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ABSTRACT
Pseudo-relevance feedback (PRF) provides an automatic method for
query expansion in Information Retrieval. These techniques find
relevant expansion terms using the top retrieved documents with
the original query. In this paper, we present an approach based on
linear methods called LiMe that formulates the PRF task as a matrix
factorization problem. LiMe learns an inter-term similarity matrix
from the pseudo-relevant set and the query that uses for computing
expansion terms. The experiments on five datasets show that LiMe
outperforms state-of-the-art baselines in most cases.
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1 INTRODUCTION
Retrieval can be improved if we exploit user’s feedback for the pre-
sented results. However, we are not usually provided with relevance
feedback [19]. For this reason, pseudo-relevance feedback (PRF)
has emerged as an alternative that does not require user feedback
[4]. PRF approach assumes that the top retrieved documents for
the original query are relevant. These documents form the pseudo-
relevant set. PRF techniques extracts and weights terms from this
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set to expand the original query. The expanded query is used to per-
form a second retrieval whose output is displayed to the user. This
method has shown to be a very successful technique for improving
retrieval effectiveness [3, 5, 6, 8–11, 13, 14, 16–18, 24].

In this paper, we summarize our previous contributions in mod-
elling the PRF task as a matrix factorization problem [23]. Our
proposal LiMe, based on linear methods, models inter-term similar-
ities using the original query and the pseudo-relevance set. This
technique is agnostic of the retrieval model. Additionally, it can
employ any document-term feature scheme (we propose TF and
TF-IDF). In particular, we compute the factorization using a bound-
constrained least-squares solver with an elastic net penalty. The
experiments on five TREC datasets shows that LiMe is a competitive
PF technique obtaining significant improvements over the state of
the art in most scenarios.

2 DESCRIPTION OF LIME
LiMe exploits information from the original queryQ and the pseudo-
relevant set F to generate an extended queryQ ′. The set F is formed
by the top-k documents obtained using the original query Q . Since
LiMe considers the query to be another pseudo-relevant document,
we define the extended pseudo-relevant feedback set F ′ as the
pseudo-relevant set plus the original query (i.e., F ′ = {Q} ∪ F )
and we denote its cardinality bym = |F ′ | = k + 1. We define the
vocabulary of the extended pseudo-relevant set F ′ by VF ′ and its
cardinality by n = |VF ′ |. This set is constituted by all the terms that
appear in Q or F .

We define the matrix X = (xi j ) ∈ R
m×n which represents the

extended pseudo-relevant set. The first row corresponds to the
original query Q and the rest of rows represents the k documents
from F . Likewise, each column of X represents a term from VF ′ . To
enforce sparsity, we set to zeros all entries that correspond to terms
that do not appear in the current document. In the other cases, xi j
represents a feature between the document (or query) and the term
tj . Therefore, xi j is given by:

xi j =


s(tj ,Q) if i = 1 and f (tj ,Q) > 0,
s(tj ,Di−1) if i > 1 and f (tj ,Di−1) > 0,
0 otherwise

(1)

where s(t ,D) is a weighting function that scores the term t with
the document D and f (t ,D) is the frequency of term t in document
D. We use two popular Information Retrieval weighting functions:
TF and TF-IDF; in particular, the following logarithmic smoothed
versions [21]:

st f (t ,D) = 1 + log2 f (t ,D) (2)
1
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st f -idf (t ,D) =
(
1 + log2 f (t ,D)

)
× log2

|C|

df (t)
(3)

where |C| denotes the number of documents in the collection and
df (t) the document frequency of term t . However, other functions
are also possible. We leave this exploration for future work.

LiMe factorizes this matrix X into the product of X and another
matrixW = (wuv ) ∈ R

n×n
+ . The matrixW captures the inter-term

similarities between every pair of words in VF ′ . Therefore, entry
wuv corresponds to the similarity between terms tu and tv . To
preventW from becoming the identity matrix, we constrain the
diagonal ofW to be zero. Also, we add a positivity constraint to
matrixW to enforce interpretability of the similarity coefficients.
In this way, LiMe is defined by the following optimization problem:

X ≈ XW

s .t . diag(W ) = 0,W ≥ 0 (4)

To find a solution to this problem, we minimize the square error
of the factorization. In addition, we add ℓ2 regularization to prevent
overfitting and ℓ1 regularization to enforce sparsity. The combina-
tion of both regularizers is known as elastic net penalty [26]. Thus,
the optimization objective is:

W ∗ = argmin
W

1
2
∥X − XW ∥2F + β1 ∥W ∥1,1 +

β2
2

∥W ∥2F

s.t. diag(W ) = 0, W ≥ 0
(5)

where ∥·∥2F denotes the squared Frobenius norm and ∥·∥1,1 denotes
the ℓ1,1 matrix norm.

We can split the above optimization problem in columns obtain-
ing a bound-constrained linear least squares optimization problem:

®w∗
·j = argmin

®w·j

1
2


®x ·j − X ®w ·j



2
2 + β1



 ®w ·j



1 +

β2
2



 ®w ·j


2
2

s.t. w j j = 0, ®w ·j ≥ 0
(6)

where ∥·∥22 denotes the square ℓ2 vector norm and ∥·∥1 denotes the
ℓ1 vector norm. Note that we represent the j-th column of matrix
X by ®x ·j and the j-th column of matrixW by ®w ·j .

We used the BCLS1 library to compute each column ofW ∗. Note
that the computation of each column is independent and, thus, we
can calculate them in parallel. Once we have computedW ∗, we can
reconstruct the first row of X (denoted by x̂1·) which represents
the expanded query in the following manner:

x̂1· = ®x1·W
∗ (7)

We can calculate a probability estimate of the feedback model
θF by normalizing this vector x̂1·. Thus, the LiMe feedback model
is computed as follows:

p(tj |θF ) =


x̂1j∑

tv ∈VF ′ x̂1v
if tj ∈ VF ′ ,

0 otherwise
(8)

In this way, we can rank all those terms that appear in the pseudo-
relevant set or the query.

If we use the language modelling framework, we rank documents
according to the KL divergence D(·∥·) between the query and the

1See http://www.cs.ubc.ca/~mpf/bcls

Table 1: Collections statistics. We also detail the topics that
are used for training and test purposes.

Collection #docs
Avg doc Topics

length Training Test

AP88-89 165k 284.7 51-100 101-150
TREC-678 528k 297.1 301-350 351-400
Robust04 528k 28.3 301-450 601-700
WT10G 1,692k 399.3 451-500 501-550
GOV2 25,205k 647.9 701-750 751-800

document language models, θQ and θD . This is rank equivalent to
the negative cross-entropy [7]:

Score(D,Q) = −D(θQ ∥θD )
rank
=

∑
t ∈V

p(t |θQ ) logp(t |θD ) (9)

where V is the vocabulary of the collection. When performing the
second retrieval in pseudo-relevance feedback, we use the extended
query model θ ′Q which is the result of the interpolation (controlled
by the hyperparameter α ∈ [0, 1]) between the original query model
θQ and the estimated feedback model θF [1, 10]:

p(t |θ ′Q ) = (1 − α)p(t |θQ ) + α p(t |θF ) (10)

3 EXPERIMENTS
In this section, we present the experimental evaluation of LiMe.
We perform our experiments on five diverse TREC collections
[10, 11, 24]: AP88-89, TREC-678, Robust04, WT10G and GOV2.
Since PRF is typically used for expanding short queries, we employ
the title query for each topic. We split the topics into training and
test: we use the training topics to tune the model hyperparameters
that maximize MAP and we use the test topics to assess the per-
formance of the techniques. We present in Table 1 the statistics of
each collection and the training and test splits.

We use Terrier framework [12] to conduct these experiments. We
applied Porter stemming and stopwords removal because previous
work has shown they improve the performance of PRF techniques
[10].

We evaluated the methods using MAP and nDCG at a cut-off of
1000 using the trec_eval2 implementation. We also computed the
robustness index (RI) [20] to assess how many topics benefit from
using PRF. We used the one-tail permutation test at level p < 0.05
to perform statistically significance tests in MAP and nDCG [22].
Note that we cannot use a paired statistic with RI because it is a
global metric.

We use the language modelling framework as retrieval model
[15] with Dirichlet priors smoothing (µ = 1000) [25]. In particular,
we use the KL divergence model (see Eq. 9) to incorporate the feed-
back model [7] into the second retrieval. To assess the performance
of LiMe, we use the following baselines:

LM The first retrieval obtained with language models without
query expansion.

RFMF This PRF technique is based on non-negative matrix
factorization [24].

2See http://trec.nist.gov/trec_eval
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Table 2: Values of MAP, P@5, nDCG and RI for LM, RFMF, MEDMM, RM3, LiMe-TF and LiMe-TF-IDF techniques on each
dataset. We superscripted with a, b, c, d , e and f all statistically significant improvements (permutation test p < 0.05) with
respect to LM, RFMF, MEDMM, RM3, LiMe-TF and LiMe-TF-IDF, respectively.

Collection Metric LM RFMF MEDMM RM3 LiMe-TF LiMe-TF-IDF

AP88-89
MAP 0.2349 0.2774a 0.3010a 0.3002a 0.3062a 0.3149abcde

nDCG 0.5637 0.5749a 0.5955ab 0.6005ab 0.6003ab 0.6085ab

RI − 0.42 0.42 0.50 0.38 0.52

TREC-678
MAP 0.1931 0.2072 0.2327abd 0.2235a 0.2267a 0.2357abd

nDCG 0.4518 0.4746 0.5115abd 0.4987ab 0.5051ab 0.5198abde

RI − 0.23 0.26 0.40 0.48 0.46

Robust04
MAP 0.2914 0.3130a 0.3447ab 0.3488ab 0.3388ab 0.3517abe

nDCG 0.5830 0.5884 0.6227ab 0.6251ab 0.6223ab 0.6294ab

RI − 0.07 0.32 0.37 0.23 0.37

WT10G
MAP 0.2194 0.2389a 0.2472a 0.2470a 0.2484a 0.2476a

nDCG 0.5212 0.5262 0.5324 0.5352 0.5416a 0.5398a

RI − 0.30 0.36 0.20 0.32 0.30

GOV2
MAP 0.3310 0.3580a 0.3790ab 0.3755ab 0.3776ab 0.3830ab

nDCG 0.6325 0.6453 0.6653ab 0.6618ab 0.6656ab 0.6698abd

RI − 0.42 0.66 0.60 0.68 0.62

MEDMM This PRF technique, the maximum-entropy diver-
gence minimization model, is regarded as one of the most
competitive PRF techniques [11].

RM3 The relevance-based language model with i.i.d. sampling
[1, 8].

Note that all the PRF techniques are interpolated with the origi-
nal query as shown in Eq. 10.

We present the results in terms of MAP, nDCG and RI in Table 2.
The language modelling baseline is outperformed by all PRF tech-
niques; however, only LiMe-TF and LiMe-TF-IDF provide significant
improvements over LM in MAP and nDCG on all datasets.

The values of robustness index are positive for all PRF techniques
which means that PRF provides, in general, a beneficial impact
on retrieval results. We can see that LiMe techniques achieve the
highest values of RI on every collection except for MEDMM on
WT10G.

LiMe-TF-IDF achieves the highest value of MAP and nDCG on
all collections except onWT10G where LiMe-TF obtains the highest
results. Additionally, LiMe was not outperformed by any baseline.
We observe that LiMe-TF-IDF significantly outperforms RFMF on
four out of five datasets in terms of MAP and on three out of five
collections in terms of nDCG. With respect to RM3, LiMe-TF-IDF
significantly surpasses RM3 on two collections. Finally, MEDMM
was only significantly outperformed by LiMe-TF-IDF on AP88-89.
Nevertheless, LiMe-TF and LiMe-TF-IDF achieve higher values in
nDCG and MAP than MEDMM on every collection. Although no
baseline significantly improves LiMe, MEDMM significantly sur-
passes RM3 in terms of nDCG and MAP on the TREC-678 collection.
Also, RM3 and MEDMM significantly outperform RFMF in terms
of MAP and nDCG on several datasets.

Between LiMe-TF and LiMe-TF-IDF, we can see that the TF-IDF
weighting scheme provides better figures of MAP and nDCG on
all collections except on WT10G. However, these differences are
significant only on AP88-89, TREC-678 and Robust04. Note also
that LiMe-TF is slightly more robust that LiMe-TF-IDF on three out
of five datasets. As we commented, WT10G is a quite noisy web
crawl.

4 CONCLUSIONS AND FUTUREWORK
We presented a query expansion technique based on linear methods
called LiMe which models the pseudo-relevance feedback task as a
matrix decomposition problem. This is an extended abstract that
summarizes previous work [23]. LiMe computes inter-term simi-
larities using information from the original query and the pseudo-
relevant. This can be applied on top of any retrieval model. Exten-
sive experimentation showed that LiMe achieves state-of-the-art
performance on five TREC collections.

As future work, we plan to experiment with different feature
schemes (in addition to TF and TF-IDF) as well as explore the
meaning behind the item-item similarities computed by LiMe. In
addition, we envision to study other inter-term similarity measures
such as those used in translation models [2, 7].
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