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Abstract

In this paper we provide an application of automated theorem proving for formal
verification of Answer Set Programming (ASP). In particular, we have implemented the
basic definitions of the ASP denotational semantics in the language of the PVS theorem
prover, using afterwards some libraries and features of this prover to obtain certified
proofs in an automated way.

1 Introduction

Answer Set Programming (ASP)[2] constitutes nowadays one of the most successful paradigms
of Knowledge Representation and Problem Solving in Artificial Intelligence. The popularity
of ASP is probably due to the availability of efficient solvers for hard computational prob-
lems, something that has allowed a boost in practical applications. But, together with this
practical aspect, the success of ASP is also firmly supported by a constant evolution of its
neat theoretical foundations, from its origins with the stable models semantics [3] for logic
programs, until its full logical formalisation under Equilibrium Logic [7].

Equilibrium Logic is a non-monotonic formalism whose definition involves different
types of models. For instance, equilibrium models of a theory Γ are defined by a kind of
minimisation among models of Γ in the Logic of Here-and-There (HT) [5] (an intermediate
formalism between intuitionistic and classical logic). But at the same time, equilibrium
models also happen to be a subset of the classical models of Γ. In this way, these three sets
of models (classical, HT and equilibrium) frequently appear in papers about theoretical or
fundamental properties of ASP.
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Recently, a denotational semantics for ASP and Equilibrium Logic was proposed [1].
This denotational semantics allows characterising different sets of interpretations and models
in a formal way, by just using several set operations. As a result, many meta-theorems
proved in the literature in a textual or descriptive way become now formalizable in terms of
standard set theory and partial order relations, opening the possibility of automated proof
checking and generation.

In this paper we explore that possibility: we provide the first known application of
automated theorem proving for formal verification of ASP properties, to the best of our
knowledge. In particular, we have implemented the basic definitions of the ASP denotational
semantics in the language of the PVS (Prototype Verification System) theorem prover [6],
using afterwards some libraries and features of this prover to obtain certified proofs in an
automated way. The rest of the paper is organised as follows. In the next section we begin
recalling the basic features of PVS. After that, we start with the PVS formalisation of the
ASP denotational semantics by introducing sets of partial interpretations. In Section 4, we
describe the valuation of formulas in the logic of HT. Section 5 contains the PVS encoding of
the denotational semantics and the main results of the paper. In Section 6 we provide some
conclusions. We have additionally included an example of proof session in an Appendix.

2 Brief overview of PVS

PVS is an environment for constructing clear and precise specifications and for efficient
mechanized verification. The distinguishing characteristics of PVS are its expressive speci-
fication language and its powerful theorem prover. The PVS specification language builds
on classical typed higher-order logic with the usual base types, bool, nat, integer, real,
among others, and the function type constructor (e.g., type [A→ B] is the set of functions
from set A to set B). Predicates are functions with range type bool. The type system of
PVS also includes record types, dependent types, and abstract data types. Typechecking
in this language requires the services of a theorem pover to discharge proof obligations
corresponding to subtyping constraints.

PVS specifications are packaged as theories that can be parametric in types and con-
stants. A collection, prelude.pvs, of theories and loadable libraries provide standard spec-
ifications and proved facts for a large number of theories. A theory can use the definitions
and theorems of another theory by importing it.

The PVS environment has an automated theorem prover that provides a collection of
powerful primitive inference procedures that are applied interactively under user guidance
within a sequent calculus framework. The primitive inferences include propositional and
quantifier rules, induction, rewriting, simplification using decision procedures for equality
and linear arithmetic, data and predicate abstraction.

One of the main advantages of PVS with respect to other provers such as Coq, HOL,
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Isabelle, etc is that it allows the direct declaration of predicate subtypes. For instance:

bottom(S: set[I]): set[I] = {i: I | EXISTS (j: I):

(member(j,S) AND R_ord2(i,j))}

All properties of the parent type are inherited by the subtype. A constraining predicate
is provided to identify which elements are contained in the subset.

3 Partial interpretations

As a starting point, we use the alternative characterisation of HT in terms of Gödel’s three-
valued logic G3 [4]. We start from a finite set of atoms Σ called the propositional signature.
A partial interpretation is a mapping v : Σ → {0, 1, 2} assigning 0 (false), 2 (true) or 1
(undefined) to each atom p in the signature Σ. A partial interpretation v is said to be
classical (or total) if v(p) 6= 1 for every atom p. We write I and I c to stand for the set of
all partial and total interpretations, respectively (fixing signature Σ). Note that I c ⊆ I.
The PVS encoding of these definitions is quite straightforward:

Sig_prop[T: TYPE+]: THEORY

BEGIN

ASSUMING

T_finite: ASSUMPTION is_finite_type[T]

ENDASSUMING

s3?(x:nat):bool = x <= 2

S3: TYPE = (s3?)

s2?(x:nat):bool = s3?(x) AND (x=0 OR x=2)

S2: TYPE = (s2?)

S3_cont_S2: JUDGEMENT S2 SUBTYPE_OF S3

I: TYPE+ = [T -> S3]

IC: TYPE = {i: I | FORALL(t: T): (i(t) = 0 OR i(t) = 2)}

I_cont_IC: JUDGEMENT IC SUBTYPE_OF I

Given any partial interpretation v ∈ I we define a particular classical interpretation
vt ∈ I c that, informally speaking, transforms 1’s into 2’s. Formally:

vt(p)
def
=

{
2 if v(p) = 1

v(p) otherwise

Our PVS encoding represents vt as the function RT(i).

RT(i: I): IC =

LAMBDA(t: T): IF i(t) = 0 THEN 0 ELSE 2 ENDIF
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We define an ordering among partial interpretations as follows. Given two partial
interpretations u, v, we say that u ≤ v when, for any atom p ∈ Σ, the following two
conditions hold: u(p) ≤ v(p); and u(p) = 0 implies v(p) = 0. In other words, u and v must
coincide in their 0’s and an atom value in u must not be greater than its value in v. We
encode this relation as R_ord2 below:

R_ord2(i,j: I): bool =

IF (FORALL (t: T): (i(t) <= j(t)) AND (i(t) = 0 IMPLIES j(t) = 0))

THEN TRUE ELSE FALSE

ENDIF

This relation is actually equivalent to R_ord defined in terms of vt as described below:

R_ord(i,j: I): bool =

IF ((FORALL (t: T): (i(t) <= j(t))) AND RT(i) = RT(j)) THEN TRUE

ELSE FALSE

ENDIF

R_ord_same: LEMMA FORALL (i,j: I): (R_ord(i,j) IFF R_ord2(i,j))

We can use PVS to certify that ≤ is, indeed, a partiar order relation:

R_reflexive: LEMMA FORALL (i: I): R_ord(i,i)

R_antisymmetric: LEMMA FORALL (i,j: I):

(R_ord(i,j) AND R_ord(j,i)) IMPLIES i = j

R_transitive: LEMMA FORALL (i,j,k: I):

(R_ord(i,j) AND R_ord(j,k)) IMPLIES R_ord(i,k)

R_partial_order: LEMMA partial_order?[I](R_ord)

Moreover, we can easily check the following properties relating ≤ and vt:

∀v ∈ I v ≤ vt
∀v ∈ I c vt = v

∀v, u ∈ I if v ≤ u then vt = ut
∀v, u ∈ I if v ≤ u and u ∈ I c then vt = u

RT_ord: LEMMA FORALL (i: I): R_ord(i,RT(i))

RT_classic: LEMMA FORALL (i: IC): RT(i) = i

RT_ord_mon: LEMMA FORALL (i,j: I): R_ord(i,j) IMPLIES RT(i) = RT(j)

RT_ord_uniq: LEMMA FORALL (i: I, j: IC): R_ord(i,j) IMPLIES RT(i) = j

Given a set of interpretations S ⊆ I we will define some abbreviations:

S
def
= {u ∈ I | u /∈ S}

Sc
def
= {u ∈ I c | u ∈ S} = I c ∩ S

S ↓ def
= {u ∈ I | there exists v ∈ S, v ≥ u}

S ↑ def
= {u ∈ I | there exists v ∈ S, v ≤ u}

To avoid too many parentheses, we will assume that ↓, ↑ and subindex c have more priority
than standard set operations ∪, ∩ and \.
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i: VAR I

ic: VAR IC

comp(S: set[I]): set[I] = {i: I | NOT member(i,S)}

classic(S: set[I]): set[IC] = {ic | member(ic,S)}

bottom(S: set[I]): set[I] =

{i: I | EXISTS (j: I): (member(j,S) AND R_ord2(i,j))}

top(S: set[I]): set[I] =

{i: I | EXISTS (j: I): (member(j,S) AND R_ord2(j,i))}

Although for the forthcoming results in the paper we have used some lemmas from
standard set theory included in the PVS library prelude.pvs, we have also required some
additional specific properties for the set operators we have just introduced. These useful
properties are specified below:

Proposition 1 For any X,Y ⊆ I,

(Xc ↓)c = Xc

If X ⊆ Y then X ↓ ⊆ Y ↓
If X ⊆ Y then X ↑ ⊆ Y ↑

(X ∪ Y ) ↓ = X ↓ ∪Y ↓
(X ∪ Y ) ↑ = X ↑ ∪Y ↑
(X ∩ Y ) ↑ ⊆ X ↑ ∩ Y ↑
(X ∩ Y ) ↓ ⊆ X ↓ ∩ Y ↓

classic_bottom_classic: LEMMA FORALL (X: set[I]):

classic(bottom(classic(X))) = classic(X)

bottom_subset: LEMMA FORALL (X, Y: set[I],i: I):

subset?(X,Y) IMPLIES subset?(bottom(X),bottom(Y))

top_subset: LEMMA FORALL (X, Y: set[I],i: I):

subset?(X,Y) IMPLIES subset?(top(X),top(Y))

union_bottom: LEMMA FORALL (X,Y: set[I]):

bottom(union(X,Y)) = union(bottom(X),bottom(Y))

union_top: LEMMA FORALL (X,Y: set[I]):

top(union(X,Y)) = union(top(X),top(Y))

intersection_bottom: LEMMA FORALL (X,Y: set[I]):

subset? (bottom(intersection(X,Y)), intersection(bottom(X),bottom(Y)))

intersection_top: LEMMA FORALL (X,Y: set[I]):

subset? (top(intersection(X,Y)), intersection(top(X),top(Y)))

With these new operators we can formally express that vt is the only classical interpre-
tation greater or equal than v in the following way:

Proposition 2 For any v ∈ I, it holds that {v} ↑c = {vt}

classic_top_uni: LEMMA FORALL (i: I):

classic(top(singleton(i))) = singleton(RT(i))
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Proposition 3 For any interpretation v, v ∈ (Sc) ↓ ⇐⇒ vt ∈ S.

classic_total: LEMMA FORALL (S: set[I],i: I):

(member(i,bottom(classic(S)))) IFF (member(RT(i),S))

A particularly interesting type of sets of interpretations are those S satisfying that
vt ∈ S for any v ∈ S. When this happens, we say that S is total-closed or classically closed.

S: VAR set[I]

total_closed?(S): bool = FORALL (i:I):

(member(i,S)) IMPLIES (member(RT(i),S))

We can capture this property with any the following equivalent conditions:

Proposition 4 The following assertions are equivalent:
(i) S is total-closed
(ii) S ⊆ Sc ↓
(iii) S ↑c= Sc

total_closed_1: LEMMA FORALL (S: set[I]):

total_closed?(S) IMPLIES subset?(S, bottom(classic(S)))

total_closed_2: LEMMA FORALL (S: set[I]):

subset?(S, bottom(classic(S))) IMPLIES classic(top(S))=classic(S)

total_closed_3: LEMMA FORALL (S: set[I]):

classic(top(S))=classic(S) IMPLIES total_closed?(S)

Proposition 5 For any total-closed set of interpretations S, it holds that (S)c ↓⊆ (Sc ↓)

bottom_classic_com_1: LEMMA FORALL (S: set[I],i: I):

subset?(bottom(classic(comp(S))),comp(bottom(classic(S))))

Corollary 6 For any total-closed set of interpretations S, it holds that (S)c ↓⊆ S

bottom_classic_com_2: LEMMA FORALL (S: set[I],i: I):

total_closed?(S) IMPLIES subset?(bottom(classic(comp(S))),comp(S))

4 Valuation of formulas

A formula α is defined by the grammar:

α ::= ⊥ | p | α1 ∧ α2 | α1 ∨ α2 | α1 → α2
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where α1 and α2 are formulae in their turn and p ∈ Σ is any atom. We denote by ¬αdef
= α→

⊥ and >def
= ¬⊥. By LΣ we denote the language of all well-formed formulae for signature Σ or

just L when the signature is clear from the context. The syntactic encoding of expressions
is then as follows using the abstract data-type construct:

Sig_form[T: TYPE+]: DATATYPE

BEGIN

bot: bot?

atom(t: T): atom?

op_and(t1: Sig_form, t2: Sig_form): op_and?

op_or(t1: Sig_form, t2: Sig_form): op_or?

op_imp(t1: Sig_form, t2: Sig_form): op_imp?

END Sig_form

The DATATYPE construction in PVS provides a powerfull tool for defining an abstract
data type (ADT). To do so, we provide a set of constructors, accessors and recognizers. In
this case, the constructors are bot, atom, etc, whereas the accessors are t, t1 and t2. The
recognizers are bot?, atom?, op_and?, etc. When the type checker is applied to an ADT
three new theories are automatically created in a file name_adt.pvs. These theories provide
the required axioms and induction principles to guarantee that the ADT is initial Algebra
defined by the constructors.

Given a partial interpretation v ∈ I we define a corresponding valuation of formulas, a
function also named v (by abuse of notation) of type v : L → {0, 1, 2} and defined as:

v(⊥)
def
= 0

v(α→ β)
def
=

{
2 if v(α) ≤ v(β)

v(β) otherwise

v(α ∧ β)
def
= min(v(α), v(β))

v(α ∨ β)
def
= max(v(α), v(β))

I_form: TYPE = [Sig_form -> S3]

IC_form: TYPE = [Sig_form -> S2]

I_IC_form: JUDGEMENT IC_form SUBTYPE_OF I_form

v_form(s: Sig_form,i: I): RECURSIVE S3 =

CASES s OF

bot: 0,

atom(t): i(t),

op_and(t1,t2): min(v_form(t1,i),v_form(t2,i)),

op_or(t1,t2): max(v_form(t1,i),v_form(t2,i)),

op_imp(t1,t2): IF v_form(t1,i) <= v_form(t2,i) THEN 2 ELSE v_form(t2,i) ENDIF

ENDCASES

MEASURE s BY <<
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In PVS, all functions must be total. The MEASURE part provides the information to the
typechecker and prover to ensure the termination of recursion.

Proposition 7 For any v ∈ I and any α, β ∈ L,

• v(α ∧ β) = 2⇐⇒ v(α) = 2 and v(β) = 2

• v(α ∨ β) = 2⇐⇒ v(α) = 2 or v(β) = 2

caractv_form_and2: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_and(t1,t2),i) = 2 IFF

v_form(t1,i)=2 AND v_form(t2,i)=2

caractv_form_or2: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_or(t1,t2),i) = 2 IFF

v_form(t1,i)=2 OR v_form(t2,i)=2

Proposition 8 For any v ∈ I and any α, β ∈ L,

• v(α→ β) = 2⇐⇒ v(α) = 0 or v(β) = 2 or v(α) = 1 = v(β)

• v(α→ β) = 0⇐⇒ v(α) 6= 0 and v(β) = 0

• v(α→ β) = 1⇐⇒ v(α) = 2 and v(β) = 1

caractv_form_imp2: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 2 IFF

v_form(t1,i)=0 OR v_form(t2,i)=2 OR (v_form(t1,i)= 1 AND v_form(t2,i)=1)

caractv_form_imp0: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 0 IFF

not(v_form(t1,i)=0) AND v_form(t2,i)=0

caractv_form_imp1: Lemma FORALL (t1,t2: Sig_form,i: I):

v_form(op_imp(t1,t2),i) = 1 IFF

v_form(t1,i)=2 AND v_form(t2,i)=1

The following result has been proved in PVS by structural induction. The proof of this
result is one of longest and most used among those obtained in this work.

Proposition 9 For any v ∈ I and any formula α ∈ L,

• v(α) = 0⇐⇒ vt(α) = 0

• v(α) = 2 =⇒ vt(α) = 2

• v(α) ≥ 1⇐⇒ vt(α) = 2
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caract_val_zero: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i) = 0 IFF v_form(t,RT(i))=0

val_two: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i) = 2 IMPLIES v_form(t,RT(i))=2

caract_val_nozero: Lemma FORALL (t: Sig_form,i: I):

v_form(t,i) >= 1 IFF v_form(t,RT(i))=2

We say that v satisfies α when v(α) = 2. We say that v is a model of a theory Γ iff v
satisfies all the formulas in Γ.

5 Denotational Semantics

We define now the denotation of a formula α, written Jα K, recursively as follows

J⊥ K def
= ∅

J p K def
= {v ∈ I : v(p) = 2}

Jα→ β K def
=

(
Jα K ∪ Jβ K

)
∩
(

Jα K ∪ Jβ K
)
c
↓

Jα ∧ β K def
= Jα K ∩ Jβ K

Jα ∨ β K def
= Jα K ∪ Jβ K

denotation(s: Sig_form): RECURSIVE set[I] =

CASES s OF

atom(t): {i: I | i(t) = 2},

bot: emptyset,

op_and(t1,t2): intersection(denotation(t1),denotation(t2)),

op_or(t1,t2): union(denotation(t1),denotation(t2)),

op_imp(t1,t2): intersection

(union(comp(denotation(t1)),denotation(t2)),

bottom(classic(union(comp(denotation(t1)),denotation(t2)))))

ENDCASES

MEASURE s BY <<

The next result has also been proved by structural induction.

Theorem 10 Let v ∈ I be a partial interpretation and α ∈ L a formula. Then:

v(α) = 2 in G3 iff v ∈ Jα K

denot_charac: LEMMA FORALL (s: Sig_form, i: I):

v_form(s,i) = 2 IFF member(i,denotation(s))

Corollary 11 For any α ∈ L, Jα K is total-closed.
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denotation_include: LEMMA FORALL (s: Sig_form,i: I):

member(i,denotation(s)) IMPLIES member(RT(i),denotation(s))

denotation_total_closed: LEMMA FORALL (s: Sig_form,i:I):

total_closed?(denotation(s))

Theorem 12 Let v ∈ I be a partial interpretation and α ∈ L a formula. Then:

v(α) 6= 0 in G3 iff vt ∈ Jα K

denot_charac_0: LEMMA FORALL (s: Sig_form, i: I):

NOT v_form(s,i) = 0 IFF member(RT(i),denotation(s))

Theorem 13 For any pair of formulae α, β: Jα K ⊆ Jβ K iff Jα → β K = I. Moreover,
Jα K = Jβ K iff Jα↔ β K = I.

denotation_inclusion: LEMMA FORALL (t1,t2: Sig_form):

subset?(denotation(t1),denotation(t2)) IFF

(FORALL (i:I): member (i,denotation(op_imp(t1,t2))))

denotation_equal: LEMMA FORALL (t1,t2: Sig_form):

denotation(t1) = denotation(t2) IFF

(FORALL (i:I):

member (i,denotation(op_and(op_imp(t1,t2),op_imp(t2,t1)))))

Proposition 14 For any α, β, γ ∈ L

1. Jα K ⊆ Jβ K implies J γ → α K ⊆ J γ → β K

2. Jα K ⊆ Jβ K implies Jβ → γ K ⊆ Jα→ γ K

mon_imp_left: LEMMA FORALL (t1,t2,s: Sig_form,i: I):

subset? (denotation(t1),denotation(t2)) IMPLIES

subset? (denotation(op_imp(s,t1)),denotation(op_imp(s,t2)))

mon_imp_right: LEMMA FORALL (t1,t2,s: Sig_form,i: I):

subset? (denotation(t1),denotation(t2)) IMPLIES

subset? (denotation(op_imp(t2,s)),denotation(op_imp(t1,s)))

Proposition 15 For any α, β ∈ L it follows that:

Jα→ β K = Jα Kc ↓ ∪
(
Jα K ∩ Jβ Kc ↓

)
∪ Jβ K

c©CMMSE ISBN: 978-84-617-2230-3



Aguado et al.

denotation_imp: LEMMA FORALL (t1,t2: Sig_form,i: I):

denotation(op_imp(t1,t2)):

union(union(

bottom(classic(comp(denotation(t1)))),

intersection(comp(denotation(t1)),bottom(classic(denotation(t2))))),

denotation(t2))

Corollary 16 For any α, β ∈ L, it follows that:

1. Jβ K ⊆ Jα→ β K

2. Jα→ β K ⊆ Jα K ∪ Jβ K

3. Jα→ β K ∩ Jα K ⊆ Jβ K

denotation_imp_sub_r: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(denotation(t2),denotation(op_imp(t1,t2)))

denotation_imp_inc_1: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(denotation(op_imp(t1,t2)),

union(comp(denotation(t1)),denotation(t2)))

denotation_imp_inc_2: LEMMA FORALL (t1,t2: Sig_form,i: I):

subset?(intersection(denotation(op_imp(t1,t2)),denotation(t1)),

denotation(t2))

Theorem 17 For any Σ, the system LΣ{⊥,∧,→} is complete because given any pair of
formulas α, β for Σ, it holds that: Jα ∨ β K = J (α→ β)→ β K ∩ J (β → α)→ α K.

denotation_or: LEMMA FORALL (t1,t2: Sig_form,i: I):

denotation(op_or(t1,t2)) =

intersection(denotation(op_imp(op_imp(t1,t2),t2)),

denotation(op_imp(op_imp(t2,t1),t1)))

Proposition 18 For any formula α:

1. J¬α K = Jα Kc ↓

2. For any partial interpretation v, v ∈ J¬α K iff vt ∈ Jα K

denotation_not_charact: LEMMA FORALL (s: Sig_form, i: I):

denotation(op_imp(s,bot))= bottom(classic(comp(denotation(s))))

denotation_not: LEMMA FORALL (s: Sig_form, i: I):

member(i,denotation(op_imp(s,bot))) IFF

member(RT(i),comp(denotation(s)))
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6 Conclusions

In this paper we have provided a specification of the denotational semantics for Answer
Set Programming (ASP) in the language of the theorem prover PVS. As a result, we have
been able to provide computer-generated proofs for several fundamental properties of ASP,
constituting the first case of automated formal verification for this paradigm.
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[4] Kurt Gödel. Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wis-
senschaften Wien, mathematisch, naturwissenschaftliche Klasse, 69:65–66, 1932.

[5] Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, pages
42–56, 1930.

[6] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992. Springer-Verlag.

[7] David Pearce. A new logical characterisation of stable models and answer sets. In Non
monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). Springer-
Verlag, 1996.

c©CMMSE ISBN: 978-84-617-2230-3



Aguado et al.

Appendix. An example of proof session

The following example is a PVS proof session of the caractv form or2

• This is what we should prove:

caractv_form_or2 :

|-------

{1} FORALL (t1, t2: Sig_form, i: I): v_form(op_or(t1, t2), i) = 2 IFF

v_form(t1, i) = 2 OR v_form(t2, i) = 2

• With skolemization we eliminate the for all quantifier.

Rule? (skeep)

Skolemizing and keeping names of the universal formula in (+ -),

this simplifies to:

caractv_form_or2 :

|-------

{1} v_form(op_or(t1, t2), i) = 2 IFF v_form(t1, i) = 2 OR v_form(t2, i) = 2

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:

caractv_form_or2.1 :

|-------

{1} v_form(op_or(t1, t2), i) = 2 IMPLIES v_form(t1, i) = 2 OR v_form(t2, i) = 2

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

caractv_form_or2.1 :

{-1} v_form(op_or(t1, t2), i) = 2

|-------

{1} v_form(t1, i) = 2

{2} v_form(t2, i) = 2

Rule? (expand "v_form" -1)

Expanding the definition of v_form,

this simplifies to:

caractv_form_or2.1 :

{-1} max(v_form(t1, i), v_form(t2, i)) = 2

|-------

[1] v_form(t1, i) = 2

[2] v_form(t2, i) = 2
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Rule? (lemma "max_ge")

Applying max_ge

this simplifies to:

caractv_form_or2.1 :

{-1} FORALL (a, b, c: real): max(a, b) >= c IFF (a >= c OR b >= c)

[-2] max(v_form(t1, i), v_form(t2, i)) = 2

|-------

[1] v_form(t1, i) = 2

[2] v_form(t2, i) = 2

Rule? (inst -1 "v_form(t1, i)" "v_form(t2, i)" "2")

Instantiating the top quantifier in -1 with the terms:

v_form(t1, i), v_form(t2, i), 2,

this simplifies to:

caractv_form_or2.1 :

{-1} max(v_form(t1, i), v_form(t2, i)) >= 2 IFF (v_form(t1, i) >= 2 OR v_form(t2, i) >= 2)

[-2] max(v_form(t1, i), v_form(t2, i)) = 2

|-------

[1] v_form(t1, i) = 2

[2] v_form(t2, i) = 2

Rule? (grind)

max rewrites max(v_form(t1, i), v_form(t2, i))

to IF v_form(t1, i) < v_form(t2, i) THEN v_form(t2, i) ELSE v_form(t1, i) ENDIF

max rewrites max(v_form(t1, i), v_form(t2, i))

to IF v_form(t1, i) < v_form(t2, i) THEN v_form(t2, i) ELSE v_form(t1, i) ENDIF

max rewrites max(v_form(t1, i), v_form(t2, i))

to IF v_form(t1, i) < v_form(t2, i) THEN v_form(t2, i) ELSE v_form(t1, i) ENDIF

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of caractv_form_or2.1.

caractv_form_or2.2 :

|-------

{1} v_form(t1, i) = 2 OR v_form(t2, i) = 2 IMPLIES v_form(op_or(t1, t2), i) = 2

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

caractv_form_or2.2 :

{-1} v_form(t1, i) = 2 OR v_form(t2, i) = 2

|-------

{1} v_form(op_or(t1, t2), i) = 2

Rule? (split)
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Splitting conjunctions,

this yields 2 subgoals:

caractv_form_or2.2.1 :

{-1} v_form(t1, i) = 2

|-------

[1] v_form(op_or(t1, t2), i) = 2

Rule? (expand "v_form" 1)

Expanding the definition of v_form,

this simplifies to:

caractv_form_or2.2.1 :

[-1] v_form(t1, i) = 2

|-------

{1} max(v_form(t1, i), v_form(t2, i)) = 2

Rule? (typepred "v_form(t2, i)")

Adding type constraints for v_form(t2, i),

this simplifies to:

caractv_form_or2.2.1 :

{-1} s3?(v_form(t2, i))

[-2] v_form(t1, i) = 2

|-------

[1] max(v_form(t1, i), v_form(t2, i)) = 2

Rule? (expand "s3?")

Expanding the definition of s3?,

this simplifies to:

caractv_form_or2.2.1 :

{-1} v_form(t2, i) <= 2

[-2] v_form(t1, i) = 2

|-------

[1] max(v_form(t1, i), v_form(t2, i)) = 2

Rule? (grind)

max rewrites max(v_form(t1, i), v_form(t2, i))

to v_form(t1, i)

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of caractv_form_or2.2.1.

caractv_form_or2.2.2 :

{-1} v_form(t2, i) = 2
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|-------

[1] v_form(op_or(t1, t2), i) = 2

Rule? (expand "v_form" 1)

Expanding the definition of v_form,

this simplifies to:

caractv_form_or2.2.2 :

[-1] v_form(t2, i) = 2

|-------

{1} max(v_form(t1, i), v_form(t2, i)) = 2

Rule? (typepred "v_form(t1, i)")

Adding type constraints for v_form(t1, i),

this simplifies to:

caractv_form_or2.2.2 :

{-1} s3?(v_form(t1, i))

[-2] v_form(t2, i) = 2

|-------

[1] max(v_form(t1, i), v_form(t2, i)) = 2

Rule? (grind)

s3? rewrites s3?(v_form(t1, i))

to v_form(t1, i) <= 2

max rewrites max(v_form(t1, i), v_form(t2, i))

to IF v_form(t1, i) < v_form(t2, i) THEN v_form(t2, i) ELSE v_form(t1, i) ENDIF

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of caractv_form_or2.2.2.

This completes the proof of caractv_form_or2.2.

Q.E.D.
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