
STeLP – a Tool for Temporal Answer Set
Programming?

Pedro Cabalar and Mart́ın Diéguez

Department of Computer Science,
University of Corunna (Spain)

{cabalar,martin.dieguez}@udc.es

Abstract. In this paper we present STeLP, a solver for Answer Set Pro-
gramming with temporal operators. Taking as an input a particular kind
of logic program with modal operators (called Splitable Temporal Logic
Program), STeLP obtains its set of temporal equilibrium models (a gen-
eralisation of stable models for this extended syntax). The obtained set
of models is represented in terms of a deterministic Büchi automaton
capturing the complete program behaviour. In small examples, this au-
tomaton can be graphically displayed in a direct and readable way. The
input language provides a set of constructs which allow a simple defi-
nition of temporal logic programs, including a special syntax for action
domains that can be exploited to simplify the graphical output. STeLP
combines the use of a standard ASP solver with a linear temporal logic
model checker in order to find all models of the input theory.

1 Introduction

The use of Answer Set Programming (ASP) tools to represent temporal scenar-
ios for Non-Monotonic Reasoning (NMR) has some important limitations. ASP
solvers are commonly focused on finite domains and so, representation of time
usually involves a finite bound. Typically, variables ranging over transitions or
time instants are grounded for a sequence of numbers 0, 1, . . . , n where n is a
finite length we must fix beforehand. As a result, for instance, we cannot check
the non-existence of a plan for a given planning problem, or that some transition
system satisfies a given property for any of its possible executions, or that two
representations of the same dynamic scenario are strongly equivalent (that is,
they always have the same behaviour for any considered narrative length) to
mention three relevant examples.

To overcome these limitations, [1] introduced an extension of ASP called
Temporal Equilibrium Logic. This formalism combines Equilibrium Logic [2] (a
logical characterisation of ASP) with Linear Temporal Logic (LTL) [3] and pro-
vides a definition of the temporal equilibrium models (analogous to stable models)
for any arbitrary temporal theory.

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-
04 and Xunta de Galicia project INCITE08-PXIB105159PR.

In this paper we introduce STeLP, a system for computing the temporal equi-
librium models of a particular class of temporal theories called Splitable Temporal
Logic Programs (STLP). This class suffices to cover most frequent examples in
ASP for dynamic domains. More importantly, the temporal equilibrium models
of an STLP have been shown to be computable in terms of a regular LTL theory
(see the companion paper [4]). This feature is exploited by STeLP to call an LTL
model checker as a backend.

2 Splitable Temporal Logic Programs

Temporal Equilibrium Logic (TEL) shares the syntax of propositional LTL, that
is, propositional formulas plus the unary temporal operators1 � (read as “al-
ways”), ♦ (“eventually”) and © (“next”). TEL is defined in two steps: first,
we define the monotonic logic of Temporal Here-and-There (THT); and second,
we select TEL models as some kind of minimal THT-models obtaining non-
monotonicity. For further details, see [5].

Definition 1 (STLP). An initial rule is an expression of one of the forms:

A1 ∧ · · · ∧An ∧ ¬An+1 ∧ · · · ∧ ¬Am → Am+1 ∨ · · · ∨As (1)
B1 ∧ · · · ∧Bn ∧ ¬Bn+1 ∧ · · · ∧ ¬Bm →©Am+1 ∨ · · · ∨©As (2)

where Ai are atoms and each Bj can be an atom p or the formula©p. A dynamic
rule has the form �r where r is an initial rule. An Splitable Temporal Logic
Program (STLP) Π is a set of (initial and dynamic) rules. �

The body (resp. head) of a rule is the antecedent (resp. consequent) of its impli-
cation connective. The following theory Π1 is an STLP:

¬a ∧©b→©a �(a→ b) �(¬b→©a)

In [4] it is shown how the temporal equilibrium models of an STLP Π corre-
spond to the LTL models of Π∪LF (Π) where LF (Π) are loop formulas adapted
from the result in [6]. For further details and a precise definition, see [4].

3 The input language

The input programs of STeLP adopt the standard ASP notation for conjunction,
negation and implication, so that, an initial rule like (1) is represented as:

Am+1 v . . . v As :- A1, . . . ,An, not An+1, . . . , not Am

Temporal expressions are represented following the correspondences:
1 As shown in [5], the LTL binary operators U (“until”) and R (“release”) can be

removed by introducing auxiliary atoms.

©α 7−→ o α �α 7−→ always α
�(α→ β) 7−→ β::- α α U β 7−→ α until β

Operators always and until can only be used for constraints (that is, rules
with empty head). In fact, this is because STeLP allows a more general type
of constraints than those defined in splitable form, since we can specify any
arbitrary combination of propositional connectives with {o, always, until} as
a body of any constraint (initial or dynamic). As an example of the STeLP input
syntax, Π1 would be represented as:

o a :- not a, o b. b ::- a. o a ::- not b.

In STeLP we can also use rules where atoms have variable arguments like
p(X1,. . . ,Xn) and, as happens with most ASP solvers, these are understood
as abbreviations of all their ground instances. A kind of safety condition is
defined for variables occurring in a rule. To this aim, notice that using any
dynamic predicate for that purpose is not directly possible, since their truth
may infinitely vary along time. Thus, we will previously distinguish a family
of predicates that satisfy the property �(p(X) ↔ ©p(X)) for any tuple of
elements X. That is, these predicates maintain a fixed truth value along time,
and so, they will be called static. STeLP allows declaring static operators with
a list of pairs name/arity preceded by the keyword static. As expected, all
built-in relational operators =, !=, <, >, <=, >= are implicitly defined as static
predicates with their usual meaning. An initial or dynamic rule is safe when:

1. Any variable X occurring in a rule B → H or �(B → H) occurs in some
positive literal in B for some static predicate p.

2. Initial rules of the form B → H where at least one static predicate occurs
in the head H only contain static predicates (these are called static rules).

All rules in an STeLP program must be safe. Since static predicates must occur
in any rule, STeLP allows defining global variable names with a fixed domain,
in a similar way to the lparse2 directive #domain. For instance, the declaration
domain switch(X), opp(V,W). means that any rule referring to variable X is
implicitly extended by including an atom switch(X) in its body, whereas any
rule containing V or W (or both) is extended with a body atom opp(V,W). All
predicates used in a domain declaration must be static – as a result, they will be
implicitly declared as static, if not done elsewhere. As an example, consider the
classical puzzle where we have a wolf w, a sheep s and a cabbage c at one bank
of a river. We have to cross the river carrying at most one object at a time. The
wolf eats the sheep, and the sheep eats the cabbage, if no people around. Action
m(X) means that we move some item w,s,c from one bank to the other. We
assume that the boat is always switching its bank from one state to the other,
so when no action is executed, this means we moved the boat without carrying
anything. We will use a unique fluent at(Y,B) meaning that Y is at bank B being
Y an item or the boat b. The complete encoding is shown in Figure 3.
2 http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

% Domain predicates

domain item(X), object(Y), opp(A,B).

opp(l,r). opp(r,l). item(w). item(s). item(c).

object(Z) :- item(Z). object(b).

o at(X,A) ::- at(X,B), m(X). % Effect axiom for moving

o at(b,A) ::- at(b,B). % The boat is always moving

::- m(X), at(b,A), at(X,B). % Action executability

::- at(Y,A), at(Y,B). % Unique value constraint

o at(Y,A) ::- at(Y,A), not o at(Y,B). % Inertia

::- at(w,A), at(s,A), at(b,B). % Wolf eats sheep

::- at(s,A), at(c,A), at(b,B). % Sheep eats cabbage

a(X) ::- not m(X). % Choice rules for action

m(X) ::- not a(X). % execution

::- m(X), item(Z), m(Z), X!=Z. % Non-concurrent actions

at(Y,l). % Initial state

g ::- at(w,r), at(s,r), at(c,r). % Goal predicate

:- always not g. % Goal must be satisfied

Fig. 1. Wolf-sheep-cabbage puzzle in STeLP.

A feature that causes a difficult reading of the obtained automaton for a
given STLP is that all the information is represented by formulas that occur as
transition labels, whereas states are just given a meaningless name. As opposed
to this, in an actions scenario, one would expect that states displayed the fluents
information and transitions only contained the actions execution. To make the
automaton closer to this more natural representation, we can distinguish predi-
cates representing actions and fluents. For instance, in the previous example, we
would further declare: action m/1. fluent at/2.

STeLP uses this information so that when all the outgoing transitions from a
given state share the same information for fluents, this is information is shown
altogether inside the state, and removed from the arc labels. Besides, any symbol
that is not an action or a fluent is not displayed (they are considered as auxiliary).
As a result of these simplifications, we may obtain several transitions with the
same label: if so, they are collapsed into a single one.

4 Implementation

STeLP is a Prolog application that interacts with the standard ASP solver DLV3

and the LTL model checker SPOT4. As shown in Figure 2, it is structured in
several modules we describe next.

In a first step, STeLP parses the input program, detecting static and domain
predicates, checking safety of all rules, and separating the static rules. It also
appends static predicates to rule bodies for all variables with global domain. The
3 http://www.dbai.tuwien.ac.at/proj/dlv/
4 http://spot.lip6.fr/

Fig. 2. Structure of STeLP system.

set of static rules is fed to DLV to generate some model (among possible) that will
provide the extension for all static predicates. The number of static models that
STeLP will consider is given as a command line argument. Each static model will
generate a different ground program and a different automaton. Once a static
model is fixed, STeLP grounds the non-static rules input program. Each ground
instance is evaluated and, if the body of the ground rule becomes false, the rule
is deleted. Otherwise all static predicates of the rule are deleted from its body.

The next step consists in computing the loop formulas for the ground STLP
we have obtained. This implies obtaining a dependency graph and computing
its strongly connected components (the loops) using Tarjan’s algorithm [7]. The
STLP together with its loop formulas is then used as input for the LTL solver
SPOT, which returns a deterministic Büchi automaton. In a final step, STeLP
parses and, if actions and fluents are defined, simplifies the automaton as de-
scribed before. The tool Graphviz5 is used for generating a graphical repre-
sentation. For instance, our wolf-sheep-cabbage example throws the diagram in
Figure 3 where we can actually see all the accessible states (any movement is
reversible) from the initial situation, including the goal situation.

As an example of non-existence of plan, if we include the rule ::- at(w,r),
at(c,r), at(b,l) meaning that we cannot leave the wolf and the cabbage
alone in the right bank, then the problem becomes unsolvable (we get a Büchi
automaton with no accepting path).

5 http://www.graphviz.org/

at(b,l),at(c,l)
at(s,l),at(w,l)

init

at(b,r),at(c,l)
at(s,r),at(w,l)

at(b,l),at(c,l)
at(s,r),at(w,l)

at(b,r),at(c,r)
at(s,r),at(w,l)

at(b,l),at(c,r)
at(s,l),at(w,l)

at(b,r),at(c,r)
at(s,l),at(w,r)

at(b,l),at(c,r)
at(s,l),at(w,r)

at(b,r),at(c,r)
at(s,r),at(w,r)

goal

at(b,l),at(c,l)
at(s,l),at(w,r)

at(b,r),at(c,l)
at(s,r),at(w,r)

m(s)

∅

m(c) m(s) m(w)

∅

m(s)

m(c)

m(s)

m(w)

Fig. 3. Automaton for the wolf-sheep-cabbage example.

References

1. Cabalar, P., Vega, G.P.: Temporal equilibrium logic: a first approach. In: Proc. of
the 11th International Conference on Computer Aided Systems Theory, (EURO-
CAST’07). LNCS (4739). (2007) 241–248

2. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Non monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216).
Springer-Verlag (1996)

3. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1991)

4. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal
logic programs (2011) (unpublished draft)
http://www.dc.fi.udc.es/~cabalar/lfstlp.pdf.

5. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Proc. of the
12th European Conference on Logics in Artificial Intelligence (JELIA’10). Lecture
Notes in Computer Science. Volume 2258. Springer-Verlag (2010) 64–76

6. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47 (2006) 79–101

7. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2) (1972) 146–160

