
Introduction

Pedro Cabalar

Department of Computer Science
University of Corunna, SPAIN

cabalar@udc.es

2015/2016

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 1 / 22

Bugs

The first real bug detected in Harvard Mark II

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 3 / 22

Introduction

Software is a complex, conceptual product⇒ Errors are inherent

Software may be faulty or work unexpectedly.

Facing a program, a pair of natural questions are:
Faulty: is this program right?⇒ verification

Unexpected: is this the right program?⇒ validation

Let us focus on verification . . .
P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 4 / 22

An example

We want to compute the greatest common divisor of two integers
x > y > 0, gcd(x , y)

The following code is obviously correct:

gcd:=1;
for i:=2 to y do
if ((x mod i)=0) and ((y mod i)=0) then
gcd:=i;

but rather inefficient. How many steps do we need for
gcd(10000000,1000000) ?

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 5 / 22

An example

Euclid’s algorithm [Euclid, 300 BC]:

a:=x;
b:=y;
while a<>b do begin
if a>b then
a:=a-b

else
b:=b-a;

end;
gcd:=a;

Obviously faster but . . .

Exercise 1 (0,6 points T.G.R.)
Can you prove it is correct? (if not, a real shock after 2.300 years!)

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 6 / 22

A bit of history . . .

During the 1960’s algorithm design was born.
But up to late 60’s: unreadable programs, GOTO statements.
So-called “spaghetti code”

10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

Structured programming [Böhm & Jacopini 66]:
any program = {sequential + conditional + iterative} instructions.

for i:=1 to 10 do
writeln(i,’ squared= ’,i*i);

writeln(’Program completed’);

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 7 / 22

Formal reasoning in AI

John McCarthy
(1927 – 2011)

Turing Award 1971

[McCarthy 1951] ”A basis for a Mathematical Theory of
Computation” actually the first proposal of replacing trial-and-error
by formal proof of correctness.

[McCarthy 1960] ”Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I” = LISP language.

McCarthy introduced the first example of program semantics
(operational semantics) using lambda calculus for LISP.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 8 / 22

Formal reasoning in AI

Allen Newell Herbert Simon
(1927 – 1992) (1916 – 2001)

Turing Award 1975 Turing Award 1975
Nobel (Economics) 1978

[Herbert & Simon 1955] Logic Theorist: probably the first
successful theorem prover (proved 38 theorems from Russell’s
Principia Mathematica)

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 9 / 22

Algorithm design and correctness

Sir C. Anthony R. Hoare (1934 –)
Turing Award 1980

[H. 1962] designs the Quicksort algorithm. Was it correct? crucial
point: defining a program semantics
[H. 1969] Hoare Logic (axiomatic semantics).

{Q} prog {R} = If precondition Q initially true,
then program prog terminates
satisfying postcondition R.

“There are two ways of constructing a piece of software:
One is to make it so simple that there are obviously no errors,
and the other is to make it so complicated that there are no
obvious errors.” Tony Hoare.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 10 / 22

Algorithm design and correctness

Edsger W. Dijkstra (1930 – 2002)
Turing Award 1972

[D. 1959] algorithm for shortest path tree.

[D. 1965] introduces the idea of semaphore for controlling shared
resources in a concurrent environment.

[D. 1968] Go To Statement Considered Harmful.

[D. 1976] A Discipline of Programming:
formal verification, weakest precondition, program derivation,
guarded commands programming language.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 11 / 22

Denotational semantics

Dana S. Scott (1932 –)
Turing Award 1976

[Scott & Rabin 1959] “Finite Automata and Their Decision
Problems” (nondeterministic machines, automata theory)

[Scott & Strachey 1971] “Toward a mathematical semantics for
computer languages” denotational semantics.

“Denotation” = function from input to output.

A semantics is compositional when the meaning of a sentence is
built on the meaning of its sub-sentences⇒ basis of functional
languages with concurrency (e.g. Haskell).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 12 / 22

Verification

Verification: prove or disprove the correctness of a given system:
software (algorithms, protocols) or hardware (circuits).

Checking that the program is correct . . . but when? always,
sometimes, in a given case?

I Always correct: prove a necessary and sufficient condition
The program is correct if and only if:

x mod a = 0 ∧ y mod a = 0
∧ ¬∃z > a(x mod z = 0 ∧ y mod z = 0)

I Sometimes correct: prove a necessary condition.
If the program is correct, it must satisfy:

x = k ∗ y ⇒ a = y

I Correct for some test case (a stronger necessary condition). Try
this test:

x = 60 ∧ y = 45 ⇒ a = 15

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 14 / 22

Verification

Test cases

x=60 & y=45 -> a=15?

x=30 & y=12 -> a=6?

x=100 & y=10 -> a=10?

...

Test generators
e.g. quickcheck

k in [1..1000]
& x=k*y -> a=y?

Model checking
necessary

& sufficient

BUT

requires finite domain

Theorem Proving
necessary

& sufficient

Test cases

x=60 & y=45 -> a=15?

x=30 & y=12 -> a=6?

x=100 & y=10 -> a=10?

...

Test generators
e.g. quickcheck

k in [1..1000]
& x=k*y -> a=y?

Model checking
necessary

& sufficient

BUT

requires finite domain

Theorem Proving
necessary

& sufficient

Test design

Software Engineering

Formal

Verification

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 15 / 22

Formal Verification

Formal methods
1 Formal specification: formulas asserting what the system should

do, not how.
2 Formal verification: obtain a formal proof for the specification.

The word formal means we use mathematical objects to model the
system, both for specifying properties and for obtaining proofs.

Some examples of used mathematical models: finite state
machines, Petri nets, program semantics, process algebras, logics
(classical, modal, temporal), etc.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 16 / 22

Formal Verification

Trial-and-error verification Formal verification

100 % confidence never reached Mathematical methods

Keypoint: good design of Keypoint: good formulation of
test cases properties to prove

We always depend on We can work with
a program an algorithm

Efficiency = execution time Efficiency = complexity

Warning: tests are still necessary for validation. We can prove that a
property holds, but perhaps it’s not the right property to be proved!

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 17 / 22

Formal Verification

The ideal of Formal Verification
Program + formulas −→ Correct?

I Yes : correctness proof
I No : counterexample
I ??: sometimes we may have no answer!

Alan Turing
(1912 – 1952)
No Turing Award
but he’s Turing!

Halting problem [Turing 1936] is undecidable:
there exists no algorithm to decide
if any arbitrary pair program+input
will eventually halt or run forever.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 18 / 22

Formal verification approaches

There are two main approaches to formal verification

1. Theorem proving: uses logical inference to prove the verification
conditions.

I Semi-automated: it usually requires user supervision or selection of
proof strategies.

I Best suited for proving correctness during the algorithm design.

I Examples of theorem provers: Isabelle, ACL2, Coq, PVS.

I In Coq, the proof is constructive: we can automatically derive a
correct program in a functional language.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 19 / 22

Formal verification approaches

There are two main approaches to formal verification

2. Model checking: systematically exhaustive exploration of the
states and transitions in the model.

I When models are infinite, only possible if we can deal with a finite
representation. With finite models, verification becomes decidable.

I Best suited for finding counterexamples on an already built system.

I Typically applied to reactive systems: they have inifinite execution,
but must satisfy some properties:

F liveness: something good eventually happens;
F safety: nothing bad ever happens.

I Properties are expressed using temporal logics.

I Those properties are checked using tools that (intelligently) explore
the state space. These tools are called model checkers.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 20 / 22

Model Checking main approaches

Amir Pnueli Edmund M. Clarke
(1941 – 2009) (1945 –)

Turing Award 1996 Turing Award 2007

Two main approaches
Linear Temporal Logic (LTL) proposed by Pnueli in the 70’s. It is
used by the SPIN model checker. More oriented to (concurrent)
software verification.

Computation Tree Logic (CTL) proposed by Clarke and Emerson.
It constitutes the basis of SMV, NuMV, nuXmv model checkers.
More oriented to circuit verification.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 21 / 22

Model Checking main approaches

Edmund M. Clarke
(1945 –)

Turing Award 2007

Exercise: watch Clarke’s invited talk on model checking
at Vienna Summer of Logic 2014
https://vimeo.com/103456257

P. Cabalar (Department of Computer Science University of Corunna, SPAIN cabalar@udc.es)Introduction 2015/2016 22 / 22

https://vimeo.com/103456257

	Introduction
	Formal Verification

