
Query Answering in
(Resource-Based)

answer set semantics

Stefania Costantini and Andrea Formisano

University of L’Aquila and University of Perugia, Italy

LRC’15, Corunna, Spain
Speaker: Stefania



Answer Set Semantics

The answer set semantics (AS) extends the well-founded
semantics, which assigns to a logic program Π a unique,
three-valued model WFS(Π) = 〈W+,W−〉.

In particular, the answer set semantics selects some of
the (two-valued) classical models of given program Π so
as for each atom A which is true w.r.t. an answer set M:

I A is supported in M by some rule of Π;
I consequently, the support of A does not depend

(directly or indirectly) upon the negation of another
true atom, including itself.

AS gave rise to ASP, very well-established logic
programming paradigm.



Answer Set Semantics (cont’d)
I For even cycles such as {e← not f . f ← not e.}, two

answer sets can be found, in the example {e} and
{f}, respecting the above conditions.

I For odd cycles, such as unary odd cycles of the form
{p ← not p.} and ternary odd cycles of the form
{a← not b. b ← not c. c ← not a.}, it is not possible
to fulfill the conditions in classical models. Thus, a
program including such cycles is inconsistent, i.e., it
has no answer sets, unless “handles” are provided
from other parts of the program to make some atom
of the cycle true/false.

In some sense, the answer set semantics is still
three-valued: sometimes it is able to assign truth value to
atoms, while sometimes (when the program is
inconsistent) leaves them all undefined. Problem: lack of
Relevance (Dix 1995)



Answer Set Semantics: Query-Answering

I Some attempts, also recent, preliminary program
analisys and/or incremental answer set construction

I Bonatti,P.A.,Pontelli,E.,Son,T.C.: Credulous resolution
for answer set programming
In Fox, D., Gomes, C.P., eds.: Proc. of the 23th AAAI
Conference on Artificial Intelligence (2008)

I Gebser, M., Gharib, M., Mercer, R.E., Schaub, T.:
Monotonic answer set programming.
J. Log. Comput.19(4) (2009) item Marple, K., Gupta,
G.: Dynamic consistency checking in goal-directed
answer set programming. TPLP14(4-5) (2014)

In a sense, the answer set semantics is still three-valued:
sometimes it is able to assign truth value to atoms, while
sometimes (when the program is inconsistent) leaves
them all undefined.



Answer Set Semantics (AS): Autoepistemic
Logic Characterization

Defined by Marek and Truszczyński (1997) for AS,
drawing inspiration from Gelfond, 1997, i.e.:

not p is not to be interpreted as ¬p, but instead as
“I don’ believe p”, which is an assumption.

A rule
A← A1, . . . ,An,not B1, . . . ,not Bm

in given program Π can be seen as standing for its “modal
image”

L A1 ∧ . . . ∧ L An ∧ L¬L B1 ∧ . . . ∧ L¬L Bm ⊃ A



Extended Autoepistemic Logic
Characterization (cont’d)

From modal images of single rules one can then get the
modal image of the entire program.

Answer sets of Π coincide (after dropping modal atoms)
with reflexive autoepistemic expansions of the modal
image, where reflexive autoepistemic expansions are
obtained as:

T = Cn(I ∪ (ϕ ≡ Lϕ : ϕ ∈ T ) ∪ (¬Lϕ : ϕ 6∈ T ))



Extended Extended Autoepistemic Logic
Characterization

Reflexive autoepistemic logic corresponds, according to
Marek and Truszczyński, to the modal logic SW5. Specific
axioms of SW5:

Lϕ ⊃ ϕ
Lϕ ⊃ L Lϕ
¬L¬Lϕ ⊃ (ϕ ⊃ Lϕ)

Modified modal image (Costantini and Formisano):

L A1 ∧ . . . ∧ L An ∧ L¬L B1 ∧ . . . ∧ L¬L Bm ⊃ L Ȧ
L Ȧ ∧ ¬L¬L A ⊃ L A

Proposal: Resource-based Answer sets of Π, which
coincide (after dropping modal atoms) with reflexive
autoepistemic expansions of this modified modal image.



Extended Autoepistemic Logic
Characterization: Example

Unary odd cycle

p ← not p

Modified modal image:

L¬L p ⊃ L ṗ
L ṗ ∧ ¬L¬L p ⊃ L p

Unique reflexive autoepistemic expansion ∅



Extended Autoepistemic Logic
Characterization: Example

Unary odd cycle with positive dependencies

p ← a
a← not p

Modified modal image:

L¬L p ⊃ L ȧ
L ȧ ∧ ¬L¬L a ⊃ L aL a ⊃ L ṗ
L ṗ ∧ ¬L¬L p ⊃ L p

Unique reflexive autoepistemic expansion {a}, while
unique classical model {p} not supported.

{a} is not a classical model, but it is a supported set of
atoms (w.r.t. given program) and in this sense it is also
maximal.



Extended Autoepistemic Logic
Characterization: Example

Ternary odd cycle with positive dependencies
a← not b
b ← not c
c ← not a

Modified modal image:
L¬L b ⊃ L ȧ
L ȧ ∧ ¬ L¬L a ⊃ L a
L¬L c ⊃ L ċ
L ċ ∧ ¬ L¬L c ⊃ L c
L¬L a ⊃ L ċ
L ċ ∧ ¬ L¬L c ⊃ L c

Three reflexive autoepistemic expansion, namely {a},
{b},{c}, depending upon which negative assumption you
choose to make, e.g., {a} from L¬L b.



Resource-Based answer set semantics
(RAS)

I Every program is consistent.
I Consequence: constraints have to be defined in a

separate ’layer’.
I Regains important properties of non-monotonic

formalisms (Dix 1995), namely Relevance and
Modularity.

I Allows for prolog-style query-answering.
I Same complexity as AS.



RAS: Linear Logic Characterization
Stems from the linear logic formulation of ASP that we
proposed in the past (in honor of David Pearce), where
answer sets as maximal tensor conjunctions provable
from linear logic theory corresponding to given ASP
program.

Negation as a resource (whence the name RAS):
negation not A of atom A as a resource that is unlimitedly
available unless A is proved. Therefore:

1. not A becomes unavailable if A is proved;
2. whenever not A has been used, A can no longer be

proved.

Program p ← not p, empty answer set.

Program a← not b. b ← not c. c ← not a., three
resource-based answer sets, {a}, {b} and {c}.



Transposition into ASP and Complexity
In ASP: facts remains the same, each modal rule
transposed as follows, where A′ stands for Ȧ, and A′′

stands for ¬L¬L A. For simplicity, A and L A as well as 6 A
and L¬L A are assumed to coincide.

A′ ← A1, . . . ,An,not B1, . . . ,not Bm.
A← A′,A′′.
← A′′,not A.
A′′ ← not noA′′.
noA′′ ← not nA′′.

The answer sets of the resulting program that maximize
the assumptions A′′ coincide, after removing the fresh
atoms, with the resource-based answer sets of Π. Thus,
they can be computed by using an answer set solver.

Implication: RAS has the same complexity as AS.



RAS: AS-like Characterization

Considers program Π as divided into layers according to
Lifschitz & Turner Splitting Theorem.

I Applies modified Gelfond & Lifschitz Γ operator
incrementally over layers, based upon modified
immediate consequence operator.

I Resource-based answer sets are maximally
supported sets of atoms (MCSs) w.r.t. given program
Π.

I Answer sets (if any exists) are among the
resource-based answer sets.



Query-answering under RAS

RAS enjoys Relevance and Modularity, i.e., every
conclusion A can be derived from rules A depends upon,
and subprograms can be to some extent semantically
independent.

I Relevance allows for top-down prolog-like query
answering.

I Relevance and modularity allow for contextual
query-answering and optimized constraint checking.

A query-answering procedure for logic programming
under RAS can be obtained, e.g., by suitably modifying
and extending XSB-Resolution.



XSB-Resolution

Correct and complete query-answering procedure for
datalog with negation under the well-founded semantics.

I Definite success and failure for atoms true or false
w.r.t. the well-founded model.

I Efficient tabling mechanism: a table is associated to
given program, recording atoms which succeed or
fail, but also information about whether one subgoal
depends on another, and whether the dependency is
through negation (in order to detect undefined
literals).

I prolog-like backtracking, previous table state restored
upon backtracking.



RAS-XSB-Resolution

I Table Table(Π) associated to given program Π

I Definite success and failure and basic tabling
“borrowed” from XSB-resolution. Both A and not A
are recorded in Table(Π) upon success.

I Extended tabling:
I Table(Π) is initialized by inserting, for each atom A

occurring as the conclusion of some rule in Π, a fact
yesA (fresh atom), meaning that A has still to be
evaluated.

I Insertion of either A or not A into the table “absorbs”
yesA and prevents further evaluation attempts.



RAS-XSB-Resolution: specific features
Managing unary negative odd cycles (possibly with intermediate positive
dependencies)

I Atom A is forced to failure if any possible derivation
incurs into not A directly, i.e., not through layers of
negation.

I In consequence of failure of A, fact yesA is removed
from Table(Π) (if present).



RAS-XSB-Resolution: specific features
Managing non-unary negative cycles (possibly with intermediate positive
dependencies)

I Literal not A is allowed to succeed if A does not fail,
rather any derivation of not A incurs through layers of
negation again into not A (undefined under
XSB-Resolution);

I In consequence of success of not A, fact yesA is
removed from Table(Π) (if present), and fact not A is
added to Table(Π).

I In case however not A is allowed to succeed, if the
parent subgoal fails then yesA is restored and not A
is removed.



Properties of RAS-XSB-Resolution: Basic

Thanks to Relevance of RAS we obtain soundness and
correctness.

Theorem
RAS-XSB-resolution is correct and complete w.r.t.
resource Answer Set semantics, in the sense that, given
program Π, query ?− A succeeds under
RAS-XSB-resolution with an initialized Table(Π) iff there
exists resource-based answer set M for Π where A ∈ M.



Properties of RAS-XSB-Resolution: Basic

Thanks to Modularity of RAS we get contextual
query-answering.

Theorem
RAS-XSB-resolution is contextually correct and complete
w.r.t. resource Answer Set semantics, in the sense that,
given program Π and query sequence ?− A1, . . . , ?− Ak ,
k > 1, we have that, for {B1, . . . ,Br} ⊆ {A1, . . . ,Ak} and
{D1, . . . ,Ds} ⊆ {A1, . . . ,Ak}, the queries ?− B1, . . . , ?− Br

succeed while ?− D1, . . . , ?− Ds fail under
RAS-XSB-resolution, iff there exists resource-based
answer set M for Π where {B1, . . . ,Br} ⊆ M and
{D1, . . . ,Ds} ∩M = ∅.

In practice, the table is not reset.



Properties of RAS-XSB-Resolution:
Constraints

Constraints of the form← C, C atom. M is admissible
w.r.t. such a constraint if C 6∈ M. Thanks to Modularity
and Relevance we get locality in constraint-checking.

Theorem
Let Π be an admissible program w.r.t. the constraints
← H1, . . . ,← Hh (it has admissible answer sets). Let
← H1, . . . ,← Hk , k ≤ h be the relevant constraints for a
query ?−A. For each of the His, let H ′i = not Hi . If ?−A
succeeds and subsequent queries ?− H ′i , i ≤ k,
contextually succeeds as well, then there exists some
admissible resource-based answer set M for Π with
A ∈ M.



Concluding Remarks and Future Directions

I Checking constraints on the state of Table(Π) left by a
query may (together with ’smart’ heuristics) alleviate
the efficiency problem of constraint-checking.

I RAS-XSB-resolution is applicable to non-ground
queries on ground programs. Extension: non-ground
programs (principles and techniques proposed by
Bonatti, Pontelli & Son).

I Under way: full detailed definition obtained by
suitably extending XSB definitions.

I Future work: full efficient implementation.


