. In order
to do this, 145 homepage finding queries were distributed to the participants.
Again, MRR was used as primary evaluation metric. In the homepage finding
task the teams provided with 43 different runs.

4.1 TREC 5 Confusion Track, Combining Evidences Task

Recently, a method [12] which outperformed the best results of the TREC Confu-
sion Track was presented. In [12], the authors introduced a method that produces
five different tokenisations of the query and the documents in order to amelio-
rate the term matching problem that occurs in the degraded collections. The
five different tokenisations were words, 5-grams, 4-grams, 3-grams and 2-grams
of characters. In order to combine the five different evidences weights are as-
signed in the combination to adjust the importance of each tokenisation. In [12]
the authors used a traditional tuning of the parameters achieving good results.
We believe that this is a good scenario to test our approach and compare with
the traditional ones.

We compared the proposed PSO method against the baseline method Line
Search. In every experiment for PSO we used 90 particles and 100 generations,
meanwhile for LS we used 15 samples per dimension and 100 iterations or epochs.
This way, the number of computations of the overall ranking for both approaches
is similar (Remember that LS needs (5 + 1)× 15 fitness calculations, being 5 the
number of parameters). Given the stochastic nature of both methods all the
results are an average of five independent runs. Results are presented in Table

1. For both methods the range of permitted values for every weight parameter
was limited between 0 and 11.

Table 1. Mean Reciprocal Rank (MRR) for the n-gram based method presented in
[12] for retrieval over degraded information on the Confusion Track Collections, when
applying the best parameters reported in [12], when tuning the parameters with Particle
Swarm Optimisation (PSO) and when tuning with Line Search (LS). Between brackets
is the number of parameters to optimize. Best and worst values for every collection
obtained by the TREC Confusion Track participants are shown as reference.

Collection Method MRR

Original (5)
PSO 0.8075
LS 0.7992
[12] 0.7686
Best TREC 0.7353
Worst TREC 0.3039

Degraded 5% (5)
PSO 0.7306
LS 0.7255
[12] 0.7276
Best TREC 0.5737
Worst TREC 0.1900

Degraded 20% (5)
PSO 0.4712
LS 0.4670
[12] 0.4708
Best TREC 0.4978
Worst TREC 0.1174

The first comment about the results is that, in terms of effectiveness, PSO
achieved for the three collections the best results, i.e., PSO achieved the pa-
rameter stetting with which the method achieve the best performance. Another
important point is that LS was unable to obtain better results than the ones re-
ported in [12] with the traditional tuning methodology for two of the collections.
Anyway, in this task, the differences in terms of effectiveness between LS and
PSO are negligible. Nevertheless, when checking the efficiency we have to remark
that the processing time needed for each method to achieve the best parameter
setting differs significantly. We will thoroughly analyse this aspect later in the
paper.

4.2 TREC Confusion Track, Metasearch Task

After presenting the task of adjusting the parameters of a retrieval model which
combines different evidences we introduce another different task. In order to

1 In both methods, each set of five weight parameters, is normalised in order to have
a sum of 1. This is done before the fitness calculation. So it is not necessary to
incorporate this restriction in the optimisation problem.

reduce the description of the experimental settings we decided to use the Con-
fusion Track collection to present the metasearch task. Given the ranked lists of
documents returned by multiple search engines or retrieval models, metasearch
[1] combines these lists in a way which optimises the performance of the com-
bination. One traditional way of metasearch is the Linear Combination Model,
where the relevance scores given to each document d by each model reli(d) are
combined so as to obtain an overall relevance score rel(d):

rel(d) =
∑
i

αireli(d)

We tested the effectiveness of the optimisation methods to adjust the weights
αi, when combining the different runs provided by the TREC 5 Confusion Track
participants. The results of such experiments are reported in Table 2.

Table 2. Mean Reciprocal Rank (MRR) for the metasearch task with the TREC-5
Confusion Track runs, when tuning the weight parameters of the linear combination
with Particle Swarm Optimisation (PSO) and with Line Search (LS). Between brackets
is the number of parameters to optimise. For every collection PSO achieves statistical
significant improvements according to Wilcoxon test with p − value = 0.01. Best and
worst values for every collection by the TREC Confusion Track participants are shown
as reference.

Collection Method MRR

Original (5)
PSO 0.8560
LS 0.7665
Best TREC 0.7353
Worst TREC 0.3039

Degraded 5% (8)
PSO 0.6674
LS 0.5013
Best TREC 0.5737
Worst TREC 0.1900

Degraded 20% (7)
PSO 0.5623
LS 0.2354
Best TREC 0.4978
Worst TREC 0.1174

Both approaches achieved parameter settings that allowed the linear combi-
nation model to outperform the best of the individual runs in each collection. In
this task the optimal parameter settings computed with PSO produced statisti-
cal significant better results in terms of MRR than the ones estimated with LS.
The main explanation for this behaviour is that the optimal parameter setting
for this task is achieved when some of the runs are ignored (αi = 0). LS fails
when this is required, because it implies a very large sampling interval in such
parameter with respect to the others. Nevertheless, PSO has no such problem, as
it performs a global search of the parameter space. Furthermore LS is very sen-
sitive to the initial position because it searches in a restricted area around such

initial point, area defined by the initial interval of the sampling, being difficult
to reach the points close to the limits of the parameter space. We have to notice
that normalisation of the rankings’ scores, prior to the linear combination was
tested (in every experiment), but differences in performance with and without
normalisation are negligible.

4.3 TREC Web Track, Metasearch Task

In order to test our proposal when the number of parameters is larger, we decided
to use the TREC 2001 Web Track Homepage finding task results [6] to reproduce
the metasearch task. In this case, the participants provided 43 different runs that
we used to produce the overall metasearch ranking with a linear combination
model. So, in terms of parameter setting, the optimisation techniques have to
adjust the weights of the 43 parameters α1 . . . α43. The results of this additional
experiment are reported in Table 3.

Table 3. Mean Reciprocal Rank (MRR) for the metasearch task over the runs of the
Home-page finding task of the TREC 2001 Web Track [6], when tuning the parameters
of the linear combination with Particle Swarm Optimisation (PSO) and with Line
Search (LS). Between brackets is the number of parameters to optimise. Best and
worst values for every collection by the TREC Web Track participants are shown as
reference.

Collection Method MRR

WT10g (43)
PSO 0.8080
LS 0.8035
Best TREC 0.7740
Worst TREC 0.0540

Again, as expected, the parameter settings computed with the optimisation
techniques allowed to the metasearch model to outperform the best individual
run (MRR 0.774). In this case, the results in terms of effectiveness for both
optimisation methods are quite similar. However, we must analyse other factors
such as efficiency and convergence speed. In order to do so we tracked, for each
generation in PSO and each iteration in LS, the necessary time2 for computing
their best parameter settings and the fitness values in terms of MRR. Those data
are presented in Figure 1. In this experiment no degree of parallelisation was
applied to either of the two methods in order to fairly compare their behaviour.
To obtain the best parameters in terms of MRR performance, it is clear that
the time needed with both approaches is significantly different, varying from 20
minutes for PSO to 1 hour for the LS method. The most important point is the
convergence speed to the best parameter setting: while PSO achieves the best

2 Reported data are the average of five different computations on an Intel platform
with 2 Quad Core E5504 processors and 16GB of RAM

Fig. 1. Evolution over time of the best parameter setting performance, achieved by
Particle Swarm Optimisation (PSO) and Line Search(LS) in the TREC 2001 Web
Track metasearch task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50 55

Retrieval
perfomance

in MRR

Time in minutes

PSO

×
×××××××××××
××××××××
××××××××××××××××××××

××××××××××××××××××××××××××××

×
LS

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

parameter setting around minute 10, for LS it is not until the very end when that
combination is achieved. This is a clear and a crucial point in order to choose
between LS and the PSO proposal.

We present and additional experiment designed to show the goodnesses of
the PSO proposal. PSO allows a straightforward parallelisation of the evolution
computation at particle level. If we check the pseudo-code presented in Algorithm
2 (Section 3.2), the parallelisation corresponds with the un-folding of the for all
loop which starts in line 5. So, under the same experimental settings presented
above, we tracked the times expended in computing 50 generations of the PSO
method when increasing the parallelisation degree, i.e. the number of threads
used for the computation3. Results are reported in Figure 2, showing the benefits
of the algorithm parallelisation. The experiment was carried out in a dual Quad-
Core processor, so the number of threads was varied from 1 to 8. When we used
eight threads we achieved the best parameter setting for the 43 participant runs
in less than two and a half minutes. If we have a quick look to the graph we
can observe that the speed-up when increasing the number of threads almost

3 The parallelisation process is a simple shared memory approach where a pool of
threads is created and each of the threads calculates the fitness values of differ-
ent particles stored in memory, and in which the synchronisation requirements are
minimum.

Fig. 2. Evolution of the time expended in the evolution of 50 generation in the PSO
algorithm when increasing the parallelisation degree.

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

Time
in

minutes

Number of threads

fit a linear form, being the small different due to the necessary synchronising
requirements.

5 Conclusions and Future Work

In this paper we introduced Particle Swarm Optimisation as a method for opti-
mising parameter settings in Information Retrieval problems. We compared the
results of our proposal against the standardly used Line Search algorithm. We
performed three different experiments in traditional retrieval problems. From
the results of those experiments we can conclude that PSO performs better in
terms of effectiveness and efficiency. PSO obtains parameter values that are bet-
ter in performance than the ones obtained with Line Search. Furthermore, we
exposed some problems of Line Search when the optimal parameter values are
in the endings of the search space, problems that PSO does not suffer thanks
to its global search approach. In terms of efficiency, PSO is more efficient than
LS, since the convergence to the optimal parameter setting in the PSO evolu-
tion is much faster than in the LS method. Moreover, the parallelisation of PSO
is straightforward, allowing to obtain the best parameter settings with almost
linear speed-ups, depending on the available number or processing cores.

As future work we would like to compare the performance of the studied
methods with other metrics and tasks where the number of parameters to opti-
mise is even larger, together with the hybrid combination of both search methods.

The design of not-blind PSO methods, i.e., methods which take advantage of the
analytical form of the retrieval functions, is also a promising field of research.

Acknowledgements: This paper has been funded by the Ministry of Science
and Innovation of the Kingdom of Spain under research project ref. TIN2011-
27294.

References

1. Javed A. Aslam and Mark Montague. Models for metasearch. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’01, pages 276–284, New York, NY, USA, 2001.
ACM.

2. Chris Buckley and Gerard Salton. Optimization of relevance feedback weights. In
Proceedings of the 18th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’95, pages 351–357, New York,
NY, USA, 1995. ACM.

3. Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22nd international conference on Machine learning, ICML ’05, pages 89–96,
New York, NY, USA, 2005. ACM.

4. R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in
particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary
Computation, volume 1, pages 84–88, 2000.

5. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

6. David Hawking and Nick Craswell. Overview of the TREC-2001 web track. NIST
Special Publication, (500-250):61–67, 2001.

7. Paul B. Kantor and Ellen M. Voorhees. The TREC-5 confusion track: Comparing
retrieval methods for scanned text. Inf. Retr., 2(2/3):165–176, 2000.

8. James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Pro-
ceedings of IEEE International Conference on Neural Networks, pages 1942–1948.
Piscataway, NJ, 1995.

9. James Kennedy and Russell C. Eberhart. Swarm intelligence. Morgan Kaufmann
Publishers Inc., CA, USA, 2001.

10. Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Math. Program., 45:503–528, December 1989.

11. David G. Luengerber. Linear and nonlinear programming. Addison Wesley, 1984.
12. Javier Parapar, Ana Freire, and Álvaro Barreiro. Revisiting n-gram based models

for retrieval in degraded large collections. In Proceedings of the 31th European
Conference on IR Research on Advances in Information Retrieval, ECIR ’09, pages
680–684, Berlin, Heidelberg, 2009. Springer-Verlag.

13. Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. Optimisation methods for ranking functions with multiple parameters. In
Proceedings of the 15th ACM international conference on Information and knowl-
edge management, CIKM ’06, pages 585–593, New York, NY, USA, 2006. ACM.

14. Ellen M. Voorhees and Donna K. Harman. TREC: Experiment and Evaluation in
Information Retrieval. The MIT Press, 2005.

15. Hugo Zaragoza, Nick Craswell, Michael Taylor, Suchi Saria, and Stephen Robert-
son. Microsoft Cambridge at TREC-13: Web and hard tracks. NIST Special Pub-
lication, (500-261), 2004.

