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INTRODUCTION

In this talk we will give a spatial represen-

tation of Skott and Tarski consequence rela-

tions in mereotopology. It is an extension of

mereology with some binary relations of topo-

logical nature. Mereotopology is considered

also as a kind of pointless geometry, called

also region-based theory of space. Its in-

tended models are Boolean algebras of regu-

lar closed (or open) sets in topological spaces,

called regions with an additional binary rela-

tion C between regions called contact. The

intuitive meaning of aCb is “a and b share a

common point”. The algebraic form of the

theory is a Boolean algebra B with an addi-

tional relation C (called contact algebra) –

B = (B,0,1,≤,+, ., ∗, C).
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In the generalization which we will consider,
contact C is replaced with the Scott conse-
quence relation A ` B, where A = {a1, . . . , an}
and B = {b1, . . . , bm} are finite sets of regions.
The intuitive spatial meaning of ` is

{a1 ∩ . . . ∩ an} ⊆ {b1 ∪ . . . ∪ bm}

Now the standard (binary) contact can be de-
fined:

aCb iff a, b 6` ∅

We can define also an n-ary contact for each
n:

Cn(a1, . . . , an) iff a1, . . . , an 6` ∅

THE AIM OF THIS TALK is to give ax-
iomatic definition of Boolean algebras with Scott
consequence relation, to be called later on S-
algebras, and to prove for S-algebras the in-
tended topological representation theorem.
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Mainly, we will use notions and results from Dimov and

Vakarelov [8] for the representation theory of contact

algebras and from Dimov and Vakarelov [16] - for Scott

and Tarski consequence relations and [18] - for spatial

logics.
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2. CONTACT ALGEBRAS

Definition. By a Contact Algebra (CA) we

will mean any system B = (B,C) = (B,0,1, .,+, ∗, C),

where (B,0,1, .,+, ∗) is a non-degenerate Boolean

algebra with a complement denoted by “∗” and

C – a binary relation in B, called contact and

satisfying the following axioms:

(C1) xCy → x, y 6= 0,

(C2) xCy → yCx,

(C3) xC(y + z)↔ xCy or xCz,

(C4) x.y 6= 0→ xCy.

We say that B is complete if the underlying

Boolean algebra B is complete.
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Contact algebras may satisfy some additional

axioms:

(Con) a 6= 0,1 → aCa∗ – the axiom of con-

nectedness

(Ext) (∀a 6= 1)(∃b 6= 0)(aCb) – the axiom of

extensionality

This axiom is equivalent to the following con-

dition assumed by Whitehead:

a = b iff (∀c)(aCc↔ bCc)

(Nor) aCb → (∃c)(aCc and bCc∗) – the axiom

of normality
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Examples of CA-s

1. Topological example: the CA of regular

closed sets.

Let (X, τ) be an arbitrary topological space. A

subset a of X is regular closed if a = Cl(Int(a)).

The set of all regular closed subsets of (X, τ)

will be denoted by RC(X). It is a well-known

fact that regular closed sets with the opera-

tions

a+ b = a ∪ b, a.b = Cl(Int(a ∩ b)),

a∗ = Cl(X \ a), 0 = ∅ and 1 = X

form a Boolean algebra. If we define the con-

tact by aCX b iff a ∩ b 6= ∅



Then we have:

Lemma. RC(X) with the above contact is

a contact algebra. If X is a connected space

then RC(X) satisfies (Con). If X is normal

space then (RC(X) satisfies the axiom (Nor).

The CA of this example is said to be standard

contact algebra of regular closed sets.
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2. Non-topological example, related to
Kripke semantics of modal logic. Let (X,R)
be a reflexive and symmetric modal frame and
let B(X) be the Boolean algebra of all sub-
sets of X. Define a contact CRb between two
subsets a, b ∈ B(X) by aCRb iff (∃x ∈ a)(∃y ∈
b)(xRy). Then we have:

Lemma.(Duentsch, Vakarelov [6]) B(X) equipped
with the contact CR is a contact algebra. If R
is (X,R) is a connected graph, then B(X) sat-
isfies the axiom (Con). If R is transitive, then
B(X) satisfies the axiom (Nor).

Examples of contact algebras based on Kripke
frames are called discrete CA. They are re-
lated to a version of discrete region-based the-
ory of space, based on the so called adjacency
spaces, proposed by Galton. Adjacency spaces
are just the above Kripke sstructures (X,R)
where R is treated intuitively as the adjacency
relation.
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A topological space X is called semiregular if
it has a closed base of regular closed sets.

Representation theorem for contact alge-
bras (Dimov, Vakarelov [8]). For each con-
tact algebra B = (B,C) there exists a compact
semiregular T0 space X and a dense embedding
h of B into the contact algebra RC(X). If B
satisfies (Con) then the space X is connected
and RC(X) satisfies (Con). If B is a complete
algebra then h is an isomorphism onto RC(X).

Similar representation theorems for contact al-
gebras satisfying some of the other additional
axioms are also true (see [5,6,7,8]).

Idea of the proof. The key is how to define
abstract points in CA and semiregular topology
in the set of points. Abstract points are called
clans - a construction taken from the theory
of proximity spaces.
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Definition. A subset Γ ⊆ B is called a clan if
it satisfies the following conditions:

(Clan1) 1 ∈ Γ, 0 6∈ Γ,

(Clan 2) If a ∈ Γ and a ≤ b then b ∈ Γ,

(Clan 3) If a, b ∈ Γ then aCb,

(Clan 4) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ.

Examples of clans:

The set Γx = {a ∈ RC(X) : x ∈ a} is a clan
(called point-clan). All prime filters in B are
clans, but there are clans which are not prime
filters. Denote the set of clans of B by CLANS(B).

Define h(a) = {Γ ∈ CLANS(B) : a ∈ Γ}.

Take the set {h(a) : a ∈ B} as a base for the
topology in the set X = CLANS(B).
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Lemma.

(I) (1) aCb iff (∃Γ ∈ CLANS(B))(a, b ∈ Γ) iff

h(a) ∩ h(b) 6= ∅

(2) h(a+ b) = h(a) ∪ h(b),

(3) h(a∗) = Cl(Int(h(a))),

(4) h(a) is a regular closed set,

(II) The space X = CLANS(B) is semiregu-

lar, compact and T0 and h is a dense embed-

ding into the contact algebra RC(X). If B is

complete then h is an isomorphism with the

complete contact algebra RC(X). If B satis-

fies (Con) then X is a connected topological

space and RC(X) also satisfies (CON).
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Obviously the Lemma implies the Theorem.

If B satisfies the axiom (Ext) then points are

maximal clans and the space is compact and T1

with the property that RC(X) satisfies (Ext).

If the algebra satisfies both (Ext) and (Nor)

then the points are special maximal clans, called

clusters and the space is compact and T2 (see

[5,8]).

If the algebra is complete then a one-one cor-

respondence between contact algebras (with

some of the additional axioms) and the corre-

sponding representation spaces is found up to

isomorphism between algebras and homeomor-

phism between spaces(see [8]).



- 15 -

3. Scott and Tarski sequent systems

Let A,B be finite sets. Then the expression

A ` B is called sequent. We adopt all standard

notations and abbreviations from the Sequent

calculus.

Definition.(Scott sequent system) The sys-

tem S = (W,`), where W 6= ∅ and ` is a binary

relation between finite subsets of W , is called

Scott sequent system (Scott S-system), if the

the following axioms are satisfied (A,B are fi-

nite subsets of W and x ∈W ) :

(Ref) x ` x,

(Mono) If A ` B, then A, x ` B and A ` x,B ,

(Cut) If A, x ` B and A ` x,B then A ` B.
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The relation ` is extended for arbitrary subsets

of W by the following definition: A ` B iff for

some finite subsets A′ ⊆ A and B′ ⊆ B we have

A′ ` B′. The axioms (Ref), (Mono) and (Cut)

also hold for the extended relation.

Example. Let W be a nonempty set whose

elements are sets.

Let A = {a1, . . . , an} and B = {b1, . . . , bm}.

Define A ` B iff a1 ∩ . . . ∩ an ⊆ b1 ∪ . . . ∪ bm.

Then the system (W,`) is an S-system.

If we consider the restriction of the relation

A ` B for the case B = {b} (vrite A ` b) then

this restriction of ` is called Tarski conse-

quence relation. It can be characterized ax-

iomatically as follows:
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Definition. (Tarski sequent system) The

system S = (W,`), where W 6= ∅ and ` is a

binary relation A ` b with A a finite subset of

W and b ∈ W , is called Tarski sequent system

(Tarski S-system), if the the following axioms

are satisfied (A is a finite subset of W and

x, y ∈W ):

(Ref) x ` x,

(Mono) If A ` x, then A, y ` x,

(Cut) If A ` x, A, x ` y, then A ` y.
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SEQUENTIAL ALGEBRAS (S-algebras).

Definition (Scott version).
We call the system B = (B,0,1,≤,+, ., ∗,`)
sequential Boolean algebra (S-algebra) if
(B,0,1,≤,+, ., ∗) is a non-degenerate Boolean
algebra, (B,`) is a Scott S-system and ` sat-
isfies the following additional axioms:

(S1) x ` y iff x ≤ y,

(S2) ∅ ` y iff 1 ` y,

(S3) If A, x ` B and A, y ` B, then A, x+y ` B,

(S4) A ` x1, . . . , xm iff A ` x1 + · · ·+ xm. (The
case m = 0 is included: A ` ∅ iff A ` 0.)

Axiom (S4) reduces the Scott consequence re-
lation to the Tarski consequence relation, which
makes possible to give an equivalent and sim-
pler definition, based on Tarski consequence
relation.
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Definition (Tarski version).

We call the system B = (B,0,1,≤,+, ., ∗,`)

sequential Boolean algebra (S-algebra) if

(B,0,1,≤,+, ., ∗) is a non-degenerate Boolean

algebra, (B,`) is a Tarski S-system and ` sat-

isfies the following additional axioms:

(T1) x ` y iff x ≤ y,

(T2) ∅ ` y iff 1 ` y,

(T3) If A, x ` z and A, y ` z, then A, x+ y ` z,

Scott consequence relation is now definable:

A ` x1, . . . , xm iff A ` x1 + · · ·+ xm.
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Examples of S-algebras.

1. Topological S-algebras. Let X be a topo-
logical space and RC(X) be the Boolean alge-
bra of regular closed sets of X.

Let A = {a1, . . . , an} and B = {b1, . . . , bm}

be two finite subsets of RC(X). Define

A ` B iff a1 ∩ . . . ∩ an ⊆ b1 ∪ . . . ∪ bm.

Lemma RC(X) equipped with this relation is
an S-algebra (based on Scott consequence re-
lation).

The modification of this construction for Tarski
consequence relation is obvious:

A ` b iff a1 ∩ . . . ∩ an ⊆ b.

The examples of the above kind are called
standard topological S-algebras.
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2. Non-topological examples (Discrete S-

algebras).

Let (X,Y ) be a pair (called a discrete

S-space) with X a non-empty set and Y a set

of subsets of X containing all singletons of X.

Let B(X,Y ) be the Boolean algebra of subsets

of X.

We define Tarski-type consequence relation in

B(X,Y ) as follows (a1, . . . , an, b ∈ B(X,Y )):

a1, . . . , an `dicr b iff

(∀x1 . . . xn ∈ X,Γ ∈ Y )({x1 . . . xn} ⊆ Γ,

x1 ∈ a1, . . . , xn ∈ an → b ∩ Γ 6= ∅)
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Lemma. B(X,Y ) equipped with the above

Tarski consequence relation is an S-algebra,

called the discrete S-algebra over the dis-

crete S-space (X,Y ).

Topological and discrete examples are in a sense

characteristic because every S-algebra is repre-

sentable in both senses.

5. REPRESENTATION THEORY FOR

S-ALGEBRAS

In order to develop a representation theory for

S-algebras we need a suitable notion of ab-

stract point. We generalize the notion of clan

from the case of contact algebras. From now

on we will assume that the consequence rela-

tion in B is of Tarski form.
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S-clans. Let B be an S-algebra. A subset
Γ ⊆ B is called an S-clan if it satisfies the
following conditions:

(S-clan 1) 1 ∈ Γ, 0 6∈ Γ,

(S-clan 2) If a1, . . . , an ∈ Γ and a1 . . . , an ` b,
then b ∈ Γ,

(S-clan 3) If a+ b ∈ Γ then a ∈ Γ or b ∈ Γ.

S-clans which are maximal with respect to set-
inclusion are called maximal S-clans. Every S-
clan can be extended into a maximal S-clan
(Zorn). We denote by SCLANS(B) and by
MaxSCLANS(B) the sets of all S-clans and
maximal S-clans of B. By Ult(Γ) we denote
the set of all ultrafilters contained in the S-
clan Γ, Ult(B) denote the set of all ultrafilters
in B.
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Examples of S-clans. 1. Let X be a topolog-

ical space and x ∈ X. Then Γx = {a ∈ RC(X) :

x ∈ a} is an S-clan called a point S-clan.

2. Every ultrafilter in B is an S-clan.

Note that every S-clan is a clan (based on the

definable contact aCb iff a, b 6` 0).

Denote for a ∈ B

H(a) = {Γ ∈ SCLANS(B) : a ∈ Γ},

h(a) = {U ∈ Ult(B) : a ∈ U}.

Define a topology in the set SCLANS(B) hav-

ing the set {H(a) : a ∈ B} as a basis for the

closed sets.
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Lemma 1.

1. If Γ ∈ SCLANS(B)) and a ∈ Γ, then

(∃U ∈ Ult(Γ))(a ∈ U ⊆ Γ),

2. a1, . . . , an 6` b iff (∃Γ ∈ SCLANS(B))

({a1, . . . , an} ⊆ Γ and b 6∈ Γ).

3. a1, . . . , an 6` b iff

(∃Γ ∈ SCLANS(B))(∃U1 . . . Un ∈ Ult(Γ))

(a1 ∈ U1, . . . , an ∈ Un and b 6∈ Γ),
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Lemma 2. (i) H(a+ b) = H(a) ∪H(b),

(ii) H(a∗) = Cl−H(a),

(iii) a ≤ b iff H(a) ⊆ H(b),

(iv) a1, . . . an ` b iff H(a1)∩ . . . ,∩H(a)n ⊆ H(b).

(v) The topology in SCLANS(B) is semiregu-
lar, T0 and compact,

(vi) H is a dense embedding of B into the S-
algebra RC(SCLANS(B)), If B is a complete
Boolean algebra then H is a isomorphism onto
RC(SCLANS(B)).

Theorem 1. (Topological representation
of S-algebras.) Every S-algebra can be densely
embedded into the S-algebra RC(X) of regular
closed subsets of some semiregular, compact
T0 space X. If B is complete then B is isomor-
phic with RC(X). (Proof. By Lemma 1 and
Lemma 2.)
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Lemma 3.(i) h(a+ b) = h(a) ∪ (b),

(ii) h(a∗) = −h(a), h(a ∩ b) = h(a) ∩ h(b),

(iii) a ≤ b iff h(a) ⊆ h(b),

(iv) Let X be the set of ultrafilters of B and

Y = {Ult(Γ) : Γ ∈ SCLANS(B)}. Then

a1, . . . an ` b iff h(a1), . . . h(an) `discr h(b).

Theorem 2.(Discrete representation of

S-algebras.) Every S-algebra B can be em-

bedded into the discrete S-algebra of some dis-

crete S-space (X,Y ).

Proof. Apply Lemma 1(iii) and Lemma 3.
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S-ALGEBRAS WITH ADDITIONAL AX-

IOMS

1. The axiom of connectedness can be formu-

lated as follows:

(Con) If a 6= 0 and a 6= 1 then a, a∗ 6` 0

Every connected S-algebra can be repesented

in a connected topological space.

2. T1 axiom: Let A be a finite subset of B. If

A 6` b, then there exists a finite subset B such

that A,B 6` 0 and B, b ` 0.

T1 S-algebras are representable in T1 topolog-

ical spaces. Abstract points in B are maximal

S-clans.



-29-

3. T2 axiom. It is a conjunction of the follow-

ing two axioms:

(T1’) If A 6` a, then (∃b)(A, b 6` 0 and a, b ` 0,

(Nor’) If A, b ` 0 then (∃c, d)(c + d = 1 and

A, c ` 0 and b, d ` 0).

Note that (T1’) implies (T1) and that (Nor’)

implies (Nor) (with definable contact aCb iff

a, b 6` 0).

Axiom T2 is true in all compact Hausdorff (T2)

spaces.
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To represent T2 S-algebras we need a new kind
of abstract points, called S-clusters.

Definition (S-clusters). An S-clan Γ is called
S-cluster if it satisfies the condition

(S-cluster) If a 6∈ Γ then (∃b ∈ Γ)(a, b ` 0).

The notion of S-cluster generalizes the notion
of cluster from the theory of contact algebras
and proximity spaces.

Every S-cluster is a maximal S-clan. Axiom
(Nor′) implies that every maximal S-clan is an
S-cluster.

Let B satisfies T2 and let the abstract points of
B are the S-clusters. Then the topology of the
set of all S-clusters is compact and Hausdorff
(T2). Every such an S-algebra can be embed-
ded into the S-algebra RC(X) of a compact
Hausdorff semiregular space X.
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PROPOSITIONAL LOGICS BASED ON

S-ALGEBRAS – S-LOGICS.

1. The language of the minimal S-Logic

Lmin.

• A denumeral set of Boolean variables,

• Boolean constants 0,1,

• Boolean operations: +, ., ∗,

• Relational symbols ≤, `,

• Propositional connectives: ∨,∧,⇒,⇔,¬, and
the constants ⊥,>.

2. Boolean terms are defined in a stan-
dard way from Boolean variables, Boolean con-
stants by means of Boolean operations.
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3. Formulas.

• Atomic formulas: propositional constants,
(a ≤ b), where a, b are Boolean terms, and
(A ` b), where A is a finite set (including the
empty set) of Boolean terms and b is a Boolean
term. (here we adopt all abbreviations for the
use of sequents)

• Formulas are defined in a standard way from
atomic formulas by means of propositional con-
nectives.

4. Semantics in S-algebras.

Let B = (B,`) be an S-algebra. A function
v from the set of Boolean variables into B

is called a valuation if it satisfies the condi-
tions: v(0) = 0, v(1) = 1. v is then ex-
tended inductively in a homomorphic way to



the set of Boolean terms. If A = {a1, . . . , an}
is a non-empty finite set of Boolean terms then

v(A) =def {v(a1), . . . , v(an)}, v(∅) =def {1}.



-33-

A pair M = (B, v) is called a model. The truth

for a formula α in (B, v) (denoted (B, v |= α)

is defined as follows:

• (B, v) |= >, (B, v) 6` ⊥,

• (B, v) |= a ≤ b iff v(a) ≤ v(b),

• (B, v) |= A ` b iff v(A) ` v(b).

A formula α is true in an S-algebra B if it is

true in all models over B; α is true in a class

Σ of S-algebras if it is true in every S-algebra

from Σ.
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5. Axiomatization of Lmin

Axioms

• Any set of axiom schemes of classical propo-

sitional calculus

• Any set of axiom schemes of Boolean algebra

written in terms of Boolean order ≤ (example:

(a ≤ b) ∧ (b ≤ c)⇒ (a ≤ c), a.b ≤ a, etc).

• Axioms for ` – adapting the algebraic axioms

of S-algebra, examples: a ` b ⇔ a ≤ b, (A, a `
c) ∧ (A, b ` c)⇒ (A, a+ b ` c), etc.

Rules of inference: modus ponens(MP) α,α⇒β
β

The notion of a theorem is defined in a stan-

dard way.
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6. Completeness theorem for Lmin

Theorem. (I) (Weak form)

The following conditions are equivalent for any

formula α:

(i) α is a theorem of Lmin,

(ii) α is true in the class of all S-algebras,

(iii) α is true in all topological S-algebras,

(iv) α is true in all topological S-algebras over

semiregular, compact T0 topological space,

(v) α is true in all discrete S-algebras.
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(II) (Strong form)

The following conditions are equivalent for any

set Γ of formulas:

(i) Γ is consistent,

(ii) Γ has a model in the class of all S-algebras

in all topological S-algebras,

(iv) Γ has a model in all topological S-algebras

over semiregular, compact T0 topological space,

(v) Γ has a model in all discrete S-algebras.

Proof(idea) - by an adaptation of the Henkin

proof for the first-order logic
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7. Finite model property and decidability

Theorem. The following conditions are equiv-

alent for any formula α:

(i) α is a theorem of Lmin,

(ii) α is true in all finite S-algebras with cardi-

nality 22n, where n is the number of Boolean

variables occurring in α.

Proof (idea). If α is not a theorem, then

it is falsified in some S-algebra B. Take the

Boolean subalgebra of B generated by the value

of the Boolean variables occurring in α.
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S-logics with additional axioms and rules

(Con) Axiom of connectedness

a 6` 0 ∧ 1 6` a⇒ a, a∗ 6` 0

The logic Lmin + (Con) is sound and com-

plete in S-algebras over connected topological

spaces (the space can be chosen to be semireg-

ular, compact and T0). It has fmp and hence

is decidable.



-39-

T1-rule.

If we want to obtain an S-logic complete in all

S-algebras over T1-topological spaces, we have

to extend the logic Lmin with the following ∞-

rule:

Let A be a finite set of Boolean terms, a be a

Boolean term and b1, b2, . . . be a denumerable

sequence of different Boolean variables not oc-

curring in A and a and let Bn = {b1, . . . , bn},
n = 0,1, . . ..

(T1-rule) Bn,a`0⇒A,Bn`0,n=0,1,...
A`a

This logic is strongly complete in the class of

all S-algebras over semiregular, compact and

T1 topological spaces. If we add the axiom of

connectedness then the spaces are connected.
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T2-rules

If we want to obtain an S-logic complete in the

class of all S-algebras over compact Hausdorff

spaces, we have to extend the logic Lmin with

the following two rules:

(T+
1 -rule) a,b`0⇒A,b`0

A`a , where b is a Boolean

variable not occurring in A and a.

(Nor+-rule) (A,b 6`0)∨(a,b∗ 6`0)
A,a 6`0 , where b is a Boolean

variable not occurring in A and a.

This logic is strongly complete in the class of

all S-algebras over semiregular and compact

Hausdorff spaces. If we add the axiom of con-

nectedness then the spaces are connected.

END


