haspie - A Musical Harmonisation Tool
based on ASP*

Pedro Cabalar and Rodrigo Martin

Department of Computer Science,
University of Corunna, Spain.
{cabalar,r.martinl}@udc.es

Abstract. In this paper we describe a musical harmonisation and com-
position assistant based on Answer Set Programming (ASP). The tool
takes scores in MusicXML format and annotates them with a preferred
harmonisation. If specified, it is also able to complete intentionally blank
sections and create new parts of the score that fit with the proposed har-
monisation. Both the harmonisation and the completion of blank parts
can be seen as constraint satisfaction problems that are encoded in ASP.
Although the tool is a preliminary prototype still being improved, its ba-
sic functionality already helps to illustrate the appropriateness of ASP
for musical knowledge representation, which provides a high degree of
flexibility thanks to its relational, declarative orientation and an efficient
computation of preferred solutions.

1 Introduction

Music Theory learning is a field with a long tradition, relying on well-established
methods but suffering, in many cases, from an obsolete technology. A central
discipline in music learning is Harmony, a cornerstone for score analysis, vital
for its comprehension, later interpretation and further development. Harmony
studies the superposition of sounds, that is, the combination of simultaneous
notes to create chords. In their turn, chord progressions help either to reaffirm
or to blur (depending on the author’s intentions) the concept of tonality. It is
usually said that harmony constitutes the “vertical” reading of a score (that
is, what is sounding at a same time) as opposed to the “horizontal” reading
provided by the melody (that is, how a given voice progresses along time).
Apart from acquiring theoretical foundations, Harmony students must usu-
ally face a series of exercises in the form of a four-voices score partially incom-
plete. The goals of these exercises may comprise tasks such as annotating the
chords, filling missing voice parts or both. This has to be done according to some
style rules that may be strict or, occasionally, act as preferences or recommenda-
tions. In other words, harmony exercises constitute a natural application domain

* This work has been partially supported by MINECO, Spain (project TIN2013-
42149-P), Xunta de Galicia, Spain (projects GPC ED431B 2016/035 and 2016-2019
ED431G/01 for CITIC center) and European Regional Development Fund (ERDF).



for constraint based reasoning. Moreover, musical notation (at least for harmony
purposes) is mostly discrete and symbolic, and its knowledge involves many kinds
of relations (among notes, chords, measures, etc), becoming in this way an ideal
test-bed for logical Knowledge Representation and Reasoning (KRR).

In this paper, we present haspie, a musical harmonisation tool based on An-
swer Set Programming (ASP) [1-3], one of the most successful KRR paradigms
for practical problem solving. haspie aims to help Harmony students achieve a
better understanding of the matter and lets them experiment earlier with com-
position from a harmonic point of view. The tool can be combined with a score
graphic editor (MuseScore!) to create/manipulate harmony exercises that can be
solved via a call to the ASP backend. The solutions can then be displayed again
in the graphic editor or directly translated into MIDI files for their reproduction.

2 Tool description

The architecture of haspie (Fig. 1) is a simple pipeline written in Python with a
single execution path. The input format for haspie is Music Extensible Markup
Language (MusicXML, or MXML), an extension of the XML format used to
represent Western music. It contains not only score information but also display
data such as margins, font sizes, musical notes position coordinates in the sheet,
etc. The tool takes a single MusicXML file (usually generated with the graphic
editor MuseScore) as input that is passed to the first stage of the pipeline: a
parser written in C along with the Flex and Bison libraries. This module trans-
forms the MusicXML tag information to ASP facts. The parser also performs
other tasks such as fixing the measure level at which the harmonisation will
take place, interpreting the instrument or voice names to determine their most
common pitch ranges, reading the expected tonality via the key signature, etc.

The core of haspie is an ASP encoding that declares the style norms and
preferences as logic program rules. Without entering into detail (see [3] for a ex-
tended explanation), ASP usually describes constraint problems with a method-
ology called generate-define-test. Some rules allow generating potential solutions,
constraints (test) are used to prune undesired choices and an additional group
of rules allow defining auxiliary predicates to represent some features used in
generation and test. An example of a generation rule is:

1 { chord(HT,C) : pos_chord(C) } 1 :- htime(HT). ‘

It essentially asserts that, for each time beat HT, exactly 1 chord C is (non-
deterministically) assigned among all those possible chords pos_chord(C) de-
fined elsewhere according to the chord harmony rules. With this rule alone, each
possible assignment becomes one of the answer sets of the program, which are
in one-to-one correspondence to solutions to our harmonisation exercises.

As we can see, ASP rules allow variables (in capital letters) that are replaced
by their possible instances in a first stage called grounding. After all rules are

! https://musescore.org/



Pipeline, Python 2.7

PARSER

1
1
1
MXML XI\/FLP Flex/Bison MELODIOUS
STYLE
ASP prefs

HARMONIZER
SIXTH LINKS

ASP
ASP prefs
ASP\ SCORE
g COMPLETER
ASP

OUTPUT

Python 2.7 MiDI
/w Music21

Fig. 1. haspie Architecture

grounded, a second stage does the (propositional) solving. The ASP solver that
haspie uses as a backend is clingo? which incorporates both the grounding
and solving phases in a singe package. To reduce the combinatorial explosion,
the ASP core for haspie has been actually divided into two modules: the har-
monisation module and the score completer (see Figure 1). The former assigns a
(coherent) harmonic structure for the partial score provided as an input, whereas
the latter fills the gaps once the harmony has been established.

The harmonisation module takes a file with ASP facts and uses this infor-
mation to expand the general harmony rules, using some auxiliary predicates
and finally assigning a chord to each specified section of the piece with the rule
shown before. The possible chords poss_chord(C) are defined in separate files
major_chords and minor_chords — the tool determines which one to use by in-
ferring the mode from the extracted key signature. These chords are defined by
the relative role of the notes in the (inferred) tone scale (1st grade, 2nd grade,
etc) rather than their absolute pitch (C, D, etc). By doing so, the tool gener-
alises the chord concept, reducing it to a tonal grade detection and then fits the
best possible chord for that grade by taking all the notes in the analysed beat
interval. Knowing the tonal grades of each note of the rhythmic interval, the tool
then marks as mistakes those notes in strong beats not belonging to the assigned
chord so that, using optimisation rules, answer sets with a minimum number of

% http://potassco.sourceforge.net /



mistakes are chosen. The tool displays a summary of these best answers and lets
the user choose one for the score completion step A temporal chord facts file is
then created, that is used, along with the original logical facts to complete the
blank parts or the new voices of the score.

The second half of the tool, the score completer, is called if there are blank
sections (denoted using predicate freebeat) in the score or the creation of new
parts were specified in the input options. This second half works in a similar
fashion as the first half, by assigning new notes to the completable sections of
the score among those in the pitch range of the specified instrument or voice
type of the part. For instance, the rule:

1 { freebeatfigure(V,N,1,FB) : N=VL..VH } 1 :- freebeat(V,FB),
voice_limit_low(V,VL), voice_limit_high(V,VH).

is a non-deterministic assignment of a note N between the lowest VL and highest
VH pitches for voice V, for each time point FB marked as freebeat (that is, blank
section to be filled). These new notes N are again generalised to their tonal
grade and octave (as it is done in the very first steps of the previous half) to
then being checked against the selected harmonisation. This is done by marking
the incorrect ones in strong beats as mistakes, as well as checking for other
melodic rules such as note distance or trying to avoid certain undesirable sounds
produced among the different voices that play at the same time. By minimizing
these mistakes, again, the optimal solutions are found.
The following is an example showing a hard constraint:

octave_jump(V,B1,B2) :- ex_note(V,N1,B1), ex_note(V,N2,B2),
(B1+1) == B2, N2 > (N1+12), beat(B1l+1).
octave_jump(V,B1,B2) :- ex_note(V,N1,B1), ex_note(V,N2,B2),
(B1+1) == B2, N2 < (N1-12), beat(B1l+1).
:— octave_jump(_,_,_).

The first two rules define the auxiliary predicate octave_jump(V,B1,B2) that
detects when a given voice V moves from one note at beat B1 to another note at
B1+1 with the same name but one octave higher (or lower). Rules like the one
in the last line, without a head expression before ‘:-’, correspond to constraints
in ASP. In this case, the constraints rule out all octave jumps.

haspie has an optional module including some preferences to improve the re-
sult of the score completer. These preferences include some melodic rules trying,
for instance, to minimise the size of melodic jumps:

melodic_jump(V,J,B1,B2) :- out_note(V,N1,B1), out_note(V,N2,B2),
(Bi+1) == B2, beat(B1+1), J = #abs(N1-N2).
#minimize [melodic_jump(_,J,_,_) = (J * weight) @ priority].

The minimize clause above assigns a penalty J * weight per each melodic jump
of J semitones. The constant weight and the priority level for this preference
can be assigned by the user, so we can tune how much influence this preference
will have on the final result. The preferences module includes other optimisations.
For instance, if a section melody has a rising or falling tendency, it tries to



imitate that tendency in the completable sections as much as possible. Another
group of preferences detects a popular type of chord progression (cadential 6/4
chords), trying to extend a sequence of this type of chords as much as possible
by filling completable blank sections. The last module called by the pipeline
uses the internal score representation in Python objects to export the result in
the format specified by the user. This module works using the music21 library®
developed by the MIT.

3 Evaluation

For the tool evaluation, four pieces were chosen. For each one, the tool was asked
to harmonise and complete one of its measures as well as a whole new part, mea-
suring not only runtime but also quality of the result. The left table in Fig. 2
shows the obtained results: each measure was taken 100 times and then aver-
aged. Harmony selection times are very good and the completion times are very

Test Time
lPiece [Harmonisation Measure| New Part 4 measures 1.481s
8 measures 2.394s

Greensleeves 1.016s 1.926s |[4m 49.032s
12 measures 3.978s

Menuet 0.631s 0.726s |3m 50.376s
16 measures 3.982s

Joy to the World 2.381s 3.813s |7Tm 17.115s
Ttk Toinkl = 20 measures 5.966s
winkle Twinkle 0.685s 0.716s |2m 31.299s 1 voice 5m 31.2995
2 voices 25m 17.298s

Fig. 2. Some execution results.

promising. Nevertheless, the required time to complete new parts grows very
quickly as adding more and more sections to complete makes the possibilities
grow exponentially. In quality terms, the selected chords are correct, and the
section completion or the new parts creation offer interesting harmonically cor-
rect solutions like the one in Fig. 3, adding an harmonically correct bass line to
the well-known melody from “Greensleeves.” The load tests for “Twinkle Twin-
kle” were performed by leaving blank measures in one of the parts. Measures
were emptied in blocks of four. We also tried adding 1 and 2 voices to the piece,
achieving the times in the right table of Fig. 2.

4 Conclusions and Related work

Clearly, the closest works to haspie are ANTON [4] and CHASP [5], since both rely
on ASP too. ANTON is a complex rythmic, melodic and harmonic composer for

3 http://web.mit.edu/music21/



Greensleeves

Fig. 3. Obtained harmonisation and bass part for Greensleeves melody.

small musical pieces. Although it is more complete than haspie, it is limited
to the Renaissance style of Palestrina and only two voices, so it is less suitable
for harmony training. CHASP is a tiny tool created by the Potassco Group to
calculate chord progressions through ASP starting from scratch (no input file),
allowing the user to specify key and length of the piece.

The current prototype is only at a preliminary stage. Many open topics re-
main for future work. Apart from improving the input and output interfaces
(like the connection to MuseScore as a plugin) a fundamental extension which is
a current, important limitation, is the possibility of automated modulation, that
is, allowing haspie to decide changes in the piece tonality in a dynamic way.

References

1. Niemel4, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999)
241-273

2. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming
paradigm. In Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S., eds.: The
Logic Programming Paradigm. Artificial Intelligence. Springer Berlin Heidelberg
(1999) 375-398

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM 54(12) (December 2011) 92-103

4. Boenn, G., Brain, M., De Vos, M., Ffitch, J.: Automatic music composition using
answer set programming. Theory and Practice of Logic Programming 11(2-3) (2011)
397-427

5. Opolka, S., Obermeier, P., Schaub, T.: Automatic genre-dependent composition
using answer set programming. In: Proc. of the 21st Intl. Symposium on Electronic
Art (ISEA’15). (2015)



