
Strings and holes: an exercise on spatial reasoning

Pedro Cabalar1 and Paulo Santos2

1 Department of Computer Science
Corunna University, Galicia, Spain

cabalar@udc.es
2 Department of Electrical Engineering

Centro Universitário da FEI, São Paulo, Brazil
psantos@fei.edu.br

Abstract. This paper investigates the challenging problem of encoding the knowl-
edge and reasoning processes involved in the common sense manipulation of
physical objects. In particular we provide a formalisation of a domain involving
rigid objects, holes and a string within a reasoning about actions and change
framework. Therefore, this work investigates the formalisation and reasoning
about flexible objects and void space (holes) in a single domain. Preliminary re-
sults of automated reasoning within this domain are also presented.

1 Introduction
The field of qualitative spatial reasoning (QSR) [10] attempts the formalisation of spa-
tial knowledge based on primitive relations defined over elementary spatial entities.
One of the best known QSR theories, for instance, is the Region Connection Calculus
[6], which is a first order axiomatisation of space based on regions and the connectiv-
ity relation. Other representations of spatial knowledge include theories about shape
[4], distance [3], position [1] amongst others as surveyed in [2]. However, the use of
qualitative spatial knowledge within a planning system remains largely neglected.

One possible reason for the lack of problem solving methods handling qualitative
spatial knowledge may be connected to the fact that research on QSR has being con-
ducted independently from research on reasoning about actions and change (RAC) and
AI planning (apart from exceptions such as [9] and [8]). One of the motivations for the
present work is to approximate RAC to reasoning about spatial knowledge by investi-
gating the formalisation and automatic solution of a challenging spatial puzzle.

This paper assumes the puzzle called The Fisherman’s Folly (Figure 1) that involves
spatial entities such as strings, posts, rings, spheres and holes (through the last ones
some (but not all) domain objects can pass). The Fisherman’s Folly puzzle consists in
going from the configuration shown in Figure 1(a) to the configuration in Figure 1(b)
by moving the objects positions respecting some domain restrictions. In this sense, the
assumed puzzle is similar to the classic 8-puzzle; however, in the present work the do-
main objects have non-trivial spatial characteristics (such as flexibility and permeability
through holes).

The elements of the puzzle are a holed post fixed to a wooden base, a string, a ring,
a pair of spheres and a pair of disks. The disks and spheres are attached to the string,
along which the latter can move whereby the former is fixed to the string endpoints.

(a) The initial state. (b) The goal state.

Fig. 1: A spatial puzzle: the Fisherman’s Folly.

In the initial state (shown in Figure 1(a)) the post is in the middle of the ring, which
is supported on the post’s base. On the other hand, the string passes through the post’s
hole in a way that one sphere and one disk remain on each side of the post. It is worth
pointing out that the spheres are larger than the post’s hole, therefore the string cannot
be separated from the post without cutting either the post, or the string, or destroying
one of the spheres. The disks and the ring, in contrast, can pass through the post’s hole.
The goal of this puzzle (depicted in Figure 1(b)) is to find a sequence of transformations
of the spatial configuration of the puzzle’s objects such that the ring is freed from the
system post-base-string, maintaining the physical integrity of the domain objects. In
fact, the goal state is not fixed to the one shown in Figure 1(b). In order to be considered
a solution, it is sufficient to move the ring completely out of the rest of the system,
regardless the final configuration of the remaining domain objects.

The complexity imposed by the distinct states of the string allied to the existence of
holes in the domain objects makes the formalisation and reasoning about this domain
a challenging problem. In order to provide a formal account of the spatial relations in-
volved in the Fisherman’s Folly we need to consider in our formalisation (and reasoning
processes) the holes in objects, such as the post’s hole and the space limited by the ring.
This calls for assuming holes as real objects, therefore having the same ontological sta-
tus as spheres and disks. Reasoning about holes and holed objects has been discussed
in detail in [11] from a topological standpoint. However, to the best of our knowledge,
the present paper presents the first approach that investigates the problem of how these
entities could be engaged in actions.

The string brings a further source of complexity which comes from the related infin-
ity of distinct configurations due to its flexibility. The problem of incorporating knowl-
edge about strings and string manipulation has been tackled in [5] where a robotic sys-
tem capable of learning to tie a knot from visual observation is proposed, this system
is called the Knot Planning from Observation (KPO) paradigm. In KPO each state of a
string is represented by a matrix encoding the string segments, which are defined by the
portion of the string that lies in between its endpoints and points where it crosses over
itself. Actions on flexible objects in this context were defined as an extension of the
Reidemeister moves in knot theory [7]. This representation is suitable for the identifica-
tion of string states from a computer vision system; however, it falls short in the context
of problem solving, which is the main purpose of the present paper. In this work, we
propose a representation for string states that takes into account other objects (including
holes) that may be related to the string in the domain. In contrast to the work proposed
in [5], we do not take into account knots. Incorporating some of the ideas of the KPO
paradigm in our work shall be investigated in the future.

In summary, the purpose of this paper is to investigate the formalisation and au-
tonomous solution of a spatial domain involving holes and a flexible string, contributing
with a novel benchmark problem for common sense knowledge representation.

This paper is organised as follows: the next section introduces the formal represen-
tation we use for the domain objects; Section 3 discusses the basic actions that operate
on the puzzle; some details on a simple Prolog implementation are presented in Section
4; and, finally, Section 5 concludes this paper.

2 Domain objects
A straightforward classification of the objects in the puzzle would lead to six sorts: the
spheres, the disks, the string, the ring, the holed post and the post base. Although the
post and its base form a same object, they are clearly distinguishable. In fact, something
similar happens with the disks and the string: they form a same “tandem,” but a disk
and a string clearly have different properties. For the spheres there is no doubt: although
limited by the string and the disks in the domain, they are topologically independent
objects.

Although the commonsense knowledge about all these sorts can be very rich (for
instance, we know that a sphere can roll, a string can form knots, etc) we must focus
however on their relevant properties for obtaining a satisfactory solution to the puzzle,
applying somehow an Occam’s razor criterion. Besides, it is also important to fix the
very same idea of satisfactory solution. Our criterion in this sense is trying to obtain
a qualitative description of the movements to be performed, in similar terms to those
one could find in a textual description of the solution written in natural language. A
related observation is that the same puzzle problem could actually be built with objects
of different nature to those commented before. For instance, the spheres and the disks
could also be boxes of different sizes, the post base could be a large disk, etc. These
small changes are not really essential. However, when a human describes the puzzle
solution, she immediately talks about passing objects through holes. The puzzle, in
fact, deals with four holes: the post hole (ph), the ring hole (r), and the two sphere holes
(s1, s2). Furthermore, in the last three cases, the human will usually identify the hole
with its host object so that, for instance, she would simply talk about “passing a sphere
through the ring” and not through the “ring hole.” This apparently subtle distinction
may help to drastically simplify the problem representation. The spatial possibilities
of objects with multiple holes and their possible interactions by passing through other
objects may be interesting, but are not relevant for the problem. Thus, a first important
simplification we make is to identify each hole with a single-holed object. The post
hole seems to be an exception in this sense, as there is some difference between the ring
being in the post down the hole or not. As we will see later, this will be handled by
“partitioning” the post into two imaginary pieces: the hole itself (ph) and a connected
long object (the post body p). Let’s describe now our hole representation in more detail.

In this work we assume that each hole has two poles representing the two sides of
the hole. These poles subdivide the space local to the hole into two parts, named the
hole subspaces. As shown in Figure 2.

Figure 2 represent the hole poles and their relative subspaces. In this figure the
hole is the shaded region, the poles and subspaces are represented by a ‘+’ and a ‘-’

+−

Fig. 2: Poles and subspaces of a hole.

sign. Therefore, the holes function as local (bi-dimensional) reference frames, as we
can localise objects that are just in “front” or just “behind” any particular hole (but
not sidewise objects). It is worth pointing out that, in this work, the holes have no
dimension, i.e. the space inside the hole is null. This simplifying assumption can be
easily dropped by considering a third symbol (‘0’ for instance) representing the spatial
region that lies in between the two hole poles. In this paper, however, for each hole h
we represent its corresponding poles as h− and h+. Furthermore, if a is a hole pole,
then −a represents the opposite one, so that −h− = h+ and −h+ = h−.

Apart from the hole sort, there are two objects in the puzzle that also share some
common features: the string (str) and the post (p). If we momentarily forget the hole in
the post, both objects are “long” in the sense that, in principle, they could be simultane-
ously crossing several holes. Another common feature is that we can recognise two tips
in each of these objects: for instance, we would probably talk about the “right end of the
string,” or the “top end of the post,” to put a pair of examples. Thus, we will consider
a second sort called long object, in which we include p and str. For each long object
l we define two tips l− and l+, following an analogous notation to that used wrt hole
poles. Each tip of a long object can be linked to something else. For instance, the string
tips are connected to the disks, whereas the bottom of the post is linked to the post base.
Although encoded in the same sort, the string and the post have an obvious difference:
the flexibility inherent in the former, which is not a characteristic of the latter. As we
shall see, in this work the string’s flexibility is reflected in the constraints imposed on
the movements of the domain objects connected to it.

The remainder objects of the puzzle, that are the disks (d1, d2) and the post base (b),
will just be classified as regular objects, without showing any particular feature, except
perhaps that, due to their size, they can or cannot pass through each existing hole.

We illustrate the formalisation of the puzzle domain using diagrams. In these dia-
grams a box represents a hole, a circle a regular object, a thick line stands for a long
object and a small black circle represents a link or connection. An example of this
graphical representation is shown in Figure 3. Note how the post has been divided into
a post hole (ph) linked to the top part of the post body (p). It may be reasonably ob-
jected that this division is not so natural, but it is also true that it would be possible to
build an equivalent puzzle where, for instance, ph was a ring and p a second string.

Since each long object X can be crossing several holes, we will represent this us-
ing a list of crossings, called chain(X). This list should collect the sequence of all
hole crossings made by object X starting, for instance, from its negative tip and mov-
ing towards its positive one, whereas the same hole may occur several times in the
list. Furthermore, the direction in which the string crosses the hole is also relevant. To
see why, assume we represent the situation for Figure 4(a) simply as chain(str) =
[ph, s1, ph, s2, ph, ph]. Then, we could not distinguish Figure 4(a) from Figure 4(b).

ph
- +

- +s1 s2- + - +
d1 str

p

d2

b

r
+

-

-

+

(a) S0 (initial state)

ph
-

+

- +s1 s2- + - +
d1 str

p

b

r
+

-

-

+

d2

(b) S1 (d2 passes left)

Fig. 3: A pair of puzzle states.

ph
-

+

- +

s1 s2- + - +
str

d1

d2

(a)

ph
-

+

- +

s1 s2- + - +
str

d1

d2

(b)

Fig. 4: Two different states that could not be distinguished without crossing directions.

Figure 4(b) clearly represents a substantially different situation wrt Figure 4(a): the
disk d2 is now to the right (or positive side) of the post hole ph. Instead, a more suitable
representation of Figure 4(a) would be: chain(str) = [ph−, s+

1 , ph
+, s+

2 , ph
−, ph−].

Using the formalisation of the puzzle in terms of the list chain, presented in this
section, we are able to define the basic actions on domain objects, as introduced below.

3 Acting on objects
In this section we define the two actions that implement the basic movements on the
puzzle’s objects: the action pass o (passing an object through a hole) and the action
pass h (passing a hole through another hole).

3.1 Moving object endings: action pass o
The action pass o(A,B) represents passing a long object tip A through some hole
towards the hole pole B. For example, the execution pass o(str+, ph−) in the initial
state S0 leads to S1 (both depicted in Figure 3) and corresponds to moving the positive
ending of str (currently linked to disk d2) to the left of the post hole. It is clear that
the execution of pass(X+, B) (resp. pass(X−, B)) may equally mean that we are
adding or removing the hole from chain(X) depending on the context. For instance, the
movement described above, pass o(str+, ph−) should add ph− to chain(str) leading
to the list [s+

1 , ph
+, s+

2 , ph
−] in S1, whereas performing pass o(str+, ph+) in that

state should return us to the initial situation S0, removing ph− from the list.
The possible effects of pass o are depicted in Figure 5.

H A
-B B

HA
-B B pass_o(A,B)

pass_o(A,-B)
Fig. 5: Possible effects of pass o.

Looking from the right to the left execution of pass o, we can conclude that, when
we are performing pass o(X+, B) on the chain(X) = [. . . ,−B], we must remove
−B from the tail of this chain. The analogous case would be pass o(X−, B) with
chain(X) = [−B, . . .] where we would remove −B from the head of chain(X). If
none of the two previous cases occur, then pass o(A,B) is actually inserting a new
crossing in chain(X). Thus, pass o(X+, B) adds crossing B in the tail of chain(X)
whereas pass o(X−, B) adds crossing −B to the chain head.

3.2 Passing holes through holes: action pass h
The previous action is not enough for describing the solution of the problem, since it
does not take into account the movement of passing an (object containing a single) hole
through another hole. To understand why, let us assume that, given the initial situation
depicted in Figure 3 we tried to move the ring up. This is equivalent to move the post
hole ph down the ring, that is, to pass ph through r−. So we would need an action such
as pass h(A,B) where A is now a hole and B a hole pole. Back to the example, we
would execute the action pass h(ph, r−) on the initial situation leading to the resulting
state depicted in Figure 6.

ph

- +

- +

s1 s2- + - +
d1

s

p

d2

b

r
+

-

-

+

Fig. 6: Possible effect of pass h.

The most relevant effect of this action is that the string chain, which was previously
unrelated to the ring hole, has gained two new crossings as an effect of pass h. In
other words, the list: chain(X) = [s+

1 , ph
+, s+

2] has to be updated to: chain(X) =

[s+
1 , r
−, ph+, r+, s+

2].

3.3 Possible movements
This section presents some possible movements that can be operated applying the two
rules defined above. In the diagrams, we assume that the uppermost and the rightmost
tips of long objects are positive.

h

x

a

b

h

x

a

b (1R)

(1L)

[. . . , h+, a+, x+, b−, . . .] [. . . , h+, a+, h−, x+, h+, b−, . . .]

In Move (1R) we have that x is not contiguous to h in the chain. Therefore, by
executing pass h(x, h−) we replace x+ by the triple h−, x+, h+. Movement (1L) starts

in a state where x is preceded and succeeded by h in the chain but with alternate signs.
A second possible movement would be:

h

x

a

h

x

a

(2R)

(2L)

[. . . , h+, a+, x+, h−, . . .] [. . . , h+, a+, h−, x+, . . .]

The problem of Move 2R is that it cannot be applied when x is followed by h+

instead of h−, as shown in the instance of movement 1, as follows:

h

x

a

h

x

a

(1R)

(1L)

[. . . , h+, a+, x+, h+, . . .] [. . . , h+, a+, h−, x+, h+, h+, . . .]

In general, for any hole e, assuming we want to execute pass h(x, e) and x is crossed
by some string, then for any string Y crossing x, and any occurrence of x in chain(Y)
we have the following list of possible movements:

(1R) chain(Y) = [. . . , a, xz, b, . . .] =⇒ [. . . , a, e, xz,−e, b, . . .] with a, b 6∈ {e,−e} or a =
e, b = −e.

(1L) chain(Y) = [. . . ,−e, xz, e, . . .] =⇒ [. . . , xz, . . .]
(2R) chain(Y) = [. . . , a, xz, e, . . .] =⇒ [. . . , a, e, xz, . . .] with a 6= −e
(2L) chain(Y) = [. . . ,−e, xz, a, . . .] =⇒ [. . . , xz,−e, a, . . .] with a 6= e}

Note that the above movements are complete, in the sense that if x occurs in chain(Y)
as follows [. . . , a, xz, b, . . .] both a and b could be equal to e, equal to −e or none of
the two. As a result, we would have 3× 3 = 9 possibilities which, for reasons of space
we do not depict here, but can be seen to be all covered by the movements above. The
cases in which x is at head or tail end of the chain are also covered by assuming that
the ends themselves are elements different from all the rest in the list.

Another important observation is that, while all the represented elements in each
movement would be involved in the distinction of the movement type, only the under-
lined parts constitute the movement effect. This means, for instance, that in movement
(2R), a is only used in the predecessor state, to establish that we have a (2R) movement
and not a (1L), whereas in the successor state, it could be the case that a results moved
to the left or even removed by the effect of another movement (remember that x may
occur several times in the chain). An example of this accumulated movement would be,
for instance, the execution of pass h(x, h+) on the list [h−, x+, h+, x−, h+] where we
would perform (1L) on the first x and (2R) in the second leading to [x+, h+, x−].

With the representation developed above we can now formally express one solution
to the Fisherman’s puzzle and the sequence of states involved in its execution. Figure 7

state chain(p) chain(str) next action(s) movements
S0 [r+] [s+

1 , ph
+, s+

2] pass o(str+, ph−)
S1 [r+] [s+

1 , ph
+, s+

2 , ph
−] pass o(p+, r−) (1R)× 2

& pass h(ph, r−)
S2 [] [s+

1 , r
−, ph+, r+, s+

2 , r
−, ph−, r+] pass h(s2, r

−) (1L)
S3 [] [s+

1 , r
−, ph+, s+

2 , ph
−, r+] pass h(r, ph+) (2R)+(2L)

S4 [] [s+
1 , ph

+, r−, s+
2 , r

+, ph−] pass h(s2, r
+) (1L)

S5 [] [s+
1 , ph

+, s+
2 , ph

−]

ph

-

+

- +

s1 s2- + - +
d1 str

p

b

r
+

-

-

+

d2

S2

ph
-

+
- +

s2- +
d1

p

b
-

+

d2

S3

r -+

s1- + str

-

+

s2- +
d1

p

b
-

+

d2

S4

r -+

s1- +

str ph- +

-

+

s2- +
d1

p

b
-

+

d2

S5

r -+
s1- +

str
ph- +

Fig. 7: A formal solution for the Fisherman’s puzzle.

shows this solution step by step and depicts the corresponding spatial configurations of
states S2 through S5 (S2 and S3 were already shown in Figure 3).

Clearly, S5 is a solution, since the ring r is not passed through any long object. Note
that the action performed in state S1 is actually a combined one. This is because moving
the ending p+ to r− implies passing also the post hole, as p+ and ph are linked.

The next section discusses an implementation of the puzzle into an action language.

4 A simple Prolog implementation
As an actions domain, our abstraction of the Fisherman’s folly is quite simple in the
sense that most complex features of actions reasoning are not required for the problem.
We deal with two actions, pass o and pass h whose execution causes a direct effect
on the fluents chain(X), for each long object X . Rather than providing a precondition
per each action, we have found more convenient to specify general constraints in which
the actions are not executable. We have used a Prolog predicate nonexecutable(S,A) to
represent when an action A cannot be performed in a state S, including the rules:
nonexecutable(, pass o([X,], [H,])) : −

cannot pass(X,H), !.
nonexecutable(S, pass o(P, [H,])) : −

member(linked to(P) = X,S), cannot pass(X,H), !.
nonexecutable(, pass h(X, [H,])) : −cannot pass(X,H), !.

nonexecutable(S, pass h(X,)) : −
member(linked to() = X,S), !.

The pairs [X,Y] are used to represent tips, so that for instance, [p,+] would stand
for p+. The fourth non-executability condition is used to force that, when an object tip
is connected to a hole, the planner tries first to pass the object’s tip and later the hole in
a same transition. In this way we avoid irrelevant solutions where we can try to do it in
the opposite ordering, obtaining exactly the same effects.

Of course, the main difficulty of this scenario from the standpoint of planning rep-
resentation languages (STRIPS, ADL, PDDL) or even formalisms for action reasoning
is the need for dealing with lists and pattern matching. In fact, this has motivated the
choice of Prolog in order to build this preliminary prototype. Our implementation in-
cludes a Prolog predicate process chain(X,HP,L1,L2) to describe the effect of perform-
ing pass h(X,HP) on the chain list L1 leading to the list L2. An example showing the
implementation of movement (1R) is shown below.
process chain(X,HP, [A, [X,S], B|Cs], Ds) : −

opposite(HP,HP1), A \ = HP1, B \ = HP, !,
process chain(X,HP, [B|Cs], Ds0),
Ds = [A,HP, [X,S], HP1|Ds0].

Note how the right neighbour of [X,S], the crossed tip B, is used to keep processing
the rest of the chain in the recursive call, and how the result of this recursive call Ds0
may not contain B any more – it could be deleted by an accumulated movement (1L).

From the planning algorithm point of view, we have just implemented a blind
search, relying on depth-first forward chaining with an iterative deepening strategy.
Since the plan is really short, the Prolog program3 just takes 10.30 seconds to find a
first solution, despite of the inefficient planning strategy.

It is interesting to observe that the program actually finds several solutions in five
steps. For instance, apart from the obvious symmetric solution where we begin work-
ing with d1 instead of d2 making pass(s−, ph−), we also get a variant of the de-
picted solution in Figure 7 where to reach state S3 we execute instead the sequence
pass o(str+, ph−), pass h(s2, r−) and pass o(p+, r−) & pass h(ph, r−). This so-
lution is not valid for the original puzzle since, although both the sphere and the post
can pass through the ring, they cannot do so simultaneously. For immediate future work,
we plan extending our representation so that the predicate cannot pass describes when
a group of objects cannot be altogether simultaneously passing through a given hole.

We have also made some small variations of the original puzzle by changing some of
the premises. For instance, by allowing spheres to pass through the post hole we directly
get a shorter solution: pass o(str+, ph−), then pass h(s2, ph−), that gets the string-
disks-spheres tandem out of the post and, finally, pass o(p+, r−) & pass h(ph, r−) to
get the ring free.

3 We have used SWI-Prolog 5.2.11 interpreter running on Linux Mandrake 10 on a Pentium IV
1.5 GHz with a RAM of 512 MB.

5 Concluding remarks

In this work we investigated a challenging problem for spatial reasoning and common
sense knowledge formalisation, namely, the problem of reasoning about spatial domains
that contain non-trivial objects such as holes and strings. We propose a representation
whereby holes identify sub-spaces in which objects could be located. The string in this
paper is formalised as a long object that restricts the movement of the objects linked to
it. In fact, the flexibility of this object is not fully explored in this work, as we abstracted
away the possibility of tying knots. This issue shall be investigated in future work.

The formalisation of spatial knowledge is not the only challenge in the domain as-
sumed in this work. Solving the puzzle also involves interesting issues that are beyond
search (or planning) through a state space. For instance, when changing the spatial con-
figuration of the puzzle, a person has a selective observation of domain objects, whereby
only a portion of the space is observed. Actions are, thus, only applied within this lim-
ited view of the scene. A second issue is the minimisation of the spatial configuration
complexity; the string allows for the application of a sequence of actions rolling the
string around the post, or through it, many times. Minimisation of the puzzle’s configu-
ration complexity could be used as an heuristic in an automated problem solver. How-
ever, how this complexity should be measured is still an open problem. Finally, when
trying to solve the puzzle for the first time, a human agent may not know every con-
straint or every possible movement of the domain objects. Searching for an automated
way in which such spatial knowledge can be assimilated is also a very challenging issue
for further investigations.

References

1. E. Clementini, P. di Felice, and D. Hernandez. Qualitative representation of positional infor-
mation. Artificial Intelligence, 1997.

2. A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

3. D. Hernandez, E. Clementini, and P. di Felice. Qualitative distances. In W. Kuhn and
A. Frank, editors, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1995.

4. R. C. Meathrel and A. P. Galton. A hierarchy of boundary-based shape descriptors. In Proc.
of IJCAI, pages 1359 – 1369, 2001.

5. T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi. Knot planning from
observation. In Proc. of the IEEE ICRA, pages 3887 – 3892, 2003.

6. D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In Proc.
of KR, pages 165 –176, 1992.

7. K. Reidemeister. Knot Theory. BCS Associates, 1983.
8. P. Santos and M. Shanahan. Hypothesising object relations from image transitions. In Proc.

of ECAI-02), pages 292 – 296. 2002.
9. M. Shanahan. Default reasoning about spatial occupancy. Artificial Intelligence, 74(1):147

– 163, 1995.
10. O. Stock, editor. Spatial and Temporal Reasoning. Kluwer Academic, 1997.
11. A. C. Varzi. Reasoning about space: The hole story. Logic and Logical Philosophy, 4:3 –

39, 1996.

