
Verification for ASP Denotational Semantics:

a Case Study using the PVS Theorem Prover

F. Aguado1, P. Ascariz2, P. Cabalar3, G. Pérez4, C. Vidal5

1,3,4,5Department of Computer Science

University of Corunna, SPAIN.

{1aguado, 3cabalar, 4gperez, 5concepcion.vidalm}@udc.es

2pfernandez@enaire.es

Abstract

In this paper we present an encoding of the (recently proposed)

denotational semantics for Answer Set Programming (ASP) and its

monotonic basis into the input language of the theorem prover PVS.

Using some libraries and features from PVS, we have obtained semi-

automated proofs for several fundamental properties of ASP. In this

way, to the best of our knowledge, we provide the first known applica-

tion of formal verification to ASP.

Keywords. Answer Set Programming, Theorem Proving, Formal Verifica-

tion, PVS, Denotational Semantics

1 Introduction

Answer Set Programming (ASP)[4] constitutes nowadays one of the most

successful paradigms of Knowledge Representation and Problem Solving in

1

Artificial Intelligence. The popularity of ASP is probably due to the avail-

ability of efficient solvers for hard computational problems, something that

has allowed a boost in practical applications. But, together with this prac-

tical aspect, the success of ASP is also firmly supported by a constant evo-

lution of its neat theoretical foundations, from its origins with the stable

models semantics [5] for logic programs, until its full logical formalisation

under Equilibrium Logic [7].

Equilibrium Logic is a non-monotonic formalism whose definition in-

volves different types of models. For instance, equilibrium models of a the-

ory Γ are defined by a kind of minimisation among models of Γ in the Logic

of Here-and-There (HT) (an intermediate formalism between intuitionistic

and classical logic). But at the same time, equilibrium models also happen

to be a subset of the classical models of Γ. In this way, these three sets of

models (classical, HT and equilibrium) frequently appear in papers about

theoretical or fundamental properties of ASP.

Recently, a denotational semantics for ASP and Equilibrium Logic was

proposed [2]. This denotational semantics allows characterising different

sets of interpretations and models in a formal way, by just using several set

operations. As a result, many meta-theorems proved in the literature in a

textual or descriptive way become now formalisable in terms of standard set

theory and partial order relations, opening the possibility of semi-automated

proof checking and generation.

In this paper we explore that possibility: we provide the first known

application of automated theorem proving for formal verification of ASP

properties, to the best of our knowledge. In particular, we have implemented

the basic definitions of the ASP denotational semantics in the language of the

PVS (Prototype Verification System) theorem prover [6], using afterwards

2

some libraries and features of this prover to obtain certified proofs in an

semi-automated way.

The rest of the paper is organised as follows. In the next section we

begin recalling the basic features of PVS. After that, we start with the PVS

formalisation of the ASP denotational semantics by introducing sets of par-

tial interpretations. In Section 4, we describe the valuation of formulas in

the logic of HT. Section 5 contains the PVS encoding of the denotational

semantics and the main results of the paper. In Section 6 we provide some

conclusions. Appendix A summarises the correspondence between math-

ematical symbols and PVS code and Appendix B contains an example of

proof in PVS. The complete package of PVS files used for this work can be

downloaded from [1].

2 Brief overview of PVS

PVS is a theorem prover developed and maintained by SRI 1 and is ac-

tively used in industrial applications, being also the “prover of choice” of

NASA Langley Research Center, which actually maintains its own PVS li-

brary 2. PVS provides an environment for constructing clear and precise

specifications and for efficient mechanized verification. The distinguishing

characteristics of PVS are its expressive specification language and its pow-

erful theorem prover. The PVS specification language builds on classical

typed higher-order logic with the usual base types, bool, nat, integer, real,

among others, and the function type constructor (e.g., type [A→ B] is the

set of functions from set A to set B). Predicates are functions with range

type bool. The type system of PVS also includes record types, dependent

1Public repository at https://github.com/SRI-CSL/PVS. Last commit 12/9/2016.
2https://github.com/nasa/pvslib

3

types, and abstract data types. Typechecking in this language requires the

services of a theorem pover to discharge proof obligations corresponding to

subtyping constraints.

PVS specifications are packaged as theories that can be parametric in

types and constants. A collection, prelude.pvs, of theories and loadable

libraries provide standard specifications and proved facts for a large number

of theories. A theory can use the definitions and theorems of another theory

by importing it.

The PVS environment has an automated theorem prover that provides

a collection of powerful primitive inference procedures that are applied in-

teractively under user guidance within a sequent calculus framework. The

primitive inferences include propositional and quantifier rules, induction,

rewriting, simplification using decision procedures for equality and linear

arithmetic, data and predicate abstraction.

One of the main advantages of PVS with respect to other provers such as

Coq, HOL, Isabelle, etc is that it allows the direct declaration of predicate

subtypes. For instance:

bottom(S: set[I]): set[I] = {i: I | EXISTS (j: I):

(member(j,S) AND R_ord2(i,j))}

All properties of the parent type are inherited by the subtype. A con-

straining predicate is provided to identify which elements are contained in

the subset.

3 Partial interpretations

As a starting point, we will use the alternative characterisation of HT in

terms of Gödel’s three-valued logic G3. In particular, in this section, we

4

concentrate on a set of definitions exclusively related to three-valued (or

partial) interpretations and leave their use for valuation of formulas for the

next section.

We start from a finite set of atoms Σ called the propositional signature.

A partial interpretation is a mapping v : Σ → {0, 1, 2} assigning 0 (false),

2 (true) or 1 (undefined) to each atom p in the signature Σ. A partial

interpretation v is said to be classical (or total) if v(p) 6= 1 for every atom p.

We write I and I c to stand for the set of all partial and total interpretations,

respectively (fixing signature Σ). Note that I c ⊆ I.

Before introducing the PVS encoding, it is worth to mention that the

notation (mostly, the variable and function names) used in the PVS code

throughout the paper is slightly different from the one we use in the text

(which respects the original definitions in [2]). Table 1 shows the notation

correspondence. Keeping that name mapping in mind, the PVS encoding of

the above definitions is quite straightforward:

Sig_prop[T: TYPE+]: THEORY

BEGIN

ASSUMING

T_finite: ASSUMPTION is_finite_type[T]

ENDASSUMING

s3?(x:nat):bool = x <= 2

S3: TYPE = (s3?)

s2?(x:nat):bool = s3?(x) AND (x=0 OR x=2)

S2: TYPE = (s2?)

S3_cont_S2: JUDGEMENT S2 SUBTYPE_OF S3

I: TYPE+ = [T -> S3]

IC: TYPE = {i: I | FORALL(t: T): (i(t) = 0 OR i(t) = 2)}

I_cont_IC: JUDGEMENT IC SUBTYPE_OF I

5

Text Theory PVS Denotes ... Page

Σ T the signature 5

p t an atom 5

{0, 1, 2} S3 the set {0, 1, 2} 5

I I the set of all partial interpretations 5

I c IC the set of all total interpretations 5

u, v i, j partial interpretations 5

vt RT(i) the total interpretation associated to i 7

v ≤ u R_ord(i,j: I) the order relation 7

S comp(S) complementary 9
Sc classic(S) subset of classical interpretations 9
S ↓ bottom(S) elements in S or below 9
S ↑ top(S) elements in S or above 9

α, β s, t, t1, t2 formulas 12
⊥ bot falsum 12
α ∨ β op_or(t1,t2) disjunction 12
α ∧ β op_and(t1,t2) conjunction 12
α→ β op_imp(t1,t2) implication 12

Jα K denotation(s) denotation of α 15

Table 1: Correspondence between notation used in the text and names used
in the PVS code.

6

Given any partial interpretation v ∈ I we define a particular classical

interpretation vt ∈ I c that, informally speaking, transforms 1’s into 2’s.

Formally:

vt(p)
def
=

 2 if v(p) = 1

v(p) otherwise

Our PVS encoding represents vt as the function RT(i).

RT(i: I): IC =

LAMBDA(t: T): IF i(t) = 0 THEN 0 ELSE 2 ENDIF

We will be interested in a particular ordering among partial interpreta-

tions that is defined as follows. Given two partial interpretations u, v, we

say that u ≤ v when, for any atom p ∈ Σ, the following two conditions hold:

u(p) ≤ v(p); and u(p) = 0 implies v(p) = 0. In other words, u and v must

coincide in their 0’s and an atom value in u must not be greater than its

value in v. We encode this relation as R_ord2 below:

R_ord2(i,j: I): bool =

IF (FORALL (t: T): (i(t) <= j(t)) AND (i(t) = 0 IMPLIES j(t) = 0))

THEN TRUE ELSE FALSE

ENDIF

This relation can be equivalently characterised in terms of vt as described

below:

R_ord(i,j: I): bool =

IF ((FORALL (t: T): (i(t) <= j(t))) AND RT(i) = RT(j)) THEN TRUE

ELSE FALSE

ENDIF

R_ord_same: LEMMA FORALL (i,j: I): (R_ord(i,j) IFF R_ord2(i,j))

We can use PVS to certify that ≤ is, indeed, a partiar order relation:

R_reflexive: LEMMA FORALL (i: I): R_ord(i,i)

R_antisymmetric: LEMMA FORALL (i,j: I):

7

(R_ord(i,j) AND R_ord(j,i)) IMPLIES i = j

R_transitive: LEMMA FORALL (i,j,k: I):

(R_ord(i,j) AND R_ord(j,k)) IMPLIES R_ord(i,k)

R_partial_order: LEMMA partial_order?[I](R_ord)

Moreover, we can easily check the following properties relating ≤ and vt:

∀v ∈ I v ≤ vt

∀v ∈ I c vt = v

∀v, u ∈ I if v ≤ u then vt = ut

∀v, u ∈ I if v ≤ u and u ∈ I c then vt = u

RT_ord: LEMMA FORALL (i: I): R_ord(i,RT(i))

RT_classic: LEMMA FORALL (i: IC): RT(i) = i

RT_ord_mon: LEMMA FORALL (i,j: I): R_ord(i,j) IMPLIES RT(i) = RT(j)

RT_ord_uniq: LEMMA FORALL (i: I, j: IC): R_ord(i,j) IMPLIES RT(i) = j

In [2], an important group of constructions that became crucial for defin-

ing the denotational semantics were the following operations. Given a set

of interpretations S ⊆ I we define:

S
def
= {u ∈ I | u /∈ S}

Sc
def
= {u ∈ I c | u ∈ S} = I c ∩ S

S ↓ def
= {u ∈ I | there exists v ∈ S, v ≥ u}

S ↑ def
= {u ∈ I | there exists v ∈ S, v ≤ u}

To avoid too many parentheses, we will assume that ↓, ↑ and subindex c have

more priority than standard set operations ∪, ∩ and \. The implementation

of these operations in PVS is also quite straightforward:

i: VAR I

ic: VAR IC

comp(S: set[I]): set[I] = {i: I | NOT member(i,S)}

classic(S: set[I]): set[IC] = {ic | member(ic,S)}

8

bottom(S: set[I]): set[I] =

{i: I | EXISTS (j: I): (member(j,S) AND R_ord2(i,j))}

top(S: set[I]): set[I] =

{i: I | EXISTS (j: I): (member(j,S) AND R_ord2(j,i))}

Although for the forthcoming results in the paper we have used some

lemmas from standard set theory included in the PVS library prelude.pvs,

we have also required some additional specific properties for the set operators

we have just introduced. These useful properties are specified below:

Proposition 1 For any X,Y ⊆ I,

(Xc ↓)c = Xc

If X ⊆ Y then X ↓ ⊆ Y ↓

If X ⊆ Y then X ↑ ⊆ Y ↑

(X ∪ Y) ↓ = X ↓ ∪Y ↓

(X ∪ Y) ↑ = X ↑ ∪Y ↑

(X ∩ Y) ↑ ⊆ X ↑ ∩ Y ↑

(X ∩ Y) ↓ ⊆ X ↓ ∩ Y ↓

classic_bottom_classic: LEMMA FORALL (X: set[I]):

classic(bottom(classic(X))) = classic(X)

bottom_subset: LEMMA FORALL (X, Y: set[I],i: I):

subset?(X,Y) IMPLIES subset?(bottom(X),bottom(Y))

top_subset: LEMMA FORALL (X, Y: set[I],i: I):

subset?(X,Y) IMPLIES subset?(top(X),top(Y))

union_bottom: LEMMA FORALL (X,Y: set[I]):

bottom(union(X,Y)) = union(bottom(X),bottom(Y))

union_top: LEMMA FORALL (X,Y: set[I]):

top(union(X,Y)) = union(top(X),top(Y))

intersection_bottom: LEMMA FORALL (X,Y: set[I]):

subset? (bottom(intersection(X,Y)), intersection(bottom(X),bottom(Y)))

intersection_top: LEMMA FORALL (X,Y: set[I]):

subset? (top(intersection(X,Y)), intersection(top(X),top(Y)))

9

With these new operators we can formally express that vt is the only

classical interpretation greater or equal than v in the following way:

Proposition 2 For any v ∈ I, it holds that {v} ↑c = {vt}

classic_top_uni: LEMMA FORALL (i: I):

classic(top(singleton(i))) = singleton(RT(i))

Proposition 3 For any interpretation v, v ∈ (Sc) ↓ ⇐⇒ vt ∈ S.

classic_total: LEMMA FORALL (S: set[I],i: I):

(member(i,bottom(classic(S)))) IFF (member(RT(i),S))

A particularly interesting type of sets of interpretations are those S sat-

isfying that vt ∈ S for any v ∈ S. When this happens, we say that S is

total-closed or classically closed.

S: VAR set[I]

total_closed?(S): bool = FORALL (i:I):

(member(i,S)) IMPLIES (member(RT(i),S))

We can capture this property with any the following equivalent condi-

tions:

Proposition 4 The following assertions are equivalent:

(i) S is total-closed

(ii) S ⊆ Sc ↓

(iii) S ↑c= Sc

total_closed_1: LEMMA FORALL (S: set[I]):

total_closed?(S) IMPLIES subset?(S, bottom(classic(S)))

total_closed_2: LEMMA FORALL (S: set[I]):

subset?(S, bottom(classic(S))) IMPLIES classic(top(S))=classic(S)

10

total_closed_3: LEMMA FORALL (S: set[I]):

classic(top(S))=classic(S) IMPLIES total_closed?(S)

Proposition 5 If S is a total-closed set of interpretations, then (S)c ↓⊆

(Sc ↓).

bottom_classic_com_1: LEMMA FORALL (S: set[I],i: I):

subset?(bottom(classic(comp(S))),comp(bottom(classic(S))))

Corollary 6 If S is a total-closed set of interpretations, then (S)c ↓⊆ S

bottom_classic_com_2: LEMMA FORALL (S: set[I],i: I):

total_closed?(S) IMPLIES subset?(bottom(classic(comp(S))),comp(S))

4 G3 valuation of formulas

In this section we describe the valuation of formulas in Gödel’s G3 logic

(equivalent to HT). We begin defining a formula α with the grammar:

α ::= ⊥ | p | α1 ∧ α2 | α1 ∨ α2 | α1 → α2

where α1 and α2 are formulae in their turn and p ∈ Σ is any atom. We

denote by ¬α def
= α→ ⊥ and > def

= ¬⊥. By LΣ we denote the language of all

well-formed formulae for signature Σ or just L when the signature is clear

from the context.

The encoding of formulas in PVS uses the abstract data-type construct:

Sig_form[T: TYPE+]: DATATYPE

BEGIN

bot: bot?

11

atom(t: T): atom?

op_and(t1: Sig_form, t2: Sig_form): op_and?

op_or(t1: Sig_form, t2: Sig_form): op_or?

op_imp(t1: Sig_form, t2: Sig_form): op_imp?

END Sig_form

The DATATYPE construction in PVS provides a powerful tool for defining

an abstract data type (ADT). To do so, we provide a set of constructors,

accessors and recognizers. In this case, the constructors are bot, atom, etc,

whereas the accessors are t, t1 and t2. The recognizers are bot?, atom?,

op_and?, etc. When the type checker is applied to an ADT three new

theories are automatically created in a file name_adt.pvs. These theories

provide the required axioms and induction principles to guarantee that the

ADT conforms an algebra, defined by the constructors, that we can use as

a starting point.

Given a partial interpretation v ∈ I we define a corresponding valuation

of formulas, a function also named v (by abuse of notation) of type v : L →

{0, 1, 2} and defined as:

v(⊥)
def
= 0

v(α→ β)
def
=

 2 if v(α) ≤ v(β)

v(β) otherwise

v(α ∧ β)
def
= min(v(α), v(β))

v(α ∨ β)
def
= max(v(α), v(β))

We say that v satisfies α when v(α) = 2. We say that v is a model of a

theory Γ iff v satisfies all the formulas in Γ.

The translation of G3 valuation of formulas into PVS is as follows:

12

v_form(s: Sig_form,i: I): RECURSIVE S3 =

CASES s OF

bot: 0,

atom(t): i(t),

op_and(t1,t2): min(v_form(t1,i),v_form(t2,i)),

op_or(t1,t2): max(v_form(t1,i),v_form(t2,i)),

op_imp(t1,t2): IF v_form(t1,i) <= v_form(t2,i) THEN 2

ELSE v_form(t2,i) ENDIF

ENDCASES

MEASURE s BY <<

In PVS, all functions must be total. The MEASURE part describes a bound

function for the recursive definition that must decrease in each recursive

call. In this way, the type-checker can provide a related termination lemma

that will lead to a set of Type Checking Conditions (TCC’s) that in most

cases must be proved manually by the specifier. In our particular case, the

MEASURE function corresponds to << that stands for the syntactic tree of

term s (the formula) so that structural induction will be used.

We describe next three propositions that have been particularly useful

as intermediate steps inside larger proofs.

Proposition 7 For any v ∈ I and any α, β ∈ L,

• v(α ∧ β) = 2⇐⇒ v(α) = 2 and v(β) = 2

• v(α ∨ β) = 2⇐⇒ v(α) = 2 or v(β) = 2

caractv_form_and2: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_and(t1,t2),i) = 2 IFF

v_form(t1,i)=2 AND v_form(t2,i)=2

caractv_form_or2: Lemma FORALL (t1,t2: Sig_form,i: I):

13

v_form(op_or(t1,t2),i) = 2 IFF

v_form(t1,i)=2 OR v_form(t2,i)=2

Proposition 8 For any v ∈ I and any α, β ∈ L,

• v(α→ β) = 2⇐⇒ v(α) = 0 or v(β) = 2 or v(α) = 1 = v(β)

• v(α→ β) = 0⇐⇒ v(α) 6= 0 and v(β) = 0

• v(α→ β) = 1⇐⇒ v(α) = 2 and v(β) = 1

caractv_form_imp2: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 2 IFF

v_form(t1,i)=0 OR v_form(t2,i)=2 OR (v_form(t1,i)=1 AND v_form(t2,i)=1)

caractv_form_imp0: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 0 IFF

not(v_form(t1,i)=0) AND v_form(t2,i)=0

caractv_form_imp1: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 1 IFF

v_form(t1,i)=2 AND v_form(t2,i)=1

The following result has been proved in PVS by structural induction.

The proof of this result is one of longest and most used among those obtained

in this work.

Proposition 9 For any v ∈ I and any formula α ∈ L,

• v(α) = 0⇐⇒ vt(α) = 0

• v(α) = 2 =⇒ vt(α) = 2

• v(α) ≥ 1⇐⇒ vt(α) = 2

caract_val_zero: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i)=0 IFF v_form(t,RT(i))=0

14

val_two: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i)=2 IMPLIES v_form(t,RT(i))=2

caract_val_nozero: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i)>=1 IFF v_form(t,RT(i))=2

5 Denotational Semantics

At this point, we can already provide an alternative semantics for proposi-

tional formulas in terms of sets of interpretations rather than using the G3

valuation function. The basic idea in a denotational semantics [8] is that,

for any formula α, its denotation Jα K is a set of interpretations representing

all the models of α. In our case, we recursively define Jα K as follows:

J⊥ K def
= ∅

J p K def
= {v ∈ I : v(p) = 2}

Jα→ β K def
=

(
Jα K ∪ Jβ K

)
∩
(
Jα K ∪ Jβ K

)
c
↓

Jα ∧ β K def
= Jα K ∩ Jβ K

Jα ∨ β K def
= Jα K ∪ Jβ K

This recursive definition is captured in the PVS code below:

denotation(s: Sig_form): RECURSIVE set[I] =

CASES s OF

bot: emptyset,

atom(t): {i: I | i(t) = 2},

op_and(t1,t2): intersection(denotation(t1),denotation(t2)),

op_or(t1,t2): union(denotation(t1),denotation(t2)),

op_imp(t1,t2): intersection

(union(comp(denotation(t1)),denotation(t2)),

bottom(classic(union(comp(denotation(t1)),denotation(t2)))))

ENDCASES

15

MEASURE s BY <<

An important result is that the denotational of a formula α is, indeed,

an equivalent reformulation of the set G3 models of α. This is stated by the

theorem below.

Theorem 10 Let v ∈ I be a partial interpretation and α ∈ L a formula.

Then:

v(α) = 2 in G3 iff v ∈ Jα K

whose enunciate in PVS is as follows:

denot_charac: LEMMA FORALL (s: Sig_form, i: I):

v_form(s,i)=2 IFF member(i,denotation(s))

From this, we can also conclude that:

Corollary 11 For any α ∈ L, Jα K is total-closed.

denotation_include: LEMMA FORALL (s: Sig_form,i: I):

member(i,denotation(s)) IMPLIES member(RT(i),denotation(s))

denotation_total_closed: LEMMA FORALL (s: Sig_form,i:I):

total_closed?(denotation(s))

Theorem 12 Let v ∈ I be a partial interpretation and α ∈ L a formula.

Then:

v(α) 6= 0 in G3 iff vt ∈ Jα K

denot_charac_0: LEMMA FORALL (s: Sig_form, i: I):

NOT v_form(s,i) 0 IFF member(RT(i),denotation(s))

The next result is a kind of deduction theorem for the denotational

semantics. Note that if a formula α has denotation I, it means that α is a

tautology.

16

Theorem 13 For any pair of formulae α, β: Jα K ⊆ Jβ K iff Jα→ β K = I.

Moreover, Jα K = Jβ K iff Jα↔ β K = I.

denotation_inclusion: LEMMA FORALL (t1,t2: Sig_form):

subset?(denotation(t1),denotation(t2)) IFF

(FORALL (i:I): member (i,denotation(op_imp(t1,t2))))

denotation_equal: LEMMA FORALL (t1,t2: Sig_form):

denotation(t1) = denotation(t2) IFF

(FORALL (i:I):

member (i,denotation(op_and(op_imp(t1,t2),op_imp(t2,t1)))))

The following result proves that implication verifies monotonicity for the

consequent and anti-monotonicity for the antecedent.

Proposition 14 For any α, β, γ ∈ L

1. Jα K ⊆ Jβ K implies J γ → α K ⊆ J γ → β K

2. Jα K ⊆ Jβ K implies Jβ → γ K ⊆ Jα→ γ K

The encoding in PVS is also quite natural, as shown next:

mon_imp_left: LEMMA FORALL (t1,t2,s: Sig_form,i: I):

subset? (denotation(t1),denotation(t2)) IMPLIES

subset? (denotation(op_imp(s,t1)),denotation(op_imp(s,t2)))

mon_imp_right: LEMMA FORALL (t1,t2,s: Sig_form,i: I):

subset? (denotation(t1),denotation(t2)) IMPLIES

subset? (denotation(op_imp(t2,s)),denotation(op_imp(t1,s)))

One interesting result obtained in [2] is that implication can be alterna-

tive characterised as a union of three different sets of models:

Proposition 15 For any α, β ∈ L it follows that:

Jα→ β K = Jα Kc ↓ ∪
(
Jα K ∩ Jβ Kc ↓

)
∪ Jβ K

17

denotation_imp: LEMMA FORALL (t1,t2: Sig_form,i: I):

denotation(op_imp(t1,t2)):

union(union(

bottom(classic(comp(denotation(t1)))),

intersection(comp(denotation(t1)),bottom(classic(denotation(t2))))),

denotation(t2))

This has some interesting consequences such as, for instance:

Corollary 16 For any α, β ∈ L, it follows that:

1. Jβ K ⊆ Jα→ β K

2. Jα→ β K ⊆ Jα K ∪ Jβ K

3. Jα→ β K ∩ Jα K ⊆ Jβ K

denotation_imp_sub_r: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(denotation(t2),denotation(op_imp(t1,t2)))

denotation_imp_inc_1: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(denotation(op_imp(t1,t2)),

union(comp(denotation(t1)),denotation(t2)))

denotation_imp_inc_2: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(intersection(denotation(op_imp(t1,t2)),denotation(t1)),

denotation(t2))

The following result proves that disjunction in G3 can be represented in

terms of the other operators:

Theorem 17 For any Σ, the system LΣ{⊥,∧,→} is complete because given

any pair of formulas α, β for Σ, it holds that:

Jα ∨ β K = J (α→ β)→ β K ∩ J (β → α)→ α K.

18

denotation_or: LEMMA FORALL (t1,t2: Sig_form,i: I):

denotation(op_or(t1,t2)) =

intersection(denotation(op_imp(op_imp(t1,t2),t2)),

denotation(op_imp(op_imp(t2,t1),t1)))

Finally, we include a characterisation of models for negation:

Proposition 18 For any formula α:

1. J¬α K = Jα Kc ↓

2. For any partial interpretation v, v ∈ J¬α K iff vt ∈ Jα K

denotation_not_charact: LEMMA FORALL (s: Sig_form, i: I):

denotation(op_imp(s,bot)) = bottom(classic(comp(denotation(s))))

denotation_not: LEMMA FORALL (s: Sig_form, i: I):

member(i,denotation(op_imp(s,bot))) IFF

member(RT(i),comp(denotation(s)))

6 Conclusions

In this paper we have provided a specification of the denotational semantics

for Answer Set Programming (ASP) in the language of the theorem prover

PVS. As a result, we have been able to provide computer-checked proofs for

several fundamental properties of ASP denotational semantics, constituting

the first case of automated formal verification for this approach.

From the perspective of ASP, we have certified the correctness of some

theoretical properties (metatheorems) that are usually proved by hand (and

thus, more prune to errors) opening the possibility to explore new semantic

relations with the guarantee of a formal system for checking their soundness.

We have obtained a guided generation of proofs leading to more confidence

19

on correctness. Thanks to the use of a semi-automated prover, we have

also detected some cases of hypotheses that had been introduced in some

results in [2] and that PVS has revealed to be unnecessary. From the PVS

perspective, the obtained theory is medium-sized: it currently comprises 113

proofs, but only a part of [2] has been certified and the rest is still under

development. The most interesting result with respect to the theorem prover

is perhaps that we have detected some properties from standard set theory

that were missing in the PVS set library and became frequently useful in

most proofs. For future work, we plan to include these properties in the set

library and, furthermore, design new strategies [3] that help to automate

some repetitive work we have also detected in the proof generation.

Acknowledgements We wish to thank César A. Muñoz for his support

and expert guidance with non-trivial features of the PVS theorem prover.

This research was partially supported by Spanish MEC project TIN2013-

42149-P.

References

[1] Felicidad Aguado, Pablo Ascariz, Pedro Cabalar, Gilberto Pérez, and

Concepción Vidal. PVS files for ASP denotational semantics, September

2015.

https://github.com/nasa/pvslib/tree/master/ASP.

[2] Felicidad Aguado, Pedro Cabalar, David Pearce, Gilberto Pérez, and

Concepción Vidal. A denotational semantics for equilibrium logic. The-

ory and Practice of Logic Programming, 15(4-5):620–634, 2015.

20

[3] M. Archer, B. D. Vito, and C. Muñoz. Developing user strategies in

PVS: A tutorial. In Proceedings of Design and Application of Strate-

gies/Tactics in Higher Order Logics (STRATA’03), Hampton VA 23681-

2199, USA, 2003. NASA LaRC. NASA/CP-2003-212448.

[4] Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński. Answer set

programming at a glance. Communications of the ACM, 54(12):92–103,

2011.

[5] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-

gramming. In R. A. Kowalski and K. A. Bowen, editors, Logic Pro-

gramming: Proc. of the Fifth International Conference and Symposium

(Volume 2), pages 1070–1080. MIT Press, Cambridge, MA, 1988.

[6] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification

system. In Deepak Kapur, editor, 11th International Conference on

Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial

Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[7] David Pearce. A new logical characterisation of stable models and an-

swer sets. In Non monotonic extensions of logic programming. Proc.

NMELP’96. (LNAI 1216). Springer-Verlag, 1996.

[8] Dana Scott and Christopher Strachey. Toward a mathematical semantics

for computer languages. Technical Report PRG-6, Oxford Programming

Research Group Technical Monograph, 1971.

21

Appendix A. An example of PVS proof

As an example of proof development in PVS, we will partly show the proof

of Theorem 10 we reproduce below.

Theorem 10. Let v ∈ I be a partial interpretation and α ∈ L a formula.

Then:

v(α) = 2 in G3 iff v ∈ Jα K

denot_charac: LEMMA FORALL (s: Sig_form, i: I):

v_form(s,i) = 2 IFF member(i,denotation(s))

The proof of this result is made by induction. The command to invoke

an inductive proof is induct, that in this case generates 5 subgoals corre-

sponding to the 5 constructors of type Sig_fom (formulas). The first subgoal

corresponds to the ⊥ constant:

Rule? (induct "s")

Inducting on s on formula 1,

this yields 5 subgoals:

denot_charac.1 :

|-------

{1} FORALL (i: I): v_form(bot, i) = 2 IFF member(i, denotation(bot))

To prove this subgoal, we apply skolemization, expand the definition of

v_form and we finally simplify. Then, the system proceeds to show the

second subgoal (atoms).

This completes the proof of denot_charac.1.

denot_charac.2 :

|-------

22

{1} FORALL (atom1_var: T):

FORALL (i: I):

v_form(atom(atom1_var), i) = 2 IFF

member(i, denotation(atom(atom1_var)))

The proof is analogous to the previous case. For the subgoal correspond-

ing to the ∧ operator, the system provides the induction hypotheses:

This completes the proof of denot_charac.2.

denot_charac.3 :

|-------

{1} FORALL (op_and1_var: Sig_form[T], op_and2_var: Sig_form[T]):

((FORALL (i: I):

v_form(op_and1_var, i) = 2 IFF

member(i, denotation(op_and1_var)))

AND

(FORALL (i: I):

v_form(op_and2_var, i) = 2 IFF

member(i, denotation(op_and2_var))))

IMPLIES

(FORALL (i: I):

v_form(op_and(op_and1_var, op_and2_var), i) = 2 IFF

member(i, denotation(op_and(op_and1_var, op_and2_var))))

After applying skolemization and instantiation on interpretation i, we

obtain the following, where [-1] and {-2} correspond to the induction

hypothesis:

denot_charac.3 :

[-1] v_form(op_and1_var, i) = 2 IFF member(i, denotation(op_and1_var))

{-2} v_form(op_and2_var, i) = 2 IFF member(i, denotation(op_and2_var))

23

|-------

[1] v_form(op_and(op_and1_var, op_and2_var), i) = 2 IFF

member(i, denotation(op_and(op_and1_var, op_and2_var)))

At this point, a propositional simplification is applied and the proof is

divided in two branches, one for each direction of the biconditional, which

turn out to be the subgoals 3.1 and 3.2:

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:

denot_charac.3.1 :

[-1] v_form(op_and1_var, i) = 2 IFF member(i, denotation(op_and1_var))

[-2] v_form(op_and2_var, i) = 2 IFF member(i, denotation(op_and2_var))

|-------

{1} v_form(op_and(op_and1_var, op_and2_var), i) = 2 IMPLIES

member(i, denotation(op_and(op_and1_var, op_and2_var)))

Once some propositional simplifications are applied, we expand the defi-

nitions member and denotation and we apply Lemma caractv_form_and2

(Proposition 7) to obtain:

denot_charac.3.1 :

{-1} FORALL (t1, t2: Sig_form[T], i: I[T]):

v_form(op_and(t1, t2), i) = 2 IFF

v_form(t1, i) = 2 AND v_form(t2, i) = 2

[-2] v_form(op_and(op_and1_var, op_and2_var), i) = 2

[-3] v_form(op_and1_var, i) = 2 IMPLIES denotation(op_and1_var)(i)

[-4] denotation(op_and1_var)(i) IMPLIES v_form(op_and1_var, i) = 2

[-5] v_form(op_and2_var, i) = 2 IMPLIES denotation(op_and2_var)(i)

[-6] denotation(op_and2_var)(i) IMPLIES v_form(op_and2_var, i) = 2

24

|-------

[1] intersection(denotation(op_and1_var), denotation(op_and2_var))(i)

The proof of the subgoal 3.1 is completed by instantiation of the lemma

with the components op_and1_var and op_and2_var, making some simpli-

fications afterwards. Then, the system shows the subgoal 3.2:

This completes the proof of denot_charac.3.1.

denot_charac.3.2 :

[-1] v_form(op_and1_var, i) = 2 IFF member(i, denotation(op_and1_var))

[-2] v_form(op_and2_var, i) = 2 IFF member(i, denotation(op_and2_var))

|-------

{1} member(i, denotation(op_and(op_and1_var, op_and2_var))) IMPLIES

v_form(op_and(op_and1_var, op_and2_var), i) = 2

Once this proof of subgoal 3 is complete, the system displays the next

goal, corresponding to the ∨ operator.

This completes the proof of denot_charac.3.

denot_charac.4 :

|-------

{1} FORALL (op_or1_var: Sig_form[T], op_or2_var: Sig_form[T]):

((FORALL (i: I):

v_form(op_or1_var, i) = 2 IFF

member(i, denotation(op_or1_var)))

AND

(FORALL (i: I):

v_form(op_or2_var, i) = 2 IFF

member(i, denotation(op_or2_var))))

25

IMPLIES

(FORALL (i: I):

v_form(op_or(op_or1_var, op_or2_var), i) = 2 IFF

member(i, denotation(op_or(op_or1_var, op_or2_var))))

The proof of the fourth subgoal (disjunction) follows the same pattern

than the previous one, applying in this case Lemma caractv_for_or2.

This completes the proof of denot_charac.4.

denot_charac.5 :

|-------

{1} FORALL (op_imp1_var: Sig_form[T], op_imp2_var: Sig_form[T]):

((FORALL (i: I):

v_form(op_imp1_var, i) = 2 IFF

member(i, denotation(op_imp1_var)))

AND

(FORALL (i: I):

v_form(op_imp2_var, i) = 2 IFF

member(i, denotation(op_imp2_var))))

IMPLIES

(FORALL (i: I):

v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2 IFF

member(i, denotation(op_imp(op_imp1_var, op_imp2_var))))

Once we apply skolemization, the proof is divided into two branches, one

for each direction of the biconditional. The first direction would correspond

to v(α→ β) = 2 =⇒ v ∈ Jα→ β K:

denot_charac.5.1 :

[-1] FORALL (i: I):

v_form(op_imp1_var, i) = 2 IFF member(i, denotation(op_imp1_var))

26

[-2] FORALL (i: I):

v_form(op_imp2_var, i) = 2 IFF member(i, denotation(op_imp2_var))

|-------

{1} v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2 IMPLIES

member(i, denotation(op_imp(op_imp1_var, op_imp2_var)))

We expand the definition of denotation for the conditional, Jα→ β K =(
Jα K ∪ Jβ K

)
∩
(
Jα K ∪ Jβ K

)
c
↓, and the set intersection:

denot_charac.5.1 :

[-1] v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2

[-2] FORALL (i: I):

v_form(op_imp1_var, i) = 2 IFF denotation(op_imp1_var)(i)

[-3] FORALL (i: I):

v_form(op_imp2_var, i) = 2 IFF denotation(op_imp2_var)(i)

|-------

{1} member(i,

union(comp(denotation(op_imp1_var)), denotation(op_imp2_var)))

AND

member(i,

bottom(extend[I[T], IC[T], bool, FALSE]

(classic(union(comp(denotation(op_imp1_var)),

denotation(op_imp2_var))))))

With the command split, subgoal 5.1, v ∈
(
Jα K∪Jβ K

)
∩
(
Jα K∪Jβ K

)
c
↓,

is unfolded into 5.1.1, v ∈ Jα K ∪ Jβ K, and 5.1.2., v ∈
(
Jα K ∪ Jβ K

)
c
↓. We

begin proving membership in Jα K ∪ Jβ K.

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:

denot_charac.5.1.1 :

27

[-1] v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2

[-2] FORALL (i: I):

v_form(op_imp1_var, i) = 2 IFF denotation(op_imp1_var)(i)

[-3] FORALL (i: I):

v_form(op_imp2_var, i) = 2 IFF denotation(op_imp2_var)(i)

|-------

{1} member(i,

union(comp(denotation(op_imp1_var)), denotation(op_imp2_var)))

Since this set is a union, we expand the definition of union and apply

lemma caractv_form_imp2 (Proposition 8) instantiated on op_imp1_var

and op_imp2_var, simplifying afterwards:

denot_charac.5.1.1 :

{-1} v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2 IFF

v_form(op_imp1_var, i) = 0 OR

v_form(op_imp2_var, i) = 2 OR

(v_form(op_imp1_var, i) = 1 AND v_form(op_imp2_var, i) = 1)

[-2] v_form(op_imp(op_imp1_var, op_imp2_var), i) = 2

[-3] FORALL (i: I):

v_form(op_imp1_var, i) = 2 IFF denotation(op_imp1_var)(i)

[-4] FORALL (i: I):

v_form(op_imp2_var, i) = 2 IFF denotation(op_imp2_var)(i)

|-------

{1} member(i, comp(denotation(op_imp1_var)))

{2} member(i, denotation(op_imp2_var))

From hypotheses {-1} and [-2] the proof is divided into three branches:

5.1.1.1 for the case v(α) = 0, 5.1.1.2 when v(β) = 2 and 5.1.1.3 for the case

v(α) = 1 = v(β). In each one of these three cases we must prove that

v ∈ Jα K or v ∈ Jβ K. After simplifying, we get:

denot_charac.5.1.1.1 :

28

[-1] v_form(op_imp1_var, i) = 0

{-3} v_form(op_imp1_var, i) = 2 IFF denotation(op_imp1_var)(i)

|-------

[1] member(i, comp(denotation(op_imp1_var)))

[2] member(i, denotation(op_imp2_var))

denot_charac.5.1.1.2 :

[-1] v_form(op_imp2_var, i) = 2

{-2} v_form(op_imp2_var, i) = 2 IFF denotation(op_imp2_var)(i)

|-------

[1] member(i, comp(denotation(op_imp1_var)))

[2] member(i, denotation(op_imp2_var))

denot_charac.5.1.1.3 :

[-1] (v_form(op_imp1_var, i) = 1 AND v_form(op_imp2_var, i) = 1)

{-2} v_form(op_imp1_var, i) = 2 IFF denotation(op_imp1_var)(i)

|-------

[1] member(i, comp(denotation(op_imp1_var)))

[2] member(i, denotation(op_imp2_var))

We prove that, in the first and third cases, v belongs to Jα K, whereas

in the second case we show that it belongs to Jβ K. In its turn, the proof

for 5.1.2, v ∈
(
Jα K ∪ Jβ K

)
c
↓, is also divided into three parts; it is the

longest and most complex proof, since we additionally have to apply the

properties obtained for the operators bottom and classic. The rest of the

proof, subgoal 5.2, v ∈ Jα → β K =⇒ v(α → β) = 2, is tedious and extends

for several pages. It implies the use of the following lemmas (some of them

several times):

29

• caractv_form_imp2

• caract_val_zero

• RT_ord

• val_two

• classic_total

• caract_val_nozero

A complete description can be found in the PVS files in [1].

30

