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Abstract. In [4] a nonmonotonic formalism called partial equilibrium
logic (PEL) was proposed as a logical foundation for the well-founded
semantics (WFS) of logic programs. PEL consists in defining a class
of minimal models, called partial equilibrium (p-equilibrium), inside a
non-classical logic called HT?. In [4] it was shown that, on normal logic
programs, p-equilibrium models coincide with Przymusinki’s partial sta-
ble (p-stable) models. This paper begins showing that this coincidence
still holds for the more general class of disjunctive programs, so that
PEL can be seen as a way to extend WFS and p-stable semantics to ar-
bitrary propositional theories. We also study here the problem of strong
equivalence for various subclasses of p-equilibrium models, investigate
transformation rules and nonmonotonic inference, and consider a reduc-
tion of PEL to equilibrium logic. In addition we examine the behaviour
of PEL on nested logic programs and its complexity in the general case.

1 Introduction

Of the various proposals for dealing with default negation in logic programming
the well-founded semantics (WFS) of Van Gelder, Ross and Schlipf [20] has
proved to be one of the most attractive and resilient. Particularly its favourable
computational properties have made it popular among system developers and the
well-known implementation XSB-Prolog® is now extensively used in AI problem
solving and applications in knowledge representation and reasoning.

Closely related to WFS is the semantics of partial stable models due to Przy-
musinski [15]. Partial stable (henceforth p-stable) models provide a natural gen-
eralisation of stable models [8] to a multi-valued setting and on normal logic
programs capture the well-founded model as a special (minimal model) case.
Although the newly developing area of answer set programming (ASP) has fo-
cused mainly on (2-valued) stable models, there has also been a steady stream
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of interest in the characterisation and computation of p-stable models, eg [17,
18,6,7,9].

Recently [4] proposed a solution to the following long-standing problem in
the foundations of WFS: which (non-modal) logic can be considered adequate
for WFS in the sense that its minimal models (appropriately defined) coincide
with the p-stable models of a logic program? This problem is tackled in a sim-
ilar spirit to the way in which the so-called logic of here-and-there, HT, has
been used to capture ordinary stable models and led to the development of a
general nonmonotonic formalism called equilibrium logic, [13]. While 2-valued
stable models can be characterised using the 3-valued Kripke frames of HT, for
p-stable models one requires a more complex notion of frame of a kind studied
by Routley [16]. These are generalisations of HT frames, referred to as HT?
frames, and characterised by a 6-valued logic, whose negation is different from
that of intuitionistic and minimal logic. To capture p-stable models in this set-
ting a suitable notion of minimal, total HT? model is defined, which for obvious
reasons can be called partial equilibrium (p-equilibrium) model. On normal logic
programs, these models were shown [4] to coincide with p-stable models and so
the resulting partial equilibrium logic (PEL) was proposed as a logical founda-
tion for WFS and p-stable semantics. In addition [4] axiomatises the logic of
HT?-models and proves that it captures the strong equivalence of theories PEL.

The aim of the present paper is to extend the work of [4] beyond the area of
normal programs treated previously. In particular we examine the case of dis-
junctive logic programs and show that also here p-equilibrium models coincide
with p-stable models. Thus PEL can be seen also as yielding a suitable foun-
dation for p-stable semantics and as a natural means to extend it beyond the
syntax of disjunctive programs, eg to so-called nested logic programs or to ar-
bitrary propositional theories. In summary, we shall treat the following topics.
§2 describes the basic logic, HT?, and defines partial equilibrium models. We
review the main results of [4] and show that PEL captures p-stable semantics
for disjunctive programs. In §3 we extend previous results on the strong equiva-
lence of theories to special subclasses of models: the well-founded models defined
in [4] and the classes of L-stable and M-stable models studied in [7]. §4 looks
briefly at some of the general properties of PEL as a nonmonotonic inference
relation, while §5 considers syntactic transformations of disjunctive programs,
distinguishing between those preserving equivalence and those preserving strong
equivalence. §6 considers the transformation technique of [9] that captures p-
stable models via stable models and extends this method to PEL in general. §7
studies the behaviour of nested logic programs under PEL and some valid un-
folding techniques. Finally, §8 studies the main complexity classes for PEL over
propositional theories, showing that complexity is the same as that of p-stable
semantics for disjunctive programs [7], while §9 concludes the paper with some
open problems for future study.



2 Logical preliminaries: the logics HT? and PEL

We introduce the logic HT? and its semantics, given in terms of HT? frames,
and we define partial equilibrium logic (PEL) in terms of minimal HT? models.
Formulas of HT? are built-up in the usual way using atoms from a given propo-
sitional signature At and the standard logical constants: A, V, —, =. A set of
HT? formulae is called a theory. The axiomatic system for HT? is described in
two stages. In the first stage we include the following inference rules:

a, a—
g

plus the axiom schemata of positive logic together with:

a—f

(Modus Ponens) 55 -a

Al. ma A=f = =(aV ) A2. =(a > a) > B A3. =(aAp) = —aV g

Thus, both De Morgan laws are provable in HT2. Moreover, axiom A2 allows
us to define intuitionistic negation, ‘—’, in HT? as: —a:= a — —(pg — po).

aVv(BA—B)
(a3

In a second stage, we further include the rule and the axioms schemata:

Ad. —aV-—a

A5. —aV(a—=(BV(B—=(yV-7)) ‘

A6. /\fzo((oéi = Vi) > V) = Vf:o Q
A7 a— -«

A8, aA-a— =BV -fp

A9. —aA —|(a — ,8) — T

A10. —|—|aV—|—|ﬂV—|(a—)ﬂ)V—|—'(Oé—)ﬁ)

All. ——aA-=B—=(a—=B)V (8- a)

HT? is determined by the above inference rules and the schemata A1-A11.

Definition 1. A (Routley) frame is a triple (W, <,x), where W is a set, <
a partial order on W and x : W — W is such that x < y iff y* < z*. A
(Routley) model is a Routley frame together with a valuation V ie. a function
from At x W — {0,1} satisfying:

Vipu)=1 & usw = V(pw)=1 (1)

The valuation V is extended to all formulas via the usual rules for intuition-
istic (Kripke) frames for the positive connectives A, V, — where the latter is
interpreted via the < order:

V(e = ¢,w) =1 iff for all w’ such that w <w', V(p,w')=1= V(y,w') =1

The main difference with respect to intuitionistic frames is the presence of
the * operator that is used for interpreting negation via the following condition:

V(imp,w)=1iff V(p,w*) =0.



A proposition ¢ is said to be true in a model M = (W, < %, V), if V(p,v) = 1,
for all v € W. A formula ¢ is walid, in symbols |= ¢, if it is true in every model.
It is easy to prove by induction that condition (1) above holds for any formula

p, ie
Vipu) =1 & u<w=V(p,w) =1. (2)

Definition 2 (H7? model). An HT? model is a Routley model M = (W, <
,R, V) such that (i) W comprises 4 worlds denoted by h,h',t,t', (ii) < is a
partial ordering on W satisfying h < t, h < h', b’ <t and t < ¢, (iii) the
operation is determined by h* =t* =1t', (b')* = (t')* =t, (i) V is a-valuation.

The diagram on the right depicts the <-ordering among
worlds (a strictly higher location means >) and the ac- 4
tion of the *- mapping using arrows: /

Truth and validity for HT? models are defined analogously to the previous
case and from now on we let = denote the truth (validity) relation for HT?
models. One of the main results of [4] is the following completeness theorem®:
Theorem 1 ([4]). HT? is complete for HT* models, ie |= ¢ iff ¢ is a theorem
of HT?.

2.1 minimal models and relation to logic programs

Now, consider an HT? model M = (W, <,*, V) and let us denote by H, H', T, T"
the four sets of atoms respectively verified at each corresponding point or world
h,h',t,t". More succinctly, we can represent M as the pair (H,T) so that we
group each pair of unprimed/primed worlds as H = (H, H') and T = (T,T").
Notice that H C H' and T' C T" by construction of M and, as a result, both H
and T can be seen as 3-valued interpretations. Although the representation as
a (consistent) set of literals is perhaps more frequent in the logic programming
literature, a 3-valued interpretation I can be alternatively described by a pair of
sets of atoms I C I' with I containing the true atoms and I’ the non-false ones.
Let us use the set {0, 1,2} to respectively denote the possible values of atom p:
false (p ¢ I'), undefined (p € I' \ I) and true (p € I). As we have two 3-valued
interpretations (H, T) we could define the possible “situations” of a formula in
HT? by using a pair of values zy with z,y € {0,1,2}. Condition (2) restricts
the number of these situations to the following six 00 := (), 01 := {¢'}, 11 :=
{n',t'}, 02:={t,t'}, 12:= {h',t,t'}, 22 := W where each set shows the worlds
at which the formula is satisfied. Thus, an alternative way of describing HT? is
by providing its logical matrix (see [4]) in terms of a 6-valued logic.

5 The first stage alone defines a logic complete for the general Routley frames.



The truth-ordering relation among 3-valued interpretations Iy < I is defined
so that I; contains less true atoms and more false ones (wrt set inclusion) than
I,. Note that by the semantics, if (H,T) is a model then necessarily H < T,
since it is easy to check that this condition is equivalent to H C T and H' C T".
Moreover, for any theory IT note that if (H, T) |= IT then also (T, T) = I1.

The ordering < is extended to a partial ordering < among models as follows.
We set (Hl,T1> ﬂ <H2,T2> if (1) T1 = TQ; (11) H1 S Hg. A model <H,T> in
which H = T is said to be total. Note that the term total model does not refer
to the absence of undefined atoms. To represent this, we further say that a total
partial equilibrium model is complete if T has the form (T, 7).

We are interested here in a special kind of minimal model that we call a
partial equilibrium (or p-equilibrium) model. Let II be a theory.

Definition 3 (Partial equilibrium model). A model M of II is said to be
a partial equilibrium model of IT if (i) M is total; (ii) M is minimal among
models of Il under the ordering <.

In other words a p-equilibrium model of IT has the form (T, T) and is such that
if (H,T) is any model of II with H < T, then H = T. Partial equilibrium logic
(PEL) is the logic determined by truth in all p-equilibrium models of a theory.
Formally we can define a nonmonotonic relation of PEL-inference as follows.

Definition 4 (entailment). Let IT be a theory, ¢ a formula and PEM(II) the
collection of all p-equilibrium models of 1. We say that II entails ¢ in PEL, in
symbols II |~ @, if either (i) or (i) holds: (i) PEM(II) # O and M E ¢ for
every M € PEM(II); (ii) PEM(II) = 0 and ¢ is true in all HT?-models of II.

In this definition, therefore, we consider the skeptical or cautious entailment
relation; a credulous variant is easily given if needed. Clause (ii) is needed since,
as Theorem 2 below makes clear, not all consistent theories have p-equilibrium
models. Again (ii) represents one possible route to understanding entailment in
the absence of intended models; other possibilities may be considered depending
on context.

We turn to the relation between PEL and logic programs. A disjunctive logic
program is a set of formulas (also called rules) of the form

a1 AN...Nam A=by AL A=b, e V.. Ve (3)

where m,n,k > 0. For simplicity, given any rule r like (3) above, we will fre-
quently use the names B+ (r), B=(r) and Hd(r) to denote the corresponding sets
{a1,...,am}, {b1,...,b,} and {c1,...,cp}, respectively. By abuse of notation,
we will also understand B¥(r) as the conjunction of its atoms, whereas B~ (r)
and Hd(r) are understood as the respective disjunctions of their atoms (remem-
ber de Morgan laws hold for negation). As usual, an empty disjunction (resp.
conjunction) is understood as the constant L (resp. T). As a result, when 7 has
the form (3) it can be represented more compactly as B*(r)A=B~(r) — Hd(r).
Additionally, the body of a rule r is defined as B(r) := BT (r) A=B~(r).



The definition of the p-stable models of a disjunctive logic program IT is given
as follows. Given a 3-valued interpretation I = (I, I'), Przymusinski’s valuation”
of formulas consists in interpreting conjunction as the minimum, disjunction as
the maximum, and negation and implication as:

2 if I(p) <I(¥)
0 otherwise

I(~p) = 2~ 1(p) I(p - o) = {

The constants L, u and T are respectively valuated as 0, 1 and 2. We say that
I is a 3-valued model of a formula @, written I =5 ¢, when I(¢) = 2. The reduct
of a program IT wrt I, denoted as IT', consists in replacing each negative literal
=b in IT by the constant corresponding to I(=b). A 3-valued interpretation I is
a p-stable model of IT if I is a < —minimal model of IT7.

By inspection of HT? and Przymusinski’s interpretations of disjunctive rules
it is relatively simple to check that:

Lemma 1. For any disjunctive program II and any HT? interpretation (H, T):
(H,T) = iff Hlz3 OT and T |=3 IIT.

Theorem 2. A total HT? model (T, T) is a p-equilibrium model of a disjunc-
tive® program II iff the 3-valued interpretation T is a p-stable model of II.

Proof. Let (T, T) be a p-equilibrium model of IT. Suppose T is not p-stable. By
Lemma 1, T = II'T, and so there must exist a smaller H < T such that H |=3
ITT. But then (H,T) forms an HT? interpretation and, again by Lemma 1,
(H,T) | II, contradicting that (T, T) is in p-equilibrium. Now, let T be a
p-stable model of II. Then T |= IIT and is minimal. From Lemma 1 on (T, T)
we conclude (T, T) = II. Assume there exists a model (H, T) of IT such that
H < T. By Lemma 1, H |z3 IIT contradicting the minimality of T. O

We define a further partial ordering on total models by (T, T;) < (T, Ts)
if both Ty C Ty and Ty C T}. Then we say that a total HT? model that is <-
minimal among the p-equilibrium models of a theory I is a well-founded model
of I'. This terminology is justified by:

Theorem 3 ([4]). If II is a normal logic program, the unique <-minimal p-
equilibrium model of II coincides with the well-founded model of II in the sense

of [20].

3 Strong equivalence of theories wrt different classes of
partial equilibrium models

The notion of strong equivalence (SE) is important both conceptually and as a
potential tool for simplifying nonmonotonic programs and theories and optimis-
ing their computation. For stable semantics strong equivalence can be completely

" We have just directly adapted the original definitions to the current representation
of 3-valued interpretations.
& For normal programs the theorem is proved in [4].



captured in the logic HT [10] and in ASP this fact has given rise to a lively pro-
gramme of research into defining and computing different equivalence concepts
[5,22]. In the case of WFS and p-stable semantics, however, until recently there
have been no studies of strong equivalence and related notions.

Here we recall the main result of [4] on strong equivalence in PEL and then
consider several special classes of models. Specifically, we look at strong equiv-
alence wrt the class of well-founded models, defined above, and the classes of
L-stable and M-stable models as described by [7]. Later on we shall see that, as
in the case of stable and equilibrium models, the problem of checking SE in PEL
is computationally simpler than that of checking ordinary equivalence.

In the present context we say that two propositional theories Iy and I% are
equivalent, in symbols I'7 = Is, if they have the same p-equilibrium models and
strongly equivalent, in symbols I7 =, I, if for any theory I, theories I1 U I’
and I, U I" have the same p-equilibrium models.

Theorem 4 ([4]). Theories It and Iy are strongly equivalent iff It and I are
equivalent as HT? theories.

Recall that a total model (T, T) is a well-founded model of I if it is < minimal
in the class of all p-equilibrium models of I'.

Definition 5. Two HT? theories Iy and Iy, are WF equivalent if for any HT?
theory I', each well founded model of I U I is a well founded model of I5U I
and vice versa.

Theorem 5. Theories I and I are W F equivalent iff [7 and I are equivalent
as HT? theories.

The ‘if’ direction is easy. For the non-trivial converse direction we use

Lemma 2. If theories I and I5 have different classes of p-equilibrium models,
then there is a theory I' such that theories I7 U ' and I3 U I' have different
classes of well founded models. O

Corollary 1 (of Lemma 2). For every HT? theory I', there is an extension
Iy having at least one well founded model.

We then use Lemma 2 as follows. Assume that Iy and I3 are not equivalent as
HT? theories. The latter means by Theorem 4 that there is a theory I' such
that I't U I and I, U I have different classes of p-equilibrium models. Now we
can apply Lemma 2 to obtain a theory I'' such that [y UI'UTI" and I,UT'UI”
have different classes of well founded models.

Some other classes of partial stable model different from < minimal stable
models were considered in the literature. We define the corresponding classes of
p-equilibrium models.

Definition 6. Let I' be an HT? theory and M = (T, T) a p-equilibrium model
of I'. Then (i) M is said to be an M -equilibrium model of I if it is < mazimal in
the class of all p-equilibrium models of I'; (ii) M is said to be an L -equilibrium
model of I if for any p-equilibrium model (T1,T1) of I' the inclusion T] \ T} C
T'\ T implies the equality T/ \Ty =T'\ T.



Since the difference 7" \ T is a measure of indefiniteness of a model (T, T),
L-equilibrium models are minimal in the class of p-equilibrium models wrt in-
definiteness. Taking into account the equivalence of p-equilibrium and p-stable
models of disjunctive logic programs (see Theorem ?7) we immediately obtain

Proposition 1. Let IT be a disjunctive logic program and (T, T) a model of II.
Then (T, T) is an M (L)-equilibrium model of IT iff T is an M (L )-stable model
of IT in the sense of [7].

For additional motivation for L-stable and M-stable models, see [7]. The latter
for example coincide on normal programs with the regular models of [23].

Definition 7. Two HT? theories Iy and Iy are M (L)-equivalent if for any
HT? theory I, each M (L)-equilibrium model of I UT is an M (L)- equilibrium
model of [, U T and vice versa.

Theorem 6. Theories I'1 and I'> are M (L)-equivalent iff 1 and I are equiv-
alent as HT? theories.

As before the proofs of these propositions rely on the following lemma:

Lemma 3. If theories I and I5 have different classes of p-equilibrium models,
then (i) there is a theory I' such that theories It UT" and I's U T have different
classes of M -equilibrium models; (ii) there is a theory I such that theories
NUTI and Iy U T have different classes of L-equilibrium models.

4 Some Properties of Partial Equilibrium Inference

We consider some of the properties of |~ as a nonmonotonic inference relation.
Generally speaking the behaviour of PEL entailment is fairly similar to that
of equilibrium logic or stable model inference; however |~ fails some properties
preserved by stable inference. Consider the following properties of inference:

pell =1y reflexivity
VieLI by, JU{Y;:icllphop=>Iove cut
Dol py=HTUyppy cautious monotony
DUppkra,lIUYpa=ITU(pVY)pa disj. in antecedent
HUpprallU-ppra=Ipra truth by cases
DUppkryYy=>Ie >y conditionalisation
DRy, U@ Wy =10~ - rationality
Dy, OUep =10~ -y weak rationality
D=, 0= 10~ -p modus tollens

Proposition 2. Partial equilibrium inference fails cautious monotony, truth by
cases, conditionalisation, rationality and weak rationality.

For the first condition we do however have a special case:

Proposition 3 (cautious monotony for negated formulas). For any the-
ory I', if '~ —p then I' and I'U{—¢} have the same partial equilibrium models.

Proposition 4. Partial equilibrium inference satisfies reflexivity, cut, disjunc-
tion in the antecedent and modus tollens.



5 Syntactic transformation rules for disjunctive programs

Following Brass and Dix [3], there has been considerable discussion of syntactic
transformations rules that preserve the semantics of programs. For example it is
well-known that while the disjunctive semantics D-WFS of [3] preserves the rule
of unfolding or GPPE (see below), p-stable semantics does not. More recently
[12, 5] have studied for (2-valued) stable semantics the difference between trans-
formation rules that lead to equivalent programs and those that lead to strongly
equivalent (or even uniformly equivalent) programs. With the help of HT? and
PEL, this distinction can also be made for p-stable (p-equilibrium) semantics
over disjunctive programs, or for WFS over normal programs as a special case.
We consider here the situation with respect to the principal rules considered
in [5]. In table 2, equivalence and strong equivalence are denoted as before by
by =, =5. The rules themselves are summarised in Table 1. In addition to the
rules normally studied for p-stable semantics, we consider also the weaker form
of unfolding, WGPPE, discussed in [5] and the rule S-IMP of Wang and Zhou
[21] whose meaning is explained below.

We first give an example to show that although p-stable semantics does not
obey the GPPE rule, it is not actually weaker than D-WFS.

Ezample 1 (from [21]). Consider the program IT comprising two rules -p — bV
and pVI. Neither b nor —b can be derived from I under D-WFS and the STATIC
semantics. The p-equilibrium models are ({1}, {l}) and ({p}, {p}) and so IT|~ —b.

In fact, D-WFS just allows one to derive the minimal pure disjunction [ V p,
whereas p-equilibrium models further derive —b. So, in this example, PEL is
strictly stronger than D-WFS. From this and the well-known behaviour of p-
stable semantics wrt GPPE, we conclude the following.

Proposition 5. D-WFS and PEL are not comparable (even when restricted to
pure disjunctions).

Proposition 6. Transformation WGPPE preserves strong equivalence, =,. In
fact: {ipANA—B), (C—>pVvD)} v ANC— BVD.

We turn now to the rule S-IMP, due to [21] and discussed in [5]. As in the case
of NONMIN this is a kind of subsumption rule allowing one to eliminate a rule
that is less specific than another rule belonging to the program. By definition,
r stands in the S-IMP relation to 7', in symbols r < r/, iff there exists a set
A C B~ (r') such that (i) Hd(r) C Hd(r') U A; (ii) B~ (r) C B~ (r")\A4; (iii)
B*(r) € B*(r'). For stable or equilibrium inference S-IMP is a valid rule,
even preserving strong equivalence [5]. This is not so for PEL. Another rule,
CONTRA, valid for stable inference, also fails in PEL.

Proposition 7. The rules S-IMP and CONTRA are not sound for p-stable (p-
equilibrium) inference.



Table 1. Syntactic transformation rules from [5].

l Name ‘ Condition ‘ Transformation ‘
TAUT Hd(r)NBT(r) #0 P =P\ {r}

RED™ a € B™(r1), Aro € P: a € Hd(r2) P =P\ {rn}u{r}
RED™ Hd(T'z) - Bi(T1), B(T'Q) =0 P = P\{Tl}
NONMIN Hd(’r'z) g Hd(?"l), B(’I"z) g B(T1) P, = P\{’I"l}

GPPE a € BY(r1), Go # 0, for G, = {r» € P |a € Hd(r2)}| P' = P\ {r} UGL}
WGPPE | same condition as for GPPE P =PUG!}
CONTRA | BF(r)NB (r) #0 P' =P\ {r}

S-IMP r,r' € P,r<r P =P\ {r'}

Y Hd(r) « B (r1)Umnot (B~ () \ {a}).
tal = {Hd(r1) U (Hd(r2) \ {a}) < (BT(r1)\ {a})Unot B~ (r1)UB(r2) | 12 € Go}.

Table 2. Syntactic transformations preserving equivalence

[Eq. [TAUT [REDT [RED~ | NONMIN | GPPE [WGPPE[CONTRA [S-IMP |

= yes yes yes yes no yes no no

= || yes no yes yes no yes no no

6 Translating partiality by atoms replication

A promising approach to implementating p-stable models for disjunctive pro-
grams has been developed by Janhunen et al [9]. They provide a method to
capture p-stable models by (2-valued) stable models using a linear-time transfor-
mation of the program. We show here that their transformation can be extended
to arbitrary propositional theories such that PEL can be reduced to ordinary
equilibrium logic. Furthermore it provides an encoding of the underlying logics,
of HT? into HT. This offers the possibility to check strong equivalence of arbi-
trary PEL theories by applying first this transformation, and using afterwards
a satisfiability checker for arbitrary HT theories like [19].

The translation of a theory I', denoted T'r(I"), consists of a formula p — p/
where p' is a new atom per each atom p occurring in I" plus, for each a € I', the
formula [a] recursively defined as follows:

[o =] := ([¢] = [¥]) Alp = ] [o = ¢ = [¢] =[]
[—¢] == =[] [—] := =g
[p @] :=[¢] @ [¥] eyl == [o] & [¢]
B B

where @ € {A,V} and e € {T, L}.



Ezample 2. The translation ¢ = =(a — —b) — ¢ consists of the formulas a —
a, b=V, ¢—c and =(a’ = =b) = ¢) A (=((a > =b')A(a' = —b)) = . O

It is quite easy to see that for any disjunctive rule r like (3), its translation
[r] has the form (a3 A ... Aam AV A .. A=D, = e V... Vep)A
(@i AoANal, AN=bi AL A =by = ) VL.V c,) so that Tr(II) amounts to
Janhunen et al’s transformation [9] when IT is a disjunctive logic program.

We prove next that the present generalisation of Janhunen et al’s transforma-
tion works not only for representing PEL into equilibrium logic, but is actually
correct at the monotonic level, i.e., it allows encoding HT? into HT. Let us
extend first the [-]' notation to any set of atoms S so that [S] := {p' | p € S}.

Proposition 8. An HT? interpretation M, = ((H,H'),(T,T")) is an HT?
model of T iff My = (HU[H']',TU[T"]") is an HT model of Tr(T).

Proposition 9. A total HT? interpretation ((T,T"),(T,T")) is a partial equi-
librium model of I' iff (T U[T"]", T U[T"]') is an equilibrium model of Tr(I").

7 Nested logic programs

The term nested logic program refers to the possibility of nesting default nega-
tion, conjunction and disjunction, both in the heads and bodies of the program
rules. At least in what refers to rule bodies, this feature is, in fact, quite com-
mon in most Prolog interpreters, including XSB which relies on well-founded
semantics. In this way, for instance, a possible XSB piece of code could look like
a := \+ (b; c, \+ (d, \+ e)) or using logical notation:

=(bVecA-(dA—e)) —a (4)

The semantics for nested expressions under stable models was first described
n [11]. In that paper, it was also shown that nested expressions can actually be
unfolded until obtaining a non-nested program (allowing negation and disjunc-
tion in the head) by applying the following HT-valid equivalences:

(FAG+ H) <+ (F+ H)A(G+ H).
(F+GVH)< (F+ G)N(F <+ H).
(F+ GAN-—H)+ (FV-H <+ G).
(FV—--G ¢+ H)+ (F+-GNH).

(d

(xii



Proposition 10. The formulas (i)-(z) are valid in HT?.

Transformations (xi) and (xii), however, are not valid in HT?. As a result
the occurrence of double negation cannot be reduced in the general case to a
disjunctive logic program format as shown by:

Proposition 11. The theory {——p — p} is not HT?-equivalent to any disjunc-
tive logic program II (even allowing negation in the head) for signature {p}.

One might object that this behaviour is peculiar to H7? and not the expected
one for a well-founded semantics for nested expressions. Consider, however, the
following example due to V. Lifschitz. Take the programs II; = {-—p — p}
and IT, = {p V —p} which, by (xi) are HT-equivalent. Intuitively, if we could
not use double negation or negation in the head, we could replace —p by an
auxiliary atom p and “define” this atom with a rule like p < —p. As a result,
II, would become II] = {(-p — p),(—p — P)} whereas Il would be now
I, = {(pVD),(—p — P)}. The normal program II; is a typical example where p
and p should become undefined in WFS. On the other hand, for I7} one would
expect two complete models, one with p true and p false, and the symmetric
one. If we remove the auxiliary atom, these two different behaviours agree, in
fact, with the results in PEL for II; and II>.

Although Proposition 11 observes that we cannot generally get rid of double
negation without extending the signature, we show next that the auxiliary atom
technique used in the example is in fact general enough for dealing with double
negation in rule bodies, and so, thanks to transformations (i)-(x), provides a
method for unfolding bodies with nested expressions.

A disjunctive logic program with double negation is a set of rules of the form:

G A Aag A=by A A=bpy A=mep A A=meg = dy Voo Vdy  (5)

with m,n,s,t > 0. We extend the previously defined notation so that, given a
rule r like (5) B~ (r) denotes the set of atoms {c, ..., cs} or, when understood
as a formula, their conjunction.

Proposition 12. Let IT be a disjunctive logic program with double negation for
alphabet V.. We define the disjunctive program II' consisting of a rule

-c— ¢ (6)
for each double-negated literal ——c occurring in II, where ¢ is a new atom, plus
a rule v’ for each rule r € II where: BY(r') := B*(r), B~ (r') := B~ (r) U
{¢|c€e B~ (r)} and Hd(r'") := Hd(r). Then II and II' are strongly equivalent
modulo the original alphabet At, that is, TUI" and II' U have the same partial
equilibrium models for any theory I for alphabet At. O

Ezample 3. Take the program consisting of rule (4). Applying transformations
(i)-(x) we get that it is strongly equivalent to the pair of rules =b A ¢ — a and
—b A ==d A e — a which by Proposition 12 are strongly equivalent to

-d—d -bA—-Cc—a —-bA-dA—-e—a

modulo the original alphabet.



8 Complexity results for HT? and PEL

We denote by SAT-r, and VALcy, the classes of satisfiable formulas and valid
formulas respectively in Classical Logic, and SATgr2 and VALg72 the classes
of satisfiable formulas and valid formulas respectively in HT? logic.

Theorem 7. SATgr> is NP-complete and V ALgr> is coNP-complete.

For finite-valued logics it is straightforward that the satisfiability and validity
problems are at most NP-hard and coNP-hard respectively. Let ¢ be a formula
over {—,—, A, V} and consider the formula ¢’ obtained by replacing every vari-
able p in ¢ by —=(p — —p). The formula ¢’ has the following properties: every
HT?-assignment, V, verifies that V() € {00,22}; if ¢ is satisfiable, then it has
a model satisfying V(p) € {00,22} for every variable p in ¢'; if W () = 00 for
some assignment TV, then there exists an assignment V' such that V() = 00
and V (p) € {00, 22} for every variable p in ¢'. Finally, we have also: ¢ € SAT¢,
if and only if ¢’ € SATg72 and ¢ ¢ VALcy, if and only if ¢' ¢ VALgy2. Thus,
the polynomial transformation of ¢ in ¢’ reduce the satisfiability and validity in
classical logic to the corresponding problems in HT? and therefore SATyp» is
NP-complete and V ALg72 is coNP-complete.

Corollary 2. The problem of checking the strong equivalence of theories is coNP-
complete.

Theorem 8. The problem of deciding whether a formula in HT? has partial
equilibrium models, partial equilibrium consistency, is X4 -hard.

It is straightforward from the finite-valued semantics of HT? that the com-
plexity is at most X4, To prove that the complexity is in fact X4 we use that
the equilibrium consistency is X¥-hard. Given a formula ¢ in HT, we define

o =on N (pV-p)
p occurs in o

The formula ¢’ has the following properties: any HT?-model of ¢', V, verifies
V(p) € {00,02,12,22} for every variable p in ¢; if V' is a model of ¢ such
that V(p) € {00,02,12,22}, then the assignment V' defined as follows is also
a model of ¢: V'(p) = 12 if V(p) = 02 and V'(p) = V(p) otherwise (this fact
can be proved easily by inspection of the truth tables). So, for the formula ¢',
we can “forget” the value 02 and the bijection 00 <> 0, 12 <> 1, 22 <> 2 lets us
conclude that ¢ has equilibrium models if and only if ' has partial equilibrium
models. Thus, the polynomial transformation of ¢ in ¢’ reduces the equilibrium
consistency to partial-equilibrium consistency and so this problem is X¥-hard.

Corollary 3. The decision problem for equilibrium entailment is ITL -hard.



9 Conclusions and future work

Until recently, the well-founded and p-stable semantics have lacked a firm log-
ical foundation of the kind that the logic of here-and-there provides for stable
semantics and ASP?. Partial equilibrium logic supplies such a foundation and
opens the way to extending these semantics beyond the syntax of normal and
disjunctive programs. Here we have seen that PEL captures p-stable semantics
for disjunctive programs and we have examined its behaviour on nested logic
programs. An open problem for future work is whether this semantics agrees
with implementations of WFS such as XSB-Prolog which allow nested expres-
sions in rule bodies. We have also seen here how various special classes of p-stable
(p-equilibrium) models, including the L-stable and M-stable models, possess a
strong equivalence theorem. Moreover our complexity results for HT? and PEL
show that testing strong equivalence in the general case (ie. PEL over theories)
is computationally simpler than testing ordinary equivalence. In this respect
there is agreement with the case of stable models. A major open problem is the
question of strong equivalence for normal and disjunctive programs. Clearly if
such programs are equivalent in HT? they are strongly equivalent; but, if not, it
remains to be seen whether in general the addition of new formulas in the form
of program rules is sufficient to establish non-strong equivalence.

The technique of [9] for capturing p-stable semantics over disjunctive pro-
grams via a reduction to ordinary stable models has been shown here to extend
to arbitrary formulas and thus provide a reduction of PEL to equilibrium logic.
We have seen however that nonmonotonic inference in PEL lacks several prop-
erties enjoyed by ordinary stable inference. Similarly we observed that some of
the equivalence-preserving syntactic transformations applicable in ASP are no
longer sound for PEL. Our results here show that PEL, like p-stable semantics, is
non-comparable with extensions of WFS such as D-WFS and STATIC. However
the situation wrt to the semantics WEFDS of [21] is still unclear: PEL is evidently
not stronger (since S-IMP fails in it), but is not yet proven to be weaker.

We hope to have shown here how PEL can provide a conceptual foundation
as well as a practical tool for investigating extensions of WFS and p-stable
semantics. Future work will explore the above open questions besides further
issues such as how to add strong or explicit negation to PEL (and capture the
WFSX semantics [14]) and how to construct a complete proof theory.
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