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ABSTRACT
The adaptation of Information Retrieval techniques for the item
recommendation task has become a fertile research area. Previ-
ous works have established the correspondence between these two
fields that allowed to adapt several retrieval techniques successfully.
One line of study aims to model the item recommendation problem
as a profile expansion task following the methods for query expan-
sion in pseudo-relevance feedback. To solve the query expansion
task in ad-hoc retrieval, several term association measures have
been proposed in the past. In this paper, we adapt several of these
measures to the top-N recommendation problem, specifically to
the collaborative filtering scenario. Moreover, we perform exper-
iments to study their effectiveness regarding accuracy, diversity
and novelty. Our results show that some of the proposed measures
can improve these aspects over well-known and commonly used
recommendation similarity metrics (cosine similarity and Pearson’s
correlation coefficient).
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1 INTRODUCTION
Lately, Recommender Systems (RS) are gaining more and more
importance in people’s life. Due to the increasing amount of infor-
mation available, it is getting more difficult for users to discriminate
between what is interesting for them and what is not. Because of
this, users are becoming more demanding: they want to receive rel-
evant information in an automatic and personalised manner. Thus,
recommender systems require continuous improvement to cope
with users’ needs.

When building a recommender system, there are three main
approaches to decide among [1]. Content-based techniques [12] use
the available metadata on the items to produce recommendations.
Therefore, when choosing this approach developers need to retrieve
such information, which can turn out to be a challenging task. On
the other hand, Collaborative Filtering (CF) techniques [23] use
the already available user-item interactions, which can take the
form of ratings, clicks, visualizations or purchases, among other
alternatives. Lastly, hybrid techniques combine both content-based
and collaborative filtering approaches.

In this paper, we focus on collaborative filtering systems [23, 24].
These techniques are commonly classified into two types. On the
one hand, model-based approaches [23] exploit interaction data
to train a predictive model. On the other hand, neighbourhood-
based approaches [24] (also called memory-based methods) use
similarities between users or items, computed with the interaction
information, to produce the personalised recommendations.

The advantages of neighbourhood-based methods are their sim-
plicity and easy interpretability of the results [24]. In contrast to
model-based techniques, memory-based methods do not require
a training step. Although recommendation may be costly in some
neighbourhood-based approaches, usually, its efficiency can be
easily improved by pre-computing the neighbours.

As expected, the effectiveness of neighbourhood-based systems
depends significantly on how the neighbours are computed [4, 24].
At first, k-means was the most extended technique, but nowadays, a
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favourite way of computing the neighbours is using the well-known
clustering technique called k-NN (k-Nearest Neighbours) [24, 27].

Originally, recommender systems were designed and evaluated
for the task of rating prediction. However, soon enough evidence
showed that it is not as important estimating an accurate rating as
providing a ranking with interesting items to the user, as the pre-
dicted ratings are usually not shown to the user [9, 20]. Therefore,
the traditional rating prediction task was replaced by the top-N
recommendation task where the recommendation problem was
modelled as an item ranking task [9]. Thanks to this approach, the
recommendation can also be interpreted as an Information Retrieval
(IR) task, which allows the researcher to explore the use of well-
known IR techniques. This relation between recommendation and
retrieval is a fertile research line that has been producing results
lately [25, 29, 30, 32–34].

In particular, regarding that research line, Parapar et al. success-
fully modelled the recommendation problem as a query expansion
task [25]. They establish a correspondence between both tasks by
considering users as documents and queries, and items as terms.
Following this analogy, IR techniques originally designed for query
expansion can be used for recommendation.

In IR, several term association measures have been proposed to
address the query expansion problem, such as Pointwise Mutual
Information [7], ExpectedMutual Information [8], Dice’s coefficient
[14, 28], Jaccard index [22] or Pearson’s Chi-square measure [16].
These metrics take into account word co-occurrence to produce a
ranking with the best candidate terms to expand a query. Thanks to
this, they find terms related to the original ones. This characteristic
is useful in memory-based collaborative filtering recommendation,
where finding related items/users is a key step. In this paper, follow-
ing the path paved away by Parapar et al. [25] we want to translate
these techniques used in query expansion for ad-hoc retrieval to
the collaborative filtering scenario both for weighting ratings and
computing the neighbourhoods.

Thus, the contributions of this paper are (1) a framework for
the adaptation of term association measures to the recommender
systems field that can be applied to any metric based in term co-
occurrence, (2) the specific adaptation of six term association met-
rics, and (3) an empirical comparison of these measures with two
well-known similarity metrics, cosine similarity and Pearson’s cor-
relation coefficient, in terms of accuracy, novelty and diversity. The
results show that several of our proposed measures provide better
values in some of these three aspects. In particular, Pearson’s Chi-
squared measure achieves the best values in the three of them in
a user-based scenario, followed by Jaccard index and Dice’s coeffi-
cient. Furthermore, keeping the exact value of the ratings, instead of
considering only the presence/absence of a rating, yields significant
improvements.

2 BACKGROUND
We introduce in this section the top-N recommendation task and
previous work in memory-based recommender systems. We also
explain how the recommendation task can be approached as an IR
task and present several term association measures used in IR for
the query expansion task.

2.1 Top-N Recommendation
Top-N recommendation refers to the task of finding the top-N most
relevant items for a user. Methods for top-N recommendation solve
the task by presenting a list of items ordered by decreasing degree
of estimated relevance to the user. Top-N recommendation task has
been recognised as a more realistic solution to the recommenda-
tion problem than the traditional rating prediction task, where the
objective is to predict the rating that the user will assign to a given
item and error-based metrics are used to evaluate the performance
[3, 9, 18, 20].

Recommender systems output a value for each user u and item
i , r̂u,i . In a traditional rating prediction system, this output is an
estimate of the rating the user will assign to the item. In contrast,
in the case of top-N methods, this output is used internally by the
system as a score to rank all the items and it is not shown to the
user.

2.2 Memory-based Recommender Systems
Memory-based approaches directly use the past interaction infor-
mation (memory) without training any model [24]. Most of the time
authors indistinctly call them neighbourhood-based methods refer-
ring to the characteristic approach of most of the memory-based
methods of building neighbourhoods of users or items.

Memory-based methods are commonly classified into user-based
ones, those that exploit the patterns in the user-user relationships,
or item-based ones, where the item-item relationships are leveraged.
While the idea of user-based methods is to recommend items liked
by similar-minded people, item-based methods recommend items
similar to the ones the user liked in the past.

When defining these methods, the following conventions are
commonly taken. The set of users is denoted as U and the set of
items as I. For each user u ∈ U and item i ∈ I we denote ru,i as
the rating the user gave to the item. This value will be zero if the
user has not expressed any feedback on the item. We will denote
the set of items that a user u has rated as Iu . Similarly, for an item
i we useUi to refer to the set of users that have rated it.

To exploit the feedback information, memory-based methods
infer relationships between users and/or items by identifying sets
of similar users/items called neighbourhoods. Several clustering
techniques can be used to create these neighbourhoods [4], being
the most popular k-Nearest Neighbours (k-NN) [24, 27]. For each
target user/item and given a similarity metric, the top k most similar
users/items are picked. Different measures like Pearson’s correla-
tion coefficient, cosine similarity or adjusted cosine metrics can be
used. In particular, cosine similarity can be efficiently calculated
between two users by representing them as vectors where each
dimension is an item in the system and the values for these are the
ratings the users have given to the corresponding item or zero for
unrated items. Item representation can be obtained analogously.
In the remaining of the paper, we will use Vu to denote the set of
neighbours of user u and Ji to denote the neighbourhood of item i .

There are several formulations for memory-based recommenders.
Some of them try to compensate the fact that users can use different
values to express a similar preference for an item. They do this by
normalizing the ratings using mean centring or Z-score normal-
ization [19]. This usually leads to improvements when the rating
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prediction task is considered [19, 21]. However, when it comes to
the top-N recommendation task, non-normalized neighbourhood
ones have proven to perform better [9, 13].

One of these techniques, WSR (Weighted Sum Recommender),
a state-of-the-art technique, stands out for its simplicity and per-
formance [31]. Its formulations, both user and item based, are as
follows:

r̂u,i =
∑
v ∈Vu

su,v rv,i (1) r̂u,i =
∑
j ∈Ji

si, j ru, j (2)

where s ·, · is the similarity between two users or items and r ·, · is
zero for unrated items. Please, note that the model does not enforce
that the similarity measure used for weighting the rating of each
neighbour has to be the same as the similarity metric used for
computing the neighbourhoods, although it is usually the case.

2.3 Recommendation as an IR task
As stated before, the recommendation problem can be viewed as
an IR task, which allows the use of techniques from this area. To
adapt such techniques, first, we need to establish a correspondence
between both fields. In this paper, we will adopt the modelling pre-
sented in [25], which establishes an analogy between recommenda-
tion and query expansion [5] with pseudo-relevance feedback [11].
Query expansion reformulates the user’s query to improve the re-
sults in retrieval tasks. Pseudo-relevance feedback is a technique for
query expansion that assumes that the top retrieved documents are
relevant, although there is no explicit indicator showing whether
they are indeed relevant to the query — that is the reason why they
are called pseudo-relevant documents. From these pseudo-relevant
documents, a set of significant terms is selected to expand the origi-
nal query, which is then used in a second retrieval. The documents
obtained from this process are finally presented to the user.

In the model presented in [25], the set of users U plays the role
of the set of documents with the items rated by each user as the
terms of each document and the ratings corresponding with the
term frequencies. At the same time, the target user plays the role of
the query with the items rated as the query terms and the ratings as
term frequencies. Target user’s neighbours play the role of pseudo-
relevant documents and candidate items for recommendation act
as candidate terms for query expansion.

Similarly, the neighbourhood computation can also be viewed
as an ad-hoc retrieval task from IR [2]. From this perspective, we
can see the target user u as the query,U as the set of documents
in the collection, her neighbours Vu as ranked documents for the
query, and items as terms. Using this approach, retrieval models
can be used for computing neighbourhoods, as can be seen in [31].

2.4 Term association measures
One of the key objectives of query expansion methods is to add
terms related to the original terms of the query to try to solve the
vocabulary mismatch problem, where relevant documents do no
match the query because they are using different words to describe
the same topic [10]. Several term association measures have been
studied for this task in IR [5, 10, 26]. Before presenting them, we
first will describe the notation and estimates used throughout this
section.

For a term a, we denote the probability of the word a of occurring
in a document as P(a). We use P(a,b) to denote the probability of
the term a and the term b of occurring in the same document. We
use the following estimates for these probabilities:

P(a) =
na
N

(3) P(a,b) =
nab
N

(4)

where na is the number of documents containing word a, nab is
the number of documents containing both a and b, and N is the
number of documents in the collection.

2.4.1 Pointwise Mutual Information (PMI). This metric [7] mea-
sures the association between two terms by comparing the proba-
bility of observing them jointly with the probability of observing
them independently. Hence, for two terms a and b, PMI is defined
as:

PMI (a,b) = log
P(a,b)

P(a)P(b)
= logN

nab
nanb

(5)

PMI is 0 when word occurrences are independent.

2.4.2 Mutual Information (MI). This metric, also known as Ex-
pected Mutual Information [8] is the expected value of the PMI,
and is defined as follows:

MI (a,b) =
∑

Xa ∈{0,1}

∑
Xb ∈{0,1}

P(Xa ,Xb ) log
P(Xa , Pb )

P(Xa )P(Xb )
(6)

where Xa and Xb are binary variables indicating whether term a
or b occurs or not. Although the MI is generally calculated using
Eq. 6, sometimes it is computed taking only into account the case
where both terms occur, giving the following expression:

SMI (a,b) = P(a,b) log
P(a,b)

P(a)P(b)

rank
= nab log

(
N

nab
nanb

)
(7)

where rank
= means rank equivalence, i.e. both expressions produce

the same ranking. We will refer to Eq. 7 as Simplified Mutual Infor-
mation (SMI).

2.4.3 Sørensen-Dice coefficient. Popularly known as Dice’s coef-
ficient [14, 28], this measure was originally designed to be applied
to presence/absence of data. The formula for this measure is:

Dice(a,b) =
2 · nab
na + nb

rank
=

nab
na + nb

(8)

2.4.4 Jaccard Index. The Jaccard index [22], also known as in-
tersection over union is a statistic used for comparing the similarity
and diversity of two sample sets:

J (a,b) =
P(a,b)

P(a) + P(b) − P(a,b)
=

nab
na + nb − nab

(9)

2.4.5 Pearson’s Chi-squared measure. Pearson’s Chi-squared
measure (χ2) [16] is a statistic used for testing independence, that
compares the observed number of joint occurrences with the ex-
pected number of joint occurrences if both terms were independent.
Given the observed number of co-occurrences nab and estimating
the expected number of co-occurrences as NP(a)P(b), the value of
the measure is defined as:

χ2(a,b) =
(nab − NP(a)P(b))2

NP(a)P(b)

rank
=

(nab − 1
N nanb )

2

nanb
(10)
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3 TERM ASSOCIATION MEASURES FOR
RECOMMENDATION

Term association measures try to capture the similarity between
terms based on how much they occur together. We propose a way
to use these measures to calculate item-item and user-user similar-
ities, following the analogy between recommendation and query
expansion with pseudo-relevance feedback. To calculate item-item
similarities, we equate items with terms and the set of items rated
by a user with a document. Furthermore, to estimate user-user
similarities, we apply a similar analogy where users are the terms,
and the set of users that rated an item are all the terms of a single
document.

To adapt term association measures from IR to the recommen-
dation task, we replace term probabilities for the item and user
probabilities when calculating item-item and user-user similarities,
respectively. Therefore, the primary challenge consists in transform-
ing the term probability estimates into item and user probability
estimates.

We denote the probability of the item i of being rated as P(i),
while P(i, j) is the probability of items i and j of being rated by the
same user. The estimates for these probabilities are as follows:

P(i) =
ni
N
=

|Ui |

|U|
(11) P(i, j) =

ni j

N
=

|Ui ∩Uj |

|U|
(12)

These estimates are binarized in the sense that the exact rating
value is disregarded, and we only consider whether a user rated
an item or not. However, we propose yet another way to compute
these probabilities, in a non-binarized manner. In this approach,
the specific rating value is kept in the calculation. First, let us
reformulate Eq. 11 and 12:

P(i) =

∑
u ∈Ui I[ru,i ]∑

u ∈U 1
(13)

P(i, j) =

∑
u ∈Ui∩Uj

I[ru,i ]+I[ri, j ]
2∑

u ∈U 1
(14)

where I is the indicator function such that I[ru,i ] = 1 if user u rated
item i and 0 otherwise. Thus, for the non-binarized versions of Eq.
13 and 14 we need to remove the I function from the formula:

P(i)nb =

∑
u ∈Ui ru,i∑

u ∈U maxi ∈Iu ru,i
(15)

P(i, j)nb =

∑
u ∈Ui∩Uj

(
ru,i+ri, j

2

)∑
u ∈U maxi ∈Iu ru,i

(16)

As can be seen, the denominator has turned into the sum of the
maximum rating of each user. This formula allows us to keep the
expression as a probability function. In Eq. 15, P(i) is 1 when all
users have rated the itemwith their personal maximum rating value,
while in Eq. 16, P(i, j) is 1 when all users have rated both items with
their personal maximum rating value. A different adaptation would
be to turn the denominator into the sum of the maximum possible
rating value in the system for each user, i.e. probability would be
1 if all users rated the item/s with the highest value allowed by
the system. However, we found that this approach produced worse
results than the ones presented here.

Table 1: Datasets statistics.

Dataset Users Items Ratings Density

MovieLens 100k 943 1,682 100,000 6.305%
MovieLens 1M 6,040 3,706 1,000,209 4.468%
R3-Yahoo 15,400 1,000 365,704 2.375%
LibraryThing 7,279 37,232 749,401 0.277%

For the sake of summarizing, we have the following equalities:

ni =
∑

u ∈Ui
I[ru,i ] = |Ui | (17)

ni j =
∑

u ∈Ui∩Uj

I
[
ru,i

]
+ I

[
ri, j

]
2

= |Ui ∩Uj | (18)

N =
∑

u ∈U
1 = |U| (19)

ni(nb) =
∑

u ∈Ui
ru,i (20)

ni j(nb) =
∑

u ∈Ui∩Uj

(
ru,i + ri, j

2

)
(21)

N(nb) =
∑

u ∈U
max
i ∈Iu

ru,i (22)

All of these formulas are for computing item-item similarities.
If we wanted to compute user-user similarities, we would have
to swap the roles of users and items. Having established these
estimates, the adaptation of the term association measures is rel-
atively straightforward, by simply replacing the probabilities by
these new expressions. By doing so, we obtained both binarized
and non-binarized formulas for all measures.

4 EXPERIMENTAL EVALUATION
In this section, we first describe the experimental settings—inclu-
ding the datasets and the evaluation protocol. After that, we present
the results of our experiments comparing them to previous tech-
niques.

4.1 Datasets
To perform our experiments, we use several datasets from different
domains, all of which have explicit feedback data. In particular, we
used the MovieLens 100k and MovieLens 1M movie datasets1, the
R3-Yahoo! music dataset2 and the LibraryThing book dataset. The
first three datasets contain integer ratings between 1 and 5. The
ratings in the LibraryThing dataset are in the interval between 0.5
and 5.0 with possible values in increments of 0.5. We provide details
for each dataset in Table 1. All datasets were randomly partitioned
to conduct the experiments, with 80% of the ratings from each user
being used for training and the remaining 20% for the test.

4.2 Evaluation protocol
To evaluate the recommenders for the top-N recommendation task,
we follow the TestItems evaluation approach as described in [3].
In this evaluation methodology, the test items set is defined as all
the items that have a rating by any user in the test set. For each

1http://grouplens.org/datasets/movielens
2http://webscope.sandbox.yahoo.com
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Table 2: User-based recommendation results, showing nDCG@10, Gini@10 and MSI@10 on four different datasets. Binarized
and non-binarized measures are subscripted with bin and nb, respectively. Statistical significant improvements (permutation
test with p < 0.01) in nDCG@10 and MSI@10 with respect to Pearson and cosine baselines are superscripted with a and b
respectively. Statistical significant improvements of a non-binarized metric with respect to its binarized counterpart are su-
perscripted with ∗; the reverse situations are superscripted with †.

Similarity Metric Movielens 100k Movielens 1M R3-Yahoo LibraryThing

Pearson
nDCG@10 0.1693 0.1076 0.0196 0.0729
Gini@10 0.0181 0.0090 0.0225 0.0018
MSI@10 8.5662 9.5795 15.5851 18.9782

Cosine
nDCG@10 0.3902 0.3449 0.0261 0.1932
Gini@10 0.0549 0.0339 0.0604 0.0180
MSI@10 11.0611 12.0341 19.5503 28.4180

PMIbin
nDCG@10 0.3630a 0.3314a 0.0243a 0.1789a
Gini@10 0.0420 0.0319 0.0434 0.0160
MSI@10 10.4691a 11.9799a 18.5376a† 28.5271a†

PMInb
nDCG@10 0.3654a 0.3333a∗ 0.0238a 0.1817a∗
Gini@10 0.0471 0.0323 0.0411 0.0092
MSI@10 10.7612a∗ 12.0433a∗ 18.0530a 25.8058a

SMIbin
nDCG@10 0.3804a 0.3197a† 0.0258a 0.1711a
Gini@10 0.0518 0.0238 0.0584 0.0127
MSI@10 11.0153a 11.2415a 19.5927a† 26.6928a

SMInb
nDCG@10 0.3854a∗ 0.2977a 0.0250a 0.1844a∗
Gini@10 0.0535 0.0185 0.0386 0.0155
MSI@10 11.0586a∗ 10.8327a 18.4847a 27.5679a∗

MIbin
nDCG@10 0.3854a 0.3335a† 0.0259a 0.1767a
Gini@10 0.0539 0.0269 0.0488 0.0142
MSI@10 11.0742a 11.4706a 18.9018a† 27.1750a

MInb
nDCG@10 0.3921a∗ 0.3091a 0.0251a 0.1853a∗
Gini@10 0.0557 0.0203 0.0380 0.0156
MSI@10 11.1256ab∗ 10.9828a 18.3848a 27.5426a∗

Dicebin
nDCG@10 0.3856a 0.3453a 0.0257a 0.1847a
Gini@10 0.0536 0.0347 0.0517 0.0176
MSI@10 10.9461a 12.0484a 19.0984a 28.2811a

Dicenb
nDCG@10 0.3875a 0.3465a 0.0262a 0.1870a∗
Gini@10 0.0544 0.0411 0.0653 0.0177
MSI@10 10.9769a∗ 12.5187ab∗ 19.9364ab∗ 28.3074a

Jaccardbin
nDCG@10 0.3860a 0.3457a 0.0258a 0.1853a
Gini@10 0.0539 0.0350 0.0518 0.0180
MSI@10 10.9598a 12.0668ab 19.1062a 28.3610a

Jaccardnb
nDCG@10 0.3880a 0.3470ab 0.0263a 0.1878a∗
Gini@10 0.0547 0.0350 0.0657 0.0181
MSI@10 10.9894a∗ 12.0831ab 19.9575ab∗ 28.4025a

Chi-squarebin
nDCG@10 0.3948ab 0.3573ab† 0.0257a 0.1947a
Gini@10 0.0575 0.0385 0.0473 0.0157
MSI@10 11.1259ab 12.3090ab 18.7855a 27.4074a

Chi-squarenb
nDCG@10 0.3992ab∗ 0.3539ab 0.0263a 0.1979ab∗

Gini@10 0.0582 0.0371 0.0709 0.0167
MSI@10 11.1519ab∗ 12.2443ab 20.2344ab∗ 27.6873a∗
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Table 3: Item-based recommendation results, showing nDCG@10, Gini@10 and MSI@10 on four different datasets. Binarized
and non-binarized measures are subscripted with bin and nb, respectively. Statistical significant improvements (permutation
test with p < 0.01) in nDCG@10 and MSI@10 with respect to Pearson and cosine baselines are superscripted with a and b
respectively. Statistical significant improvements of a non-binarized metric with respect to its binarized counterpart are su-
perscripted with ∗; the reverse situations are superscripted with †.

Similarity Metric Movielens 100k Movielens 1M R3-Yahoo LibraryThing

Pearson
nDCG@10 0.0054 0.0005 0.0095 0.0189
Gini@10 0.0672 0.0244 0.2319 0.1645
MSI@10 47.5752 67.4544 48.1618 62.1193

Cosine
nDCG@10 0.3833 0.3376 0.0273 0.2624
Gini@10 0.0901 0.0713 0.1034 0.1200
MSI@10 12.9787 14.6225 21.7559 43.4896

PMIbin
nDCG@10 0.0059 0.0092a† 0.0176a† 0.1445a†
Gini@10 0.0391 0.0339 0.6162 0.3505
MSI@10 54.0094ab 73.4936ab† 41.1525b 63.4519ab

PMInb
nDCG@10 0.0050 0.0054a 0.0133a 0.1366a
Gini@10 0.0256 0.0375 0.4583 0.3508
MSI@10 56.4564ab∗ 70.8676ab 43.6928b∗ 63.7748ab∗

SMIbin
nDCG@10 0.3504a 0.3107a† 0.0256a† 0.2309a†
Gini@10 0.0828 0.0594 0.0563 0.0223
MSI@10 13.1697b† 14.8859b 20.7232 30.7904†

SMInb
nDCG@10 0.3710a∗ 0.2643a 0.0168a 0.1973a
Gini@10 0.0596 0.0903 0.3976 0.0161
MSI@10 11.4944 18.0360b∗ 42.4918b∗ 27.2608

MIbin
nDCG@10 0.3373a 0.2940a† 0.0258a† 0.2464a†
Gini@10 0.0851 0.0710 0.0897 0.0289
MSI@10 13.7245b† 16.2571b 24.1635b 33.5735†

MInb
nDCG@10 0.3712a∗ 0.2362a 0.0112 0.2096a
Gini@10 0.0613 0.0870 0.0122 0.0177
MSI@10 11.7181 18.8748b∗ 24.1686b 28.2052

Dicebin
nDCG@10 0.3607a 0.3225a 0.0259a 0.2614a
Gini@10 0.0813 0.0619 0.0701 0.1108
MSI@10 12.6802 14.1014† 19.7073 42.1952

Dicenb
nDCG@10 0.3632a∗ 0.3231a 0.0266a∗ 0.2615a
Gini@10 0.0814 0.0603 0.0764 0.1114
MSI@10 12.6822 13.9748 20.1246∗ 42.3233∗

Jaccardbin
nDCG@10 0.3625a 0.3251a 0.0260a 0.2679ab
Gini@10 0.0777 0.0531 0.0643 0.1144
MSI@10 12.4758† 13.5672† 19.3526 42.8385

Jaccardnb
nDCG@10 0.3652a 0.3251a 0.0267a 0.2681ab

Gini@10 0.0706 0.0526 0.0727 0.1153
MSI@10 12.2601 13.4775 19.8563∗ 42.9928∗

Chi-squarebin
nDCG@10 0.3009a 0.2522a† 0.0252a† 0.2576a
Gini@10 0.1506 0.1107 0.2155 0.1617
MSI@10 17.2052b† 20.1509b 31.0904b† 50.0770b†

Chi-squarenb
nDCG@10 0.3555a∗ 0.2023a 0.0170a 0.2669ab∗
Gini@10 0.1061 0.1446 0.0141 0.1370
MSI@10 14.0452b 23.2940b∗ 14.3163 46.9330b
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user, we rank all the items in the test set excluding those that have
been rated by the user in the training set. This protocol allows us to
assess how well a recommender system can differentiate relevant
from non-relevant items [3].

When evaluating the rating prediction task, error based metrics,
such as Mean Absolute Error (MAE) or Root Mean Square Error
(RMSE), have traditionally been used [18]. When switching to the
top-N recommendation task, these measures are no longer useful,
and traditional IR metrics need to be used to assess the effectiveness
of the system [9, 20]. To evaluate the effectiveness of the recom-
mendations we use the Normalized Discounted Cumulative Gain
(nDCG), using the standard formulation as described in [35] with
ratings as graded relevance judgements. In our experiments, only
items with a rating of 4.0 or higher are considered relevant when
evaluating.

While accuracy is probably the most desirable characteristic of
a recommender system, some other properties are also important
[6, 18]. Being able to recommend from all the catalogue of items,
instead of only the more popular ones, is usually an added benefit
for a recommender system. We measure the capability of a rec-
ommender system to produce diverse recommendations with the
complement of the Gini index [15]. When the value of the index is 0
it signifies that a single item is being recommended to all the users.
A value of 1 means that all the items are recommended equally to
all the users.

Another desirable property is the novelty, the ability of the rec-
ommender system to generate unexpected results that the user
probably did not know. In other words, the highest the novelty, the
highest the probability of the recommender system of producing
serendipitous recommendations, usually associated with higher
user satisfaction [17]. We use the mean self-information (MSI) [36]
to assess the novelty of the recommendations.

We evaluate all metrics with a cut-off of 10. We do this because
we are interested in evaluating the quality of the top recommenda-
tions. These are the ones the user usually consumes, either because
the space for showing the recommendations is limited and few
recommendations are presented or because the user only pays at-
tention to the top recommendations.

4.3 Results
We tested all the proposed term association measures (both user-
based and item-based approaches) on the four datasets. We used
k-NN for computing the neighbourhoods and tuned the number
of nearest neighbours from k = 25 to 125 in steps of 25 neigh-
bours. We used the same measure for neighbourhood computation
and rating weighting, as preliminary experiments did not show
significant differences between combining metrics and using the
same. We compared our proposed measures against cosine similar-
ity and Pearson’s coefficient. Tables 2 and 3 show the best results
for nDCG@10, and their corresponding values for Gini@10 and
MSI@10, for user-based and item-based recommendation, respec-
tively.

Overall, Pearson’s Chi-squared measure performs the best in the
user-based scenario, outperforming the baselines on every dataset.
It also yields some of the best results in novelty and diversity, which
makes it a fairly useful similarity metric as an increase in novelty

or diversity usually implies a reduction in accuracy [36]. Jaccard
index and Dice’s coefficient also showed similar results regarding
nDCG@10.

In the user-based scenario, non-binarized measures tend to im-
prove the results of the binarized ones: in 10 out of 24 cases, the
non-binarized version is significantly better than its binarized coun-
terpart regarding nDCG@10, while only in 3 out of 24 cases the
binarized metrics significantly outperform the non-binarized ones.
In contrast, in the item-based recommendation, the trend is re-
versed but not so clear: in 6 out of 24 cases the non-binarized metric
significantly improved the results of the binarized ones, whereas
in 11 out of 24 cases the binarized metric significantly performed
better than the non-binarized one.

However, item-based term association measures show worse
performance than in the user-based scenario, generally not improv-
ing cosine similarity: only Pearson Chi-squared measure (in its
non-binarized version) and Jaccard index (in both versions) sig-
nificantly outperformed cosine similarity, and only in the Library-
Thing dataset. Examining the results in more detail, we can see
that Pearson Chi-square measure performed notably worse than in
user-based recommendation, being outperformed by Jaccard index
and Dice’s coefficient most of the time. PMI yields the best novelty
results overall, but in exchange for very low precision, as was to be
expected due to the trade-off between accuracy and novelty [36].

In summary, we can conclude that Pearson Chi-squared measure
is a highly valuable similarity for the user-based scenario, as it
improves both precision and novelty w.r.t. cosine. Jaccard index
and Dice’s coefficient have also proven to be useful metrics. Non-
binarized versions should be used in this case, as they tend to
perform better. On the other hand, PMI should be discarded as a
viable metric, as its low precision renders it unusable. Lastly, none
of the proposed metrics seems good enough for the item-based
scenario, as its occasional improvements in novelty and diversity
do not compensate the loss of precision.

5 CONCLUSIONS AND FUTUREWORK
In this work, we have adapted several term association measures
for their use in collaborative filtering. On the one hand, we present
adaptations where the explicit value of the preference of the user
is dropped, using this preferences in a binarized form where only
showing interest in an item matters. On the other hand, we also
propose versions where the ratings that the user gave to items
are taken into account when computing the measures. These mea-
sures can be used to estimate user-user and item-item similarities.
We tested the performance of the measures by using them with a
memory-based recommender, in both user and item based form.

The results of the experiments show that when it comes to the
user-based scenario, the Pearson’s Chi-squared measure outper-
forms the baselines regarding accuracy, with a statistically signifi-
cant difference in 3 out of 4 datasets. That measure can do so while
increasing diversity and novelty at the same time in three of the
four datasets. Also, in this same scenario, the non-binarized ver-
sions of the metrics have proven to perform significantly better in
most cases, and should thus be preferred.

As future work, it may be worthwhile to analyse the results
produced by these metrics with other memory-based formulations
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different from WSR. It can also be interesting to study the per-
formance of these measures with implicit collaborative filtering
data.
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