Tema 1: Minimización

Lógica - Grado en Inteligencia Artificial (UDC)

Curso 2022-2023

F. Aguado, P. Cabalar, G. Pérez, C. Vidal

Minimización

- Dado un conjunto de modelos S, ¿podemos hallar una fórmula α tal que $M(\alpha) = S$?
- Comenzando con los modelos de $M(\alpha)$, se obtiene una FND de α .
- A partir de los contramodelos de α , se obtiene una FNC de α .
- Objetivo: encontrar una fórmula de tamaño minimal.
- Métodos: de Karnaugh y de Quine-McCluskey.

Implicantes

Definición

Un conjunto de literales C es un implicante de α si su conjunción implica α . C es un implicante primo de α si no existe D, implicante de α , con $D \subset C$.

Implicantes

Definición

Un conjunto de literales C es un implicante de α si su conjunción implica α . C es un implicante primo de α si no existe D, implicante de α , con $D \subset C$.

- Para minimizar: Obtendremos un conjunto de implicantes primos de una fórmula a partir de su conjunto de modelos.
- Suponemos un orden arbitrario (por ejemplo, alfabético) entre los átomos de la signatura. Por ejemplo: [p, q, r, s].
- Representamos cada modelo como una cadena de bits siguiendo esa ordenación. Así, 1010 indica que p y r son verdaderos y el resto falsos.
- Podemos representar 1010 como una conjunción de literales $p \land \neg q \land r \land \neg s$ (llamado mintérmino) o utilizando su representación decimal m10.

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

$$M(\alpha) = \{ \{q\}, \{r\}, \{p,q\}, \{q,r\} \} \}$$

	ı			ı	
minterm	p	q	r	α	
m0	0	0	0	0	
m1	0	0	1	1	
m2	0	1	0	1	
m3	0	1	1	1	
m4	1	0	0	0	
m5	1	0	1	0	
m6	1	1	0	1	
m7	1	1	1	0	
				•	

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
m0	0	0	0	0		
m1	0	0	1	1	\longrightarrow	$\neg p \land \neg q \land r$
m2	0	1	0	1	\longrightarrow	$\neg p \land q \land \neg r$
m3	0	1	1	1	\longrightarrow	$\neg p \land q \land r$
m4	1	0	0	0		
m5	1	0	1	0		
m6	1	1	0	1	\longrightarrow	$p \wedge q \wedge \neg r$
m7	1	1	1	0		

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
m0	0	0	0	0		
m1	0	0	1	1	\longrightarrow	$\neg p \land \neg q \land r$
m2	0	1	0	1	\longrightarrow	$\neg p \land q \land \neg r$
m3	0	1	1	1	\longrightarrow	$\neg p \land q \land r$
m4	1	0	0	0		
m5	1	0	1	0		
m6	1	1	0	1	\longrightarrow	$p \wedge q \wedge \neg r$
m7	1	1	1	0		

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

$$M(\alpha) = \{ \{q\}, \{r\}, \{p,q\}, \{q,r\} \} \}$$

p	q	r	α	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
						n\/a\/r
m0	0	0	0	0	\rightarrow	$p \lor q \lor r$
m1	0	0	1	1		
m2	0	1	0	1		
m3	0	1	1	1		
m4	1	0	0	0	\longrightarrow	$\neg p \lor q \lor r$
m5	1	0	1	0	\longrightarrow	$\neg p \lor q \lor \neg r$
m6	1	1	0	1		
m7	1	1	1	0	\longrightarrow	$\neg p \lor \neg q \lor \neg r$
					_	

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
m0	0	0	0	0	\longrightarrow	$p \lor q \lor r$
m1	0	0	1	1		
m2	0	1	0	1		
m3	0	1	1	1		
m4	1	0	0	0	\longrightarrow	$\neg p \lor q \lor r$
m5	1	0	1	0	\longrightarrow	$\neg p \lor q \lor \neg r$
m6	1	1	0	1		
m7	1	1	1	0	\longrightarrow	$\neg p \lor \neg q \lor \neg r$

$$\alpha = (p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$$

- Un Diagrama de Karnaugh de una función booleana es una representación gráfica de la tabla de valores de la función.
- Un mapa de Karnaugh es similar a una tabla de verdad, ya que muestra todos los posibles valores de la salida para cada combinación posible de las entradas.
- En lugar de organizarse en filas y columnas, un mapa de Karnaugh es un conjunto de celdas en el que cada celda representa un valor binario de las entradas.
- El número de celdas de un mapa de Karnaugh es igual al número total de posibles combinaciones de los valores de las variables de entrada, es decir, 2^n siendo n el número de variables de la función.

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

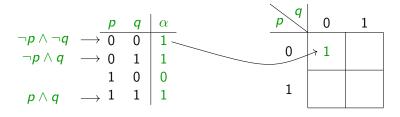
$$\begin{array}{c|cccc}
\neg p \land \neg q & \longrightarrow & p & q & \alpha \\
\neg p \land \neg q & \longrightarrow & 0 & 0 & 1 \\
\neg p \land q & \longrightarrow & 0 & 1 & 1 \\
& & 1 & 0 & 0 \\
p \land q & \longrightarrow & 1 & 1 & 1
\end{array}$$

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

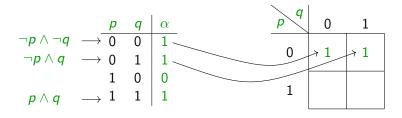
		p	q	α
$\neg p \land \neg q$	\longrightarrow	0	0	1
$\neg p \land q$	\longrightarrow	0	1	1
		1	0	0
$\neg p \land \neg q$ $\neg p \land q$ $p \land q$	\longrightarrow	1	1	1

pq	0	1
0		
1		

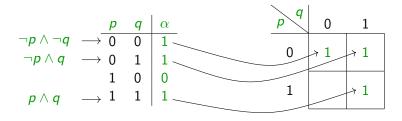
$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$



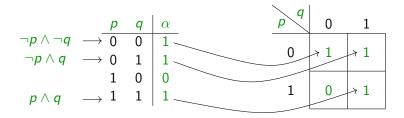
$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$



$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$



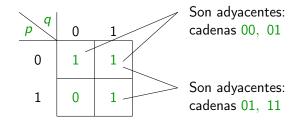
$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$



- Las celdas se distribuyen de manera que simplificar una determinada expresión consiste en agrupar adecuadamente algunas de las celdas.
- Las celdas de un mapa de Karnaugh se disponen de manera que entre dos celdas adyacentes sólo cambie el valor de una única variable.
- Físicamente, cada celda es adyacente a las que están situadas inmediatamente junto a cualquiera de sus cuatro lados. Pero no es adyacente a aquellas que tocan diagonalmente alguna de sus esquinas.
- Además existe adyacencia cíclica:
 - Las celdas de la fila inferior son adyacentes a las de la fila superior Las celdas de la columna izquierda son adyacentes a las de la derecha

Dos celdas son adyacentes si difieren exactamente en un literal.

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

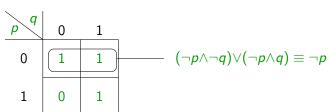


- La minimización comienza agrupando los 1 que estén situados en celdas adyacentes del mapa.
 - Un grupo debe contener el mayor número posible de celdas
 - ♦ toda celda del grupo debe ser adyacente a otra celda del grupo
 - ♦ el número de celdas de cada grupo debe ser potencia de 2
 - ese bloque se llama implicante primo
 - Cada 1 del diagrama debe estar incluído en al menos un grupo, aunque un 1 puede estar incluído en varios grupos solapados
- Puede haber varias agrupaciones válidas posibles, pero siempre eligiendo los bloques de mayor tamaño posible para minimizar el número de grupos, y siempre se debe elegir un bloque si es el único bloque de unos que cubre a un 1 en el diagrama. Este bloque se llama implicante primo esencial.

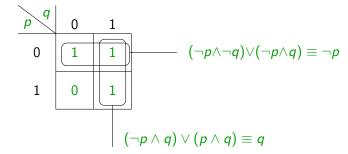
Ejemplo anterior:
$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

pq	0	1
0	1	1
1	0	1

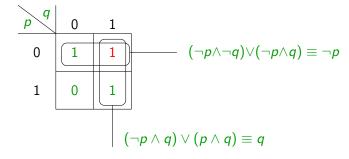
Ejemplo anterior: $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$



Ejemplo anterior:
$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

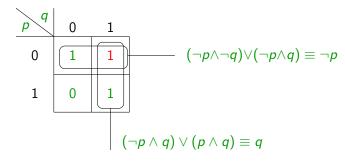


Ejemplo anterior: $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$



$$\alpha = (\neg p \wedge \neg q) \vee (\neg p \wedge q) \vee (p \wedge q)$$

Ejemplo anterior: $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$



$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

$$\equiv (\neg p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land q) \lor (p \land q) \equiv \neg p \lor q$$

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0

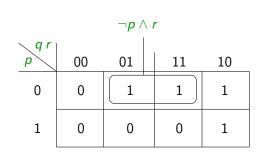
$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	α
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0

q r	00	01	11	10
0	0	1	1	1
1	0	0	0	1

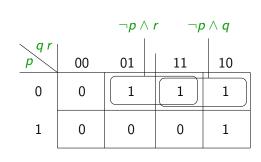
$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	α
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0



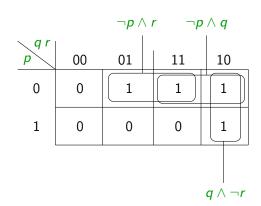
$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0



$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

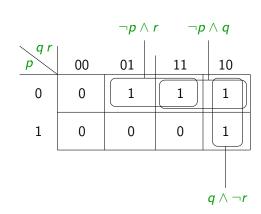
minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0



Ejemplo

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0

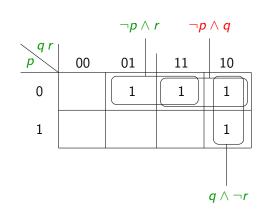


$$\alpha \equiv (\neg p \wedge r) \vee (\neg p \wedge q) \vee (q \wedge \neg r) \equiv (\neg p \wedge r) \vee (q \wedge \neg r)$$

 $(\neg p \land q)$ es un implicante primo no esencial

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	р	q	r	α
m1	0	0	1	1
m2 m3	0	1 1	0 1	$\left egin{array}{c} 1 \\ 1 \end{array} \right $
1113	0	1	1	1
m6	1	1	0	1



$$\alpha \equiv (\neg p \wedge r) \vee (\neg p \wedge q) \vee (q \wedge \neg r) \equiv (\neg p \wedge r) \vee (q \wedge \neg r)$$

Minimización: método de Quine-McCluskey

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	
m1	001	
m2	010	
m3	011	
m6	110	

Minimización: método de Quine-McCluskey

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

string	minterm	string
001	m(1,3)	0 - 1
010		
011		
110		
	001 010 011	001 m(1,3) 010 011

Minimización: método de Quine-McCluskey

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string
m1	001	m(1,3)	0 - 1
m2	010	m(2,3)	01 -
m3	011		
m6	110		

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string
m1	001	m(1,3)	0 - 1
m2	010	m(2,3)	01 -
m3	011	m(2,6)	-10
m6	110	. ,	

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m1	001		0 – 1		
m2	010		01 -		
m3	011	m(2,6)	-10		
m6	110				

• En el siguiente paso, emparejamos cadenas en la nueva columna.

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- Comenzamos con la tabla de los modelos de α .
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m1	001	m(1,3)	0 - 1 *		
m2	010	m(2,3)	01 - *		
m3	011	m(2,6)	-10 *		
m6	110				

• En el siguiente paso, emparejamos cadenas en la nueva columna. Si una cadena no se empareja, se marca con *.

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6).
- Aunque no todos son esenciales.

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6).
- Aunque no todos son esenciales.
- Construimos una tabla:

	1	2	3	6
m(1,3)	×		×	
m(2,3)		×	×	
m(2,6)		×		×

• Las columnas con una sola × indican implicantes esenciales

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6).
- Aunque no todos son esenciales.
- Construimos una tabla:

	1	2	3	6
m(1,3)	×		×	
m(2,3)		×	×	
m(2,6)		×		×

- Las columnas con una sola × indican implicantes esenciales
- Con los dos implicantes esenciales, m(1,3) y m(2,6) se cubren todos los modelos de α :

$$\alpha \equiv \underbrace{(\neg p \land r)}_{m(1,3)} \lor \underbrace{(q \land \neg r)}_{m(2,6)}$$

Nota: Las secuencias que corresponden a esos implicantes son:

$$m(1,3) \longmapsto 0-1 \text{ y } m(2,6) : \longmapsto -1 0$$

Ejemplo

Tabla de modelos de α

minterm	string
m4	0100
m8	1000
m9	1001
m10	1010
m11	1011
m12	1100
m14	1110
m15	1111

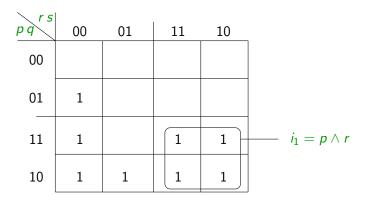
Ejemplo

Tabla de modelos de lpha

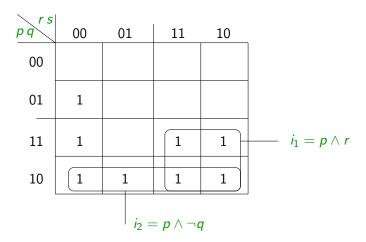
minterm	string
m4	0100
m8	1000
m9	1001
m10	1010
m11	1011
m12	1100
m14	1110
m15	1111

rs	00	01	11	10
00				
01	1			
11	1		1	1
10	1	1	1	1

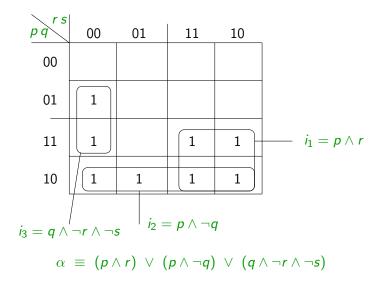
Ejemplo



Ejemplo



Ejemplo



A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string
m4	0100	m(4,12)	-100
m8	1000		
m9	1001		
m10	1010		
m11	1011		
m12	1100		
m14	1110		
m15	1111		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string
m4	0100	m(4,12)	-100
m8	1000	m(8,9)	100-
m9	1001		
m10	1010		
m11	1011		
m12	1100		
m14	1110		
m15	1111		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string
m4	0100	m(4,12)	- 100
m8	1000	m(8,9)	100 —
m9	1001	m(8,10)	10 - 0
m10	1010	m(8,12)	1 - 00
m11	1011	m(9,11)	10 - 1
m12	1100	m(10,11)	101 —
m14	1110	m(10,14)	1 - 10
m15	1111	m(12,14)	11 - 0
		m(14,15)	111 –

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —		
m9	1001	m(8,10)	10 - 0		
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	10 - 1		
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 - 0		
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	10 - 1		
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	10 - 1		
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	10
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 -
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100 *	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	10
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1-1-
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 —		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion.

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100 *	m(8,9,10,11)	10 *
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10 *
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 - *
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 —		

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100 *	m(8,9,10,11)	10 *
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10 *
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 - *
:	:	:	÷		

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15).
- Aunque no todos son esenciales.

• Los implicantes marcados con * son implicantes primos:

$$m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15)$$

Aunque no todos son esenciales

Tabla:

	4	8	9	10	11	12	14	15
m(4,12)	×					×		
m(8,9,10,11)		×	×	×	×			
m(8,10,12,14)		×		×		×	×	
m(10,11,14,15)				×	×		×	×

• Las columnas con una sola × indican implicantes esenciales

• Los implicantes marcados con * son implicantes primos:

$$m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15)$$

Aunque no todos son esenciales

Tabla:

	4	8	9	10	11	12	14	15
m(4,12)	×					×		
m(8,9,10,11)		×	×	×	×			
m(8,10,12,14)		×		×		×	×	
m(10,11,14,15)				×	×		×	×

- Las columnas con una sola × indican implicantes esenciales
- Los tres implicantes esenciales, m(4,12), m(8,9,10,11) y m(10,11,14,15), cubren todos los modelos de la fórmula.

• Los tres implicantes esenciales

cubren todos los modelos de α :

$$\alpha \equiv \underbrace{(q \land \neg r \land \neg s)}_{m(4,12)} \lor \underbrace{(p \land \neg q)}_{m(8,9,10,11)} \lor \underbrace{(p \land r)}_{m(10,11,14,15)}$$

$$m(4,12) \longmapsto -100$$

 $m(8,9,10,11) \longmapsto 10 - -$
 $m(10,11,14,15) \longmapsto 1 - 1 -$