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Logics with Concrete Domains

e Temporal propositional logic £,

 Concrete domain D = (D, (R))ic/),

—

£(D)

e replacing propositional variables by domain-specific
constraints,

e variables interpreted by elements of ©.
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Concrete Domains

Concrete domain: D = (D, (R))jc))-
Interpretation domains for program variables.
Atomic constraint: R(x1, ..., Xt).

A ©-valuation v : VAR — D.

Examples:

<Nv §> <{071}*a5p> <N7:’+1> <Q7<a
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LTL over Concrete Domains

Atomic term constraint R(X™ x4, ..., X"x}).

X' x interpreted as the value of x in the ith next state.

o ¢u=RXMxq,... X)) | Xo | oUo | =6 | ...

Linear models: o : N — (VAR — D).

O',j ): 9%(me'l g 7Xntxt)

iff
value of X1 in the (j+ny)th state
—N— .
( a(j+ ny)(xq) v+ n)(Xe)) € R

i.e. values at different states can be compared.
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A LTL(Q, <,=)-model

x1r 0 2 4 3
1 3
= F(xe < X2x3)
11 1
X3 7z z z 1
X4 1 2 3 4

Satisfiability of ¢: is there o such that 0,0 = ¢?
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Spatio-Temporal Logics

e D is a spatial domain in spatio-temporal logics, see e.g.
[Balbiani & Condotta, FROCOS’02; Wolter & Zakharyaschev, 2002]

e D is rather a class of domains.

e Example: RCC-8 [Randel & Cui & Cohn92, KR'92]
Variables interpreted as regions
Predicates: being “disconnected”, “equal”, “partial overlap”,
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LTL with Presburger Constraints

e Constraints on counters: Xx = x + 1, x < XXy.

o Satisfiability for LTL(N, =, +1) is undecidable.
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LTL with Presburger Constraints

e Constraints on counters: Xx = x + 1, x < XXy.
o Satisfiability for LTL(N, =, +1) is undecidable.
e LTL(Z,=, <) is PSPACE-complete.

[Demri & D’Souza, IC 07]
See also [Segoufin & Torunczyk, STACS'11]
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LTL with Presburger Constraints

Constraints on counters: Xx = x + 1, x < XXy.
Satisfiability for LTL(N, =, +1) is undecidable.
LTL(Z, =, <) is PSPACE-complete.
[Demri & D’Souza, IC 07]

See also [Segoufin & Torunczyk, STACS11]

Variants of LTL with Presburger constraints in:
e [Bouajjani et al., LICS 95], [Comon & Cortier, CSL00],

e [Dang & Ibarra & San Pietro, FST&TCS’01].
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What is the problem with LTL(D)?

¢ Local satisfiability is constrained.

- p1, .-, pn €an hold independently of each other.
— Xo < X1, ..., Xp_1 < Xp are not independent.

¢ Global satisfiability is constrained.

— Gp is satisfiable in LTL.
— G(Xx < x) is not satisfiable in LTL(N, <).

e How formulae define w-regular classes of models ?

LTL over Concrete Domains
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Temporal Logics on Strings
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Reasoning about Strings

Need for string reasoning: program verification, analysis of
web applications, etc.

Theory solvers for strings.
[Liang et al. — Abdulla et al., CAV’14; Hutagalung & Lange, CSR’14]

Solving word equations.
[Makanin, Math. 77; Plandowski, JACM 04]

What about reasoning on sequences of strings ?
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LTL on Strings: LTL(X*, <)

String variables SVAR = {xi, X, ...}.

Terms:t == 1t | x| XX (x € SVAR, v € ¥¥)
Formulae:

¢ = t=Zpt | 9| oA Xo | oU
Example:

GF((001 =, X) V (X =p 1001)) A G(—(x =p XX))

Temporal Logics on Strings

13



A Model with = = {0,1}

x; 000 011110 c 1111
Xo 101 010001 010001 00
2 = F(xa <p Xx3)
X3 00 111 010001101 ¢

Temporal Logics on Strings
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The Case * = {0}

def

o LTL(N, <) = LTL(Z*, <p) with ¥ = {0}.

o Satisfiability problem for LTL(N, <) is PSPACE-complete.
[Demri & D’'Souza, IC 07; Demri & Gascon, TCS 08]
See also [Segoufin & Torunczyk, STACS'11]

e The PSPACE upper bound is preserved with several LTL
extensions or with richer numerical constraints.
(but no successor relation).

Temporal Logics on Strings
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A Richer and Auxiliary Logic LTL(X*, clen)

e clen(to, v'): length of the longest common prefix between
o and o’ in X*.

o,i = clen(tg, ty) < clen(tq,t})

def
=
clen([to];, [toli) < clen([t1];, [£1]7)
 Reduction from LTL(X*, <p) to LTL(X*, clen).
t <pt’ — clen(t,t) <clen(t,t’).

e In the sequel either ¥ = [0,k — 1] for some k > 1 or X = N.
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Symbolic Models for LTL(N, <)

X1 . . ° . .
= < < <
: ] \;k
= < = <
X2 o . . ° °
X3 . - . - — - . s ':symb XX(X1 < XX2)

:

+ Local consistency between two consecutive positions.
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Rephrasing the Satisfiability Property

¢ is LTL(N, <) satisfiable
iff
there is a symbolic model ¢ such that

o Esqmb ¢ and o has a concrete interpretation in N

Symbolic Models
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Characterisation for LTL(N, <)

e Usual notion of path = between two nodes.

e Strict length of the path : slen(7) = number of edges
labelled by <.

o Strict length between (x, i) and (X', i’):

slen((x, i), (X', ")) £ sup {slen(x) : path = from (x, i) to (X, i'}}
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Characterisation for LTL(N, <)

Usual notion of path = between two nodes.

Strict length of the path 7: slen(7) = number of edges
labelled by <.

Strict length between (x, i) and (X, i'):

slen((x, i), (X', ")) £ sup {slen(x) : path = from (x, i) to (X, i'}}
Symbolic model o has a concrete interpretation iff any pair
of nodes has a finite strict length.

[Cerans, ICALP’94; Demri & D’Souza, IC 07]
[Gascon, PhD thesis 07;Carapelle & Kartzow & Lohrey, CONCUR’13]
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When WMSO+U Enters Into the Play

e o EUXx¢ & forevery be N, there is a finite Y with

card(Y) > bsuch that o = ¢(Y).
def

BX ¢ = -U X ¢.
[Bojanczyk, CSL04; Bojanczyk & Colcombet, LICS’'06]

e Symbolic models for LTL(N, <) having a concrete
interpretation can be characterized by a formula in
Bool(MSO,WMSO+U).

e This leads to decidability of CTL*(N, <).
[Carapelle & Kartzow & Lohrey, CONCUR’13]
(based on [Bojanczyk & Torunczyk, STACS'12])
See also decidable fragments in [Bozzelli & Gascon, LPAR06]
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Back to Strings
Simple but Essential Properties for clen(-)

wy 000102

we 0000
— clen(tvy,w2) < len(rvy)
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Back to Strings
Simple but Essential Properties for clen(-)

wy 000102
w, 0000
— clen(roq, 2) < len(roq)

wop 000102
iy 00001356
wy 000214

w, 000313

— 3i,j € [1, k] such that clen(tvg, 1) < clen(tv;, ro;)
(Pigeonhole Principle — card(X) = k > 2)
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Back to Strings
Simple but Essential Properties for clen(-)

vy 000102
we, 0000
— clen(toq, w3) < len(tvy)

wop 000102
iy 00001356
wy 000214

o, 000313

— 3i,j € [1, k] such that clen(og, tv1) < clen(tv;, ;)
(Pigeonhole Principle — card(X) = k > 2)

g 000102 and ™1 0000135

vy 0000135 wy, 000014

— clen(tvg, w01) = clen(tvg, tv2)
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String Compatible Counter Valuations
e Counter valuation ¢ : {clen(t,t’) : t,t" € T} = N.

e String-compatibility:

/\ (clen(t,t) > clen(t,t’))

t,t’EeT

/\ (( /\ (clen(to, t1) < clen(tj, t;)))Aclen(tp,t1) =--- = clen(to, tk)
o, tk€T i€[0,K]

= ( \/ (clen(to,t1) <clen(t),t))))
i#j€[1,K]

/\ (clen(t,t’) < clen(t,t")) = (clen(t,t’) = clen(t, t”))
e/ ter

o Size in O((q + r)k*2) with card(T) = g + r.
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Characterisation

e String compatibility is equivalent to the existence of a string
valuation witnessing the values of the counters clen(t, t’).

e The exact statement is a bit more complex to be used after
in the translation from LTL(X*, clen) to LTL(N, <).

String Compatible Counter Valuations
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Characterisation

e String compatibility is equivalent to the existence of a string
valuation witnessing the values of the counters clen(t, t’).

e The exact statement is a bit more complex to be used after
in the translation from LTL(X*, clen) to LTL(N, <).

e Checking satisfiability of Boolean combinations of prefix
constraints is NP-complete.
(upper bound by reduction into QF Presburger arithmetic)

e PSPACE can be obtained using word equations and
Plandowski’s PSPACE upper bound.
(suffix constraints can be added at no cost)

String Compatible Counter Valuations
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Translation

e Formula ¢ with constant strings tvq, ..

variables xy, ..., X,.

o Foralli,je[1,q], ¢ = clen(;, w;).

def

., g and, string

® T:{y17"'7yq}U{X1,-..,Xr}U{XX1,...,XXr}.

o $SUbst: replace each t; by ;.

© 037 £ G (\jepr g (clen(y.y)) = 6iy)).

Decidability & Complexity
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Translation (ll)

 Formula ¢Je*:

G ( A clen(t,t’) = X clen(t \ X, t"\ X))
t it/ e{y1,..Yq FU{Xx1,....Xxr }

e Formulae ), vy and 1y related to string-compatible
counter valuations over T.

e ¢ is satisfiable in LTL(X*, clen) iff

qb?ubsl‘ A d)gg A d)geXt At N Yo A

is satisfiable in LTL(N, <).

Decidability & Complexity

25



Complexity and Decidability

o Satisfiability problems for LTL(X*, <p) and LTL(X*, clen)
are PSPACE-complete.

e This also holds for any LTL extension that behaves as LTL
as far as the translation into Blichi automata is concerned
(Past LTL, linear p-calculus, ETL, etc.).

e For any satisfiable ¢ in LTL(N*,clen), models with letters in
[0, N + 2 x size(¢)] are sufficient (N max. letter in ¢).

Decidability & Complexity
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Lifting to Branching-Time Temporal Logics

e CTL*(X*, clen): branching-time extension of LTL(X*, clen).

Translation can be extended for CTL*(X*, clen).

Proof is a bit more complex but the string characterisation
is used similarly.

The satisfiability problem for CTL*(X*, clen) is decidable.
By reduction into CTL*(N, <) shown decidable in
[Carapelle & Kartzow & Lohrey, CONCUR’13]

Decidability & Complexity
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A Selection of Open Problems

e Complexity characterisation for uniform sat. problem.
input: alphabet ¥ = [0,k — 1] (k in unary) or ¥ =N,
and a formula ¢ in LTL(X*, clen)
question: is ¢ satisfiable in LTL(X*, clen)?

o Dec. status of LTL({0, 1}*, <p, =<s).
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A Selection of Open Problems

e Complexity characterisation for uniform sat. problem.
input: alphabet ¥ = [0,k — 1] (k in unary) or ¥ =N,
and a formula ¢ in LTL(X*, clen)
question: is ¢ satisfiable in LTL(X*, clen)?
e Dec. status of LTL({0, 1}*, =p, <s).

e Dec. status of LTL({0, 1}*, <5, REG) with regularity tests.
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A Selection of Open Problems

Complexity characterisation for uniform sat. problem.
input: alphabet ¥ = [0,k — 1] (k in unary) or ¥ =N,
and a formula ¢ in LTL(X*, clen)
question: is ¢ satisfiable in LTL(X*, clen)?
Dec. status of LTL({0, 1}*, =<p, =<s).
Dec. status of LTL({0, 1}*, <p, REG) with regularity tests.

Decidability status of LTL({0, 1}*, C).
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