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Abstract. Nowadays, scalability is a critical factor in the design of any
system working with big data. In particular, it has been recognised as
a main challenge in the construction of recommender systems. In this
paper, we present a recommender architecture capable of making per-
sonalised recommendations using collaborative filtering in a big data en-
vironment. We aim to build highly scalable systems without any single
point of failure. Replication and data distribution as well as caching tech-
niques are used to achieve this goal. We suggest specific technologies for
each subsystem of our proposed architecture considering scalability and
fault tolerance. Furthermore, we evaluate the performance under realis-
tic scenarios of different alternatives (RDBMS and NoSQL) for storing,
generating and serving recommendations.
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1 Introduction

During 2013, web traffic generated by search engines dropped 6% meanwhile that
originated in the social networks increased more than 100% [25]. These figures
point out the importance of the recommender systems in a landscape where
users increasingly expect system suggestions instead of explicitly formalize their
information needs.

Recommender systems [20] intend to predict items of interest for users with-
out the need of an explicit request for information. The heterogeneous variety of
scenarios make the task of providing with relevant items a non easy one. Differ-
ent approaches have been proposed for this task being generally classified [4] in
content-based methods [19] that exploit the similarity of candidate items with
the ones already assessed by the user, collaborative filtering [22] techniques that
exploit the information about the preferences of similar users to the subject of
recommendation and hybridisations of both families.

In this work, although it is not devoted to the discussion of recommenda-
tion algorithms, we will work with a Collaborative Filtering (CF) method. CF is
very popular in multiple recommendation scenarios because it is able to exploit



the preference patterns existing in any kind of community in order to provide
with personalised recommendations. Most of the times, those users’ preferences
are explicitly presented in terms of rates by the users to the items. Nowadays,
there exist several application domains for recommendation where the number
of users, items and rates increased in a dramatic way turning the recommen-
dation problem into a big data challenge. Web-pages, videos, friends or tweets
recommendations are examples of this facet of the problem, but the number of
scenarios reaching big data scales is increasing day after day.

In this context, the contributions of this paper are a detailed description
of a system architecture capable of storing, processing and serving web-scale
information for the purpose of developing a recommender platform in a big data
context and the evaluation of the persistence layer under realistic circumstances.
We evaluate two different families of storage systems, RDBMS and NoSQL,
showing that a mixed solution fits our persistence needs.

2 Recommender System Architecture for Big Data

Traditional approaches to build recommender systems consider three different
main components: a user interaction layer, a recommendation engine and a per-
sistence component, every of which is subject to be either monolithic/centralised
or distributed constructed. When scaling a recommender system to the big data
landscape, any of those components is a potential point of failure in the archi-
tecture. Thus, our architecture proposal was designed to achieve two goals: high
scalability and availability at every level. In addition, the infrastructure should
be capable to store continuous updates of the user ratings history and provide
high quality and fresh recommendations.

The overall design of the proposed recommendation platform is exhibited in
Figure 1. We can easily distinguish three main components: the user interaction
layer (front-end) provided by a web application, the recommendation engine
using MapReduce framework, both of them consuming and saving information
from/to the data storage component. In the following sections, we describe our
proposal justifying the choices made in each component w.r.t. the desired goals.

2.1 Front-end

The user interaction layer of the proposed platform consists of a web applica-
tion where users can search and rate items. This website should also provide
users with recommendations. In order to allow them to perform complex search
queries, we implemented faceted search. This technique gives to the users the
opportunity to explore an item collection by applying several filters as a com-
plement to the recommendations with the aim of increasing user rates. In fact,
it has been reported [2] that 25% of played films in Netflix are not based on
recommendations.

Guided by our goals (scalability and availability), we propose to deploy re-
dundant web servers with a load balancer subsystem on top. Using a cluster of
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Fig. 1. Overall system architecture

web servers provides us with horizontal scaling (i.e., adding more nodes increases
system capacity to serve requests). We should note that not only do we improve
throughput with more servers, but also reliability: if a node goes down, others
can replace it. The task of the load balancer module consists in distributing web
traffic evenly across the cluster nodes.

We developed a web application using the Django framework1 because it is
a well-known tool that easily integrates with the technologies described below
and it was successfully used in big data environments such as Disqus, Pinterest
or Instagram.

For the load balancing task, we chose Perlbal2 following the recommendation
of Holovaty and Kaplan-Moss [12], but there are many other options available.
Actually, a load balancer appliance (i.e., a device that implements load balancing
in hardware) would be more efficient being the trade-off between inversion and
desired performance the key factor in the decision. We need to make sure we use
at least two load balancers in a failover configuration to achieve high availability.

In addition, we chose the integration of two levels of caching techniques in the
current platform. The rationale for this decision is based on the fact that each
request that hits the server produces some kind of computation and, probably,
database accesses. In high-traffic sites caching is fundamental fto reduce server

1 http://www.djangoproject.com/
2 http://github.com/perlbal/Perlbal/
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load and avoid repetitive database queries. In our context, the most frequent
case is users browsing their recommendations or looking for information about
the last popular releases and, without caching, each time a user requests this
data a relatively expensive query to the storage component would be processed.
The success of such approach is a very well studied topic on Web Information
Retrieval, where the so called answer caching [3] has been demonstrated as
the most effective caching approach. As Disqus operation team reported [21],
using a caching HTTP reverse proxy may greatly reduce the number of requests
processed by the web framework and, consequently, the database. This kind of
proxies are situated between the load balancer and the web server cluster and
its aim is to cache responses to user requests in order to lessen web traffic to
the servers. Nowadays, Varnish3 and Squid4 are two strong competitors in this
field. We favour Varnish over Squid because it demonstrates better performance
in benchmarks [15].

The second level of cache is used inside the web application for caching
expensive calculations like the output of some views or the user sessions. We
considered two alternatives: Memcached5, a distributed memory object cache
system, and Redis6, an advanced key-value store. In spite of the fact that Redis
have some features that Memcached lacks of (persistence to disk or collections),
we decided to use Memcached because of out-of-the-box integration with Django
and better support for cluster environments. However, we must point out that
the Redis team is working to fully support clustering in the next mayor release
[1]. Thus, probably Redis will be a more powerful choice than Memcached when
clustering features are properly implemented.

2.2 Storage Component

Although Django, our web framework, can be used without any database, it is
designed to write database-driven web applications. Our suggested recommender
platform needs to store different types of information. On the one hand, we need
to manage large amounts of user ratings and user recommendations. On the
other hand, we also store items and web application data (such as user details).
We studied three different approaches to address this problem: relational and
NoSQL database systems and information retrieval structures.

Relational Databases: Relational database management systems (RDBMS)
can be the ideal solution for storing data needed by the web application or even
information about items. However, there may be performance issues for manag-
ing big data like user ratings and recommendations. Nowadays, Django supports
natively four RDBMS, namely SQLite, PostgreSQL, Oracle and MySQL. The
analysis of each solution is described in the next paragraphs.

3 http://www.varnish-cache.org/
4 http://www.squid-cache.org/
5 http://memcached.org/
6 http://redis.io/
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SQLite7 was rejected considering it is designed for light databases and em-
bedded systems.

PostgreSQL8 is an object-relational database system. There exists some tools
like pgpool-II9 that add support to data replication —which give us fault-
tolerance and read scaling—, however it does not provide transparent sharding
across nodes in a cluster, i.e., the capability of distributing horizontal partitions
(collections of rows of the same table) between different machines. In this big
data environment, write scaling is also crucial and it is achieved with sharding.
Postgres-XC10 is designed to provide a transparent write-scalable cluster solu-
tion. Nevertheless, either replication or distribution has to be selected in the
table creation process. We excluded PostgreSQL considering we are looking for
a system able to handle these two features at the same time.

Oracle RDBMS11 is also a object-relational DBMS like PostgreSQL. It offers
an option called Oracle RAC (Real Application Clusters) for supporting clus-
tering and high availability. In contrast to Postgres-XC where a shared-nothing
approach is followed, Oracle RAC is based on a shared-everything architecture.
Therefore, all database instances need access to the same shared storage instead
of using their own private disk. This architecture involves a significant invest-
ment in Storage Area Networks (SAN) that become a single point of failure in
the cluster. Furthermore, the usage of a SAN instead of a DAS (Direct-Attached
Storage) is not generally utilised for big data analytics [24].

Finally, we analyse MySQL Cluster12. This product is based on a shared-
nothing clustering architecture and it claims to be a ACID (Atomicity, Consis-
tency, Isolation and Durability) compliant system with no single point of failure.
It provides read and write scalability due to its replication and auto-sharding
features. Even though MySQL Cluster uses an in-memory storage by default, it
can be configured to also store non-indexed columns in disk using main memory
as a cache. This configuration offers good performance meanwhile huge amounts
of information can be managed. Based on these features, we chose MySQL Clus-
ter as the storage system for the relational data (such as item details and web
framework data). In Section 3, we evaluate the suitability of this solution for
storing ratings and recommendations.

NoSQL Databases: Nowadays, there exists multiple NoSQL solutions [5].
These systems do not use tabular relations like RDBMS and they claim be-
ing more scalable and flexible. There are different approaches to classify NoSQL
datastores. We focus on column-oriented databases (also known as extensible
record stores) because they provide high scalability and are well-suited for stor-
ing user ratings and recommendations.

7 http://sqlite.org/
8 http://www.postgresql.org/
9 http://www.pgpool.net/

10 http://postgres-xc.sourceforge.net/
11 http://oracle.com/database/
12 http://www.mysql.com/
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As will be described in Section 2.3, we decided to use Hadoop MapReduce
framework in order to make personalised recommendations. Because of that,
we studied two NoSQL products generally used with Hadoop: Cassandra and
HBase.

Apache Cassandra13 is a highly scalable, eventually consistent and distributed
DBMS. Eventual consistency guarantees that, if no new updates are made to an
object, eventually all accesses to that object will return the last updated value.
Cassandra is fault-tolerant thanks to replication, allows to add new nodes mean-
while keeping read and write linear scalability (thanks to transparent partition-
ing and distribution) and there exists no single point of failure because of its
distribute design. Roughly speaking, it can be said that Cassandra takes from
Google Bigtable [6] its data model and from Amazon Dynamo [11] its distributed
architecture.

Apache HBase14 is also a distributed and linear scalable DBMS that uses
Hadoop distributed storage file system (HDFS). It is inspired in Google Bigtable
and it is designed for hosting billions of large rows on commodity hardware.
Contrary to Cassandra where strong consistency is optional, in HBase it is guar-
anteed using logging and locking.

In spite of the fact that they have similar features, we chose Cassandra over
HBase based on their performance. Rabl et al. [18] showed that Cassandra clearly
outperforms HBase in almost all examined scenarios. We can afford a reduced
loss of consistency in our recommendation platform, considering users do not
usually modify their ratings, in exchange for higher efficiency. Moreover, only in
a scenario where recommendations are calculated in real-time, eventual consis-
tency could be a problem.

Search Engines: As well as storing ratings and making recommendations, our
platform is designed to be able to process complex search queries, specifically
faceted search. We propose the use of search engines because the previous de-
scribed database systems (either relational and NoSQL ones) are not well-suited
for this task. Apache Lucene15 is probably the most famous information retrieval
software library and it supports full text indexing and searching features. Below,
two popular search engines built on top of Lucene are described.

On the one hand, Apache Solr16 is a mature and fast search engine. It includes
distribution and fault tolerance features as sharding and replication under the
name of Solr Cloud. On the other hand, Elasticsearch17 is a modern distributed
real-time search and analytics engine. Both of them supports faceted search
and therefore are valid alternatives to address our needs. We chose Apache Solr
because its mature and consolidated nature.

13 http://cassandra.apache.org/
14 http://hbase.apache.org/
15 http://lucene.apache.org/
16 http://lucene.apache.org/solr/
17 http://www.elasticsearch.org/
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2.3 Recommendation Engine

Now we describe the core of the proposed recommendation platform: processing
data for producing recommendations. One of the most successful approaches to
face this problem at big data scale is MapReduce [10], a functional programming
model designed to treat large datasets in a distributed platform. We propose
the use of Apache Hadoop18, an open source implementation of MapReduce
model, together with Apache Mahout19, a machine learning library that contains
different distributed algorithms built on top of Hadoop.

Hadoop is designed for doing batch calculations; hence, recommendations are
precalculated and stored. In order to provide fresh recommendations, we suggest
pipelining MapReduce jobs as the Youtube recommendation system does [9].

At the time of writing this paper, Mahout implements two distributed Col-
laborative Filtering algorithms: Item-Based and Matrix Factorization with Al-
ternating Least Squares. In Section 3.2 we examine the performance of the first
method using MySQL Cluster and Cassandra as data sources. Due to our desire
of benchmarking different data storing technologies, we decided to use the first
algorithm, the least computationally expensive technique, because it gives us the
opportunity of focusing in data consumption costs.

3 Storage Component Evaluation

Since our aim is to find the most suitable database for storing ratings and rec-
ommendations, here we do not focus on evaluating recommendations quality.
Instead, in this benchmarking effort, we studied two different approaches to ad-
dress the big data challenge: MySQL Cluster, a clustered RDBMS solution, and
Cassandra, a fully distributed NoSQL DBMS. Although Cassandra and MySQL
have been compared, to the best of our knowledge, this is the first rigorous
comparison between Cassandra and MySQL Cluster.

Both data storing technologies have demonstrated linear scalability adding
new nodes [18,16]. However, it should also be noted that MySQL Cluster, in
contrast to Cassandra, does not provide any load balancer policy. In our tests,
we implemented a round-robin policy to face this issue.

The cluster used for the benchmarks consists of four nodes with two In-
tel Xeon E5504 CPUs, 16 GB of RAM and two 1 TB disks connected with
a Gigabit Ethernet switch. The tests we performed include concurrent rating
insertion, recommendation generation and concurrent recommendation serving.
Each database is configured to work with a replication factor of two. Below, we
introduce the applied methodology.

18 http://hadoop.apache.org/
19 http://mahout.apache.org/
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3.1 Rating Insertion

We measured writing times of inserting film ratings from the Netflix Prize20 using
different number of concurrent connections. This dataset includes 100,480,507
ratings that 480,189 users gave to 17,770 films.

The results of inserting all Netflix dataset ratings, illustrated in Figure 2,
show that Cassandra outperforms MySQL Cluster in every scenario. In addition,
it should be noted that the operation times hardly increases with the number of
inserted ratings although a warm-up overhead can be observed at the start.
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Fig. 2. Cassandra vs MySQL Cluster per insertion time when using 8, 16, 32 or 64
concurrent petitions and moving the chunk size of the ratings from 10 to 100 million
users ratings. Times (in milliseconds) were obtained in a cluster of four nodes

3.2 Recommendation Generation

Using the data inserted in the previous experiment, we configure Mahout’s item-
based CF algorithm to fetch and store data from/to MySQL Cluster and Cas-
sandra. We measure the overall time of making recommendations for the whole
Netflix dataset (recomendations for 480,189 users) averaged by three executions.

The recommendation algorithm worked well in conjunction with Cassandra.
However, we were not able to store data directly into MySQL Cluster because
Hadoop outputs all recommendations in bulk using DBOutputFormat class. This
leads to massive transactions which causes the database to crash. This event does
not happen with Cassandra because CqlOutputFormat inserts recommendations
as soon as they are generated. To overcome this problem in MySQL Cluster, we
wrote recommendations into HDFS (Hadoop Distributed File System) and then
used Sqoop21 to export the data from HDFS to MySQL.

20 http://www.netflixprize.com/
21 http://sqoop.apache.org/
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The result of the tests are 68.85 minutes using Cassandra (8.6 ms per user
in average) and 274.73 minutes using MySQL (34.3 ms per user in average,
being the use of Sqoop the crucial factor in the differences). Recommendation
generation is not on demand, we conceive the recommendation generation as an
off-line process, however, when fresh recommendations are needed frequently in
the domain of application, the recommendation algorithm can be pipelined in
order to provide a high updating rate, i.e., starting different recommendation
generation processes in parallel when a given amount of change is detected in
the rating information.

3.3 Recommendation Serving

Lastly, we focus on providing users with recommendations. In this test, we anal-
ysed the read times of querying the top items for a user. In order to be able to
serve sorted recommendations in real-time, it is imperative to have an index on
predicted score attribute. This action worsen MySQL Cluster scalability because
this database solution stores indexed columns in memory. However, in Cassandra
we only need to indicate the clustering order in the table creation process.

Our experiment consists in querying the top 10 recommended items for 25
million users. Considering that Netflix dataset has about half a million users,
many queries will be repetitive. In this test we want to test the reading perfor-
mance of the database, thus, the described caches in Section 2.1 are not used.
We study serving times under different number of concurrent queries. The re-
sults illustrated in Figure 3 show that Cassandra consistently improves MySQL
Cluster in every scenario.
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Fig. 3. Cassandra vs MySQL Cluster serving time per user recommendation when
using 8, 16, 32 or 64 concurrent requests. Times (in milliseconds) were obtained in a
cluster of four nodes
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3.4 Final choice

In view of the results, we chose Cassandra over MySQL Cluster. We justify this
decision in the following paragraphs.

Firstly, a potential MySQL Cluster drawback is the fact that it needs to
store indexed columns in main memory which compromises its scalability if the
data stored in a node exceeds its main memory. For instance, our first attempt
to compare MySQL and Cassandra involved using the Bigflix dataset [23], with
25 million users and 5 billion ratings, but given the MySQL memory limitation
using 4 nodes and replication factor 2, the Bigflix collection could not be fitted
in this cluster using MySQL. Although MySQL could still be valid in a lot of
cases, its choice could compromise the use of this architecture at big data scale.

In addition, Netflix Engineering [2] reported an insertion rate of 4 million
ratings per day (an average of 46 requests per second). Probably rating insertion
will not be uniform, in this scenario (64 concurrent requests) Cassandra is 4 times
faster than MySQL Cluster.

Moreover, recommendation generation is a very slow process using MySQL
Cluster due to the writing performance. Finally, the difference of performance
when serving recommendations reinforces the election.

4 Related Work

Scalability of recommender systems is not a novel topic. It has been counted as
one of the most urgent challenges in recommendation on more than one occa-
sion, for instance, Cortizo et al. [7] stated it as one of the main challenges of
a general purpose multi-algorithm recommender. Of course, several companies
have already addressed the scalability issues such as Hulu or Netflix. Unfor-
tunately, given the strategic nature of such information, the reported details in
their technical blogs are minimum and public comparison are missing. Only some
short publications in the field of commercial recommender systems are available
showing some of the concerns of those corporations about this topic.

In fact, our approach shares some similarity with Youtube’s short description
of their current implementation [9] where video recommendations are generated
by pipelined calculations with MapReduce. Meanwhile user logs and score recom-
mendations are stored in a Bigtable, a column-oriented database. Google News
also uses Bigtable for storing user information [8]. They described three algo-
rithms implemented in MapReduce based on an architecture with three types of
servers. Nevertheless, both of them do not provide extensive descriptions.

Ebay recommendation architecture [13] consists of three main components:
the data store that contains user data and learned models, the performance sys-
tem that provide recommendations using Lucene and the offline model training
with pipelined MapReduce jobs.

Another approach to recommendation is the engine built with Apache Solr
presented by Lacić et al. [14]. In contrast to our proposal where updates are not
intended to be immediately processed, they are able to generate recommenda-
tions in real-time. This is an alternative for light and simple recommendation
algorithms which can be modelled using the basic operations provided by Solr
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API. However, the major downside of this procedure is the difficulty of imple-
menting complex recommendation algorithms such as recent and very effective
collaborative filtering algorithms using matrix factorization methods [17].

5 Conclusions and Future Work

In this paper, we have described a novel and scalable architecture for big data
recommendation systems without any single point of failure. This system consists
in three components: the front-end, the data storage and the recommendation
engine. Every subsystem in each component is fully distributed and replicated
to achieve high scalability and high availability. We have also suggested specific
software solutions including NoSQL and several cache technologies.

We have compared two storage products, MySQL Cluster and Cassandra, for
storing ratings and generating and serving recommendations, concluding that the
second one is best suited to these tasks.

In future work, we seek to study and benchmark more aspects of the archi-
tectural proposal. In addition, we would also like to try more effective algorithms
on the MapReduce framework [17].
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