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Abstract. In this work we reconsider the replacement of predicate-like
notation by functional terms, using a similar syntax to Functional Logic
Programming, but under a completely different semantic perspective.
Our starting point comes from the use of logic programs for Knowledge
Representation and Nonmonotonic Reasoning, especially under three
well-known semantics for default negation: Clark’s completion, stable
models and well-founded semantics. The motivation for introducing func-
tions in this setting arises from the frequent occurrence of functional de-
pendences in the representation of many domains. The use of functions
allows us to avoid explicit axiomatization (to ensure the uniqueness of
value) and provides a more compact representation by nesting functional
terms. This gets rid of a considerable amount of unnecessary variables,
what may be exploited for the process of program grounding, something
common in this type of applications of Logic Programming. From a rep-
resentational point of view, the most interesting introduced feature is the
possibility of replacing default negation by the concept of default value
of a function. In the paper, we explore this idea of functions with default
values, providing adapted versions of the three mentioned semantics for
the functional case, and equivalent translations into logic programs.

1 Introduction

One of the uses of Logic Programming (LP) that is probably attracting more
research interest is its application for practical knowledge representation, and
particularly, for solving problems related to the area of Nonmonotonic Reasoning
(NMR). This application became possible thanks to the availability of several
semantics for LP (like Clark’s completion [4], stable models [7] or well-founded
semantics [19]) that allowed ignoring the operational aspects of Prolog, focusing
instead on the use of default negation as a declarative tool for NMR. As a
consequence of this application, a considerable number of extensions of the LP
paradigm have emerged to cope with different knowledge representation issues:
addition of a second negation [8, 1], nested operators [11], cardinality and weight
constraints [15] or, more recently, aggregate functions [5].

In this work we consider one more possible extension of the LP paradigm con-
sisting in the use of functions instead of relation symbols, much in the style of



the field of Functional Logic Programming [10] (FLP). Our aim, however, differs
from FLP in that we tackle the functional extension from the NMR perspective.
In this way, rather than being worried about the operational behavior of unifica-
tion in FLP (usually related to the rewriting technique called narrowing [17]) we
will omit the use of functors (like the list constructors) from the very beginning,
so that we handle a finite set of ground terms. This assumption is usual, for
instance, in the LP area of Answer Sets Programming [12] or in other related
NMR approaches [9], where most practical applications involve a preliminary
process of program grounding (i.e., replacement of variables by all their possible
ground instances).

When representing many domains in NMR we face the typical situation where
some relational symbol, for instance father(x, y) actually represents a function
father(x) = y. In this case, the program must be extended with several rules
for explicitly asserting the uniqueness of value y in father(x, y). Functions avoid
this explicit axiomatization and, thanks to the possibility of nesting functional
terms, allow removing a considerable number of unnecessary variables. Apart
from a more comfortable representation, the most important representational
feature we consider in this paper is the generalization of default negation to the
notion of default value of each function. This concept is described under the
three above-mentioned semantics.

The paper is organized as follows. Section 2 contains a brief recall of LP
definitions, in order to make the paper self-contained. In the next section, we
begin considering ground functional logic programs, where we handle 0-ary func-
tions with default values. Besides, we describe the three mentioned semantics for
these functional programs, and provide translations into LP. After that, we com-
ment some aspects about expressiveness, showing that functional logic programs
generalize normal and extended logic programming. The next section briefly de-
scribes non-ground programs with nested functions. Finally, Section 6 outlines
some connections to related work and contains the conclusions of the paper.

2 Recall of Logic Programming

Given a finite set of atoms H called the Herbrand Base, we define a program
literal as an atom p ∈ H or its default negation not p (being the latter also
called default literal). By normal logic program (or just program for short) we
mean a set of rules like:

H ← B1, . . . , Bn

where H is an atom called the head of the rule, and the B′
is are program literals.

We will write B as an abbreviation of B1, . . . , Bn and call it the body of the rule.
We will also allow a special atom ⊥ 6∈ H as rule head, standing for inconsistence
and used for rejecting undesired models. When n = 0 we say that the rule is a
fact and directly write H, omitting the arrow. A program P is said to be positive
iff it contains no default negation.



A propositional interpretation I is any subset of H. We use symbol |= to
represent classical propositional satisfaction, provided that ←, comma and not
are understood as classical implication, conjunction and negation, respectively.
Using this reading, the concept of (classical) model of a program is defined in the
usual way. We also define the direct consequences operator TP on interpretations,
as follows: TP (I) def= {H | (H ← B) ∈ P and I |= B}.

A well-known result [18] establishes that any positive program P has a least
model, we will denote as least(P ). Furthermore, for positive programs, TP is
monotonic and its least fixpoint (computable by iteration on ∅) coincides with
least(P ).

A supported model I of a program P is any fixpoint of TP , that is, any
I = TP (I). Supported models can also be computed as classical models of a
propositional theory called Clark’s completion [4] which can be easily obtained
from P , although we omit here its description for brevity sake.

The reduct of a program P with respect to interpretation I, written P I

corresponds to: (1) removing from P all rules with a program literal not p such
that p ∈ I; and (2) removing all the default negated literals from the remaining
rules. Therefore, P I is a positive program and has a least model least(P I). We
represent this model as ΓP (I) or simply Γ (I) when there is no ambiguity.

A stable model I of a program P is any fixpoint of Γ , that is: I = Γ (I).
Furthermore, operator Γ 2 (i.e., Γ applied twice) is monotonic and has a greatest
and a least fixpoint, respectively represented as gfp(Γ 2) and lfp(Γ 2). The well-
founded model (WFM) of a program P is a pair of interpretations (I, J) where
I = lfp(Γ 2) and J = gfp(Γ 2). As I ⊆ J , we can see the WFM as a three-valued
interpretation where atoms in I are true (or founded), atoms in J − I undefined,
and atoms not in J are false (or unfounded).

We will also consider Extended Logic Programming (ELP), that is, programs
dealing with explicit negation ‘¬’. For simplicity sake, however, we understand
ELP as a particular case of normal programs where the Herbrand Base contains
an atom “¬p” per each atom p without explicit negation. Given an atom A ∈ H,
we write A to denote its complementary atom, that is p = ¬p and ¬p = p. Under
this setting, an interpretation I is said to be consistent iff it contains no pair of
atoms p and ¬p. Consistent stable models for ELP receive the name of answer
sets. As for (consistent) supported models for ELP, they can be computed by an
adaptation of Clark’s completion called Literal Completion [13].

In the case of WFS for ELP, some counterintuitive results have led to the need
for a variation called WFSX (WFS with eXplicit negation) [16]. This semantics
guarantees the so-called coherence principle: if an atom A ∈ H is founded in the
WFM, its complementary atom A must be unfounded. In other words, explicit
negation ¬p must imply default negation not p. The definition of WFSX relies
on the idea of seminormal programs. For any ELP rule r = (H ← B), its
seminormal version rs is defined as (H ← B,not H). Similarly, given program P ,
its seminormal version Ps consists of a rule rs per each rule r in P . We write Γs(I)
to stand for least(P I

s ), and say that Γs is not defined for an inconsistent I. When
defined, operator ΓΓs is monotonic. The WFM of a program P (under WFSX) is



a pair of interpretations (I, J) such that I = lfp(ΓΓs) and J = Γs(I), provided
that lfp(ΓΓs) is defined (otherwise, the program is said to be inconsistent). It has
been shown [16] that the WFM under WFSX satisfies the coherence principle.

3 Functional Logic Programs

3.1 Syntax

For describing the syntax of Functional Logic Programs, we begin considering
a finite set of ground terms F , that we can consider as 0-ary function names,
together with a finite set of constant values V. We will use letters f, g, . . . to
stand for elements of F and v, w, . . . for constant values. The definition of each
function f ∈ F is a sentence like:

f : R [= d]

where R ⊆ V is called the range of f , and the declaration ‘= d’ is optional,
representing a default value d ∈ R. We will use the notation, range(f) = R
and, when defined, default(f) = d. As usual, range boolean stands for the set
{true, false}. A functional literal (F-literal for short) is any expression like
f =v, satisfying v ∈ range(f). For simplicity sake, when range(f) = boolean we
may omit the ‘= v’ and use a “standard” logical literal instead, so that:

f
def= f =true

¬f
def= f =false

A functional logic program (F-program for short) is a finite set of rules like:

H ← B1, . . . , Bn

where H and all the B′
is are now F-literals. Again, H is called the head and can

also be the special symbol ⊥ that denotes inconsistence, whereas B1, . . . , Bm are
the body, which will be abbreviated as B. When convenient, B can also be seen
as a set of F-literals.

In order to describe the correspondence with normal logic programs, we will
always bear in mind the translation of each F-literal L with shape f = v into a
ground atom L′ of shape holds(f, v). We generalize the use of the prime operator
for any construction (expressions, rules, sets, etc) having the expected meaning:
it replaces each occurring F-literal L by atom L′. A first important observation
in this sense is that given the F-program P , the corresponding normal program
P ′ is positive (that is, it contains no default negation).

3.2 Semantics: stable and supported models

An F-interpretation I is defined as a (possibly partial) function I : F → V
where I(f) can be undefined only if f has no default value and, otherwise,



I(f) ∈ range(f). We alternatively represent an F-interpretation as a consistent
set of F-literals, where by consistent we mean containing no pair of literals f =v
and f =w with v 6= w, or the symbol ⊥. An useful definition is the idea of default
portion of an F-interpretation I:

default(I) def= {(f =d) ∈ I | d = default(f)}

that is, the F-literals in I that correspond to assignments of default values.
An F-interpretation I satisfies a rule H ← B iff H ∈ I whenever B ⊆ I. An

F-model of an F-program P is any F-interpretation I satisfying all the rules of
P . An F-program P is said to be consistent iff it has some model.

As we did with TP for normal logic programs, we can easily define an analo-
gous direct consequences operator, tP (I), for F-programs as follows:

tP (I) = {H | (H ← B) ∈ P and B ⊆ I}

Note that tP (I) is just a set of F-literals which could be inconsistent or par-
tial, even for functions with default values. In this way, we actually have the
straightforward correspondence: TP ′(I ′) = (tP (I))′. Therefore, TP properties
are also applicable for tP :

Proposition 1. Any (consistent) F-program P has a least F-model, written
F-least(P ).

In the same way, for any program P , operator tP is monotonic and has a
least fixpoint which can be computed by iteration on the least set of F-literals
∅. Again, by adapting TP results, we get:

Proposition 2. If program P is consistent, its least F-model corresponds to the
least fixpoint of tP .

Now, we can extend the idea of stable and supported models for the case of
F-programs.

Definition 1 (Functional supported model). A functional supported model
of an F-program P is any F-interpretation I satisfying: I = tP (I) ∪ default(I).

Definition 2 (Functional stable model). A functional stable model of a
program P is any F-interpretation I satisfying I = γ(I), where:

γ(I) def= F-least(P ∪ default(I))

3.3 Translation into normal logic programs

When we interpret the previous definitions for stable and supported models of
F-programs, it is interesting to note that, in both cases, we deal with a positive
program that is “completed” somehow with the default information in I. We will



see that this effect can be captured inside normal logic programs by the addition
of the axiom rule schemata:

⊥ ← holds(f, v), holds(f, w) (1)
holds(f, d)← not holds(f, v1), . . . ,not holds(f, vn) (2)

for all function f , values v, w ∈ range(f) with v 6= w, and d = default(f),
{v1, . . . , vn} = range(f) − {d}. Axiom (1) simply gets rid of models where a
function takes two different values. Axiom (2) allows assuming the default value d
for any function f , whenever the function does not take any of the rest of possible
values. Any propositional interpretation I ′ that classically satisfies (1) and (2)
can be seen as an F-interpretation I, since it will not contain an inconsistent pair
of literals (due to (1)) and will not be partial for functions with default value
(due to (2)). This is important because, since any stable (or supported) model
is also a classical model of P ′, axioms (1) and (2) will guarantee that it has an
associated F-interpretation.

Assume we write P ∗ to stand for the normal logic program P ′ ∪ (1) ∪ (2)
obtained from the F-program P .

Theorem 1. An F-interpretation I is a functional supported model of P iff I ′

is a supported model of P ∗.

Proof. First, note that TP∗(I ′) contains TP ′(I ′), which corresponds to the trans-
lation of tP (I), as we had seen. The remaining atoms in TP∗(I ′) come from those
heads of axioms (1) and (2) for the cases in which their body is true in I ′. Clearly,
by consistence of I as an F-interpretation, the body of (1) cannot be true in I ′.
As for (2), we must collect the set of holds(f, d) for which no other value for f
is included in I ′. As I ′ cannot be partial for f , this is equivalent to collect all
the holds(f, d) such that holds(f, d) ∈ I ′. But this is exactly the translation into
atoms of the set default(I) of functional literals. ut

The proof suggests that, for the case of supported models, we can replace
axiom (2) by the simpler expression:

holds(f, d)← holds(f, d) (3)

For the case of stable models, we first prove that there exists a one-to-one
correspondence between operators γ for F-program P and Γ for P ∗.

Theorem 2. Let I, J be a pair of sets of F-literals and P an F-program. Then
J = γ(I) for P iff J ′ = Γ (I ′) for P ∗.

Proof. As a proof sketch, we outline a quite obvious correspondence between
the reduct (P ∗)I′ and the F-program P ∪ default(I). Consider rule (2) for each
function f with default(f) = d. If holds(f, d) 6∈ I ′, since I ′ is not partial for f ,
there must exist some holds(f, vi) ∈ I ′ with vi 6= d, and so, the whole rule (2) will
be deleted when computing the reduct. On the other hand, if holds(f, d) ∈ I ′,
since I ′ is consistent, no other different holds(f, vi) belongs to I, and so we can



delete all the default literals in (2), what simply amounts to the fact holds(f, d)
in the reduct. As a result, the reduct (P ∗)I′ is exactly the same program than
(P ∪ default(I))′ ∪ (1). Finally, note that computing the least model of (P ∗)I′ is
completely analogous to computing the least functional model of P ∪ default(I)
(for instance, using the direct consequences operator in both cases), where axiom
(1) just rules out inconsistent results in the logic program. ut

Corollary 1. An F-interpretation I is a functional stable model of P iff I ′ is a
stable model of P ∗.

3.4 Well-founded semantics

The third type of semantics we will consider is the generalization of WFS for
the case of F-programs. As we saw in Section 2, the main difference of WFS
with respect to the two previous semantics is that, instead of considering mul-
tiple models for a program, we get a single model which may leave some atoms
undefined. When we move to the functional case, the well-founded model would
now have the shape of a pair of sets of F-literals (I, J), I ⊆ J . This means, in
principle, that each F-literal f = v could be founded, unfounded or undefined
regardless the rest of values for function f . However, it is clear that, as happened
with WFS for ELP, we must impose the restriction of consistency1 for the set of
founded literals I.

Since ELP can be seen as a particular case of F-programs (where all ranges are
fixed to boolean), it is easy to find similar examples of possible counterintuitive
behavior due to the non-satisfaction of the coherence principle. For instance,
assume we try to define WFS for any F-program P by correspondence with the
standard WFS for P ∗.

Example 1. Let P1 be the F-program:

a← ¬a (4)
b← a (5)
c← b (6)
¬b (7)

where a, b, c : boolean = false.

The WFM of P ∗
1 leaves both values of a undefined (due to cycle (4)) and, as a

consequence, this undefinedness is propagated to literals b=true and c=true
through rules (5) and (6). This result, however, seems counterintuitive in the
presence of fact (7) which makes b = false founded. As a result, we should
expect that condition of rule (6) became unfounded, leaving c false by default.

The generalization of Alferes and Pereira’s coherence principle for the case
of arbitrary function ranges would be:
1 Note that, on the other hand, the possibility of an “inconsistent” set of non-

unfounded literals J must be allowed, since we could simultaneously have different
undefined values for a same function.



Definition 3 (Coherence). A pair (I, J) of sets of literals with I ⊆ J and I
consistent is said to be coherent iff for each (f =v) ∈ I, we have that (f =w) 6∈ J
for all w ∈ range(f)− {v}.

In other words, a coherent pair (I, J) satisfies that, if a function value is
founded, then the rest of values for that function are unfounded. As shown with
Example 1, using the WFM of P ∗ as a guide for defining a functional WFS is
not adequate for dealing with coherence. Instead, we could think about using a
translation of P into ELP interpreted under WFSX.

Definition 4. Given F-program P we define the extended logic program P e as
the set of rules in P ′ together with the axiom rule schemata:

¬holds(f, v)← holds(f, w) (8)
holds(f, d)← not ¬holds(f, d) (9)

where v, w ∈ range(f) with v 6= w, and d = default(f).

That is, P e corresponds to P ∗ where axioms (1) and (2) are now replaced by (8)
and (9). It is not difficult to see that these two new axioms are an alternative
way of representing (2), provided that (1) is not needed when we deal with ex-
plicit negation. An important remark at this point is that program P e actually
handles an extended Herbrand Base H, containing atoms of shape holds(f, v)
or ¬holds(f, v). Therefore, when translating an F-interpretation I into a propo-
sitional interpretation, we must also describe the truth values for atoms like
¬holds(f, v). Although this information is not explicitly included in I ′, axiom
(8) allows us to consider it as implicit in the following way. For all function f
and value v: ¬holds(f, v) ∈ I ′ iff exists some holds(f, w) ∈ I ′ with w 6= v.

Bearing in mind this new translation, we proceed now to define the adapted
WFS for the functional case. For any F-program P and any consistent set of
literals I, the program Ps(I) (the s stands for “seminormal,” by analogy with
WFSX) is defined as follows:

Ps(I) def= {(f =v ← B) ∈ P | such that no f =w ∈ I, with v 6= w}

that is, we get those rules of P where the head literal is not contradictory with
respect to another literal in I. We write γs to stand for γ with respect to program
Ps(I), that is:

γs(I) def= least(Ps(I) ∪ default(I))

As the definition of Ps(I) requires I to be consistent, γs is not defined for an
inconsistent I. The following result relating operators γs and Γs will allow us to
inherit properties from WFSX for the case of F-programs:

Theorem 3. Let I, J be a pair of sets of F-literals (with I consistent) and P
an F-program. Then J = γs(I) for P iff J ′ = Γs(I ′) for P e.



Proof. The seminormal program P e
s contains a rule r′s:

holds(f, v)← B′,not ¬holds(f, v) (10)

per each rule r = (f = v ← B) in P , plus the seminormal version of rule
schemata (8):

¬holds(f, v)← holds(f, w),not holds(f, v) (11)

and rule schemata (9) (which is already, in fact, a seminormal rule). Now note
that the reduct (P e

s )I′ will contain a rule holds(f, v)← B′ per each r′s satisfying
¬holds(f, v) 6∈ I ′. As we saw for explicitly negated atoms in I ′, this means that
there is no other w 6= v such that holds(f, w) ∈ I ′. So, we take rules whose head
is consistent in I ′, what corresponds exactly to Ps(I) in the functional case. ut

Consider now the composed operator γγs. The last theorem, together with
Theorem 2, allows us to import the next property from operator ΓΓs:

Corollary 2. When defined, operator γγs is monotonic.

Thus, we can compute a least fixpoint of γγs, written lfp(γγs), by iteration on
the least consistent set of literals ∅, provided that this iteration keeps consistence
in each step.

Definition 5 (Functional Well-Founded Model). For any F-program P , if
lfp(γγs) is defined, then the well-founded model (WFM) of P is a pair of sets
of F-literals (I, J) where:

I
def= lfp(γγs) J

def= γs(I)

When lfp(γγs) is not defined, we say that P is inconsistent.

As this definition is completely analogous to the WFM under WFSX, Theo-
rem 3 also allows us to derive the following results:

Corollary 3. The pair (I, J) is the WFM of a program P iff (I ′, J ′) is the WFM
of P e under WFSX.

Corollary 4. The WFM (I, J) of a F-program P is coherent.

An alternative way of computing the functional WFM (perhaps more intu-
itive in operational terms) can be described by rewriting operations, by a direct
analogy to Brass et al’s method for WFS [2], further adapted for the case of
WFSX in [3].

Definition 6 (Program Transformations). Given an F-program P we define
the following transformations:

1. Fact simplification F7→
For each fact f =v in P :



(a) remove all occurrences of f =v from all bodies in P and
(b) remove all rules with f =w in their body, where v 6= w.

2. Default assumption D7→
For each function f with default(f) = d and not occurring in any head of P ,
add the fact f =d.

3. Loop detection L7→
Let Popt

def= P ∪ {f =d | f ∈ F and default(f) = d}. Remove all rules in P
containing a body literal f =v not included in lfp(tPopt

).

The meaning of the first two transformations is quite obvious. The loop
detection step is needed to avoid deriving undefinedness from simple loops like
f =v ← f =v. The intuitive behavior for this transformation is the following one.
We construct an optimistic program Popt where we assume that all default values
can be added as facts. Then, we compute the consequences lfp(tPopt) of this
program, ignoring possible inconsistencies (after all, we are being optimistic). If
a literal is not among these optimistic consequences, it will be unaccessible at
all, and so, we can remove rules that depend on that literal.

Given program P , we call reminder program, Prem, to the result of the ex-
haustive application of transformations F7→, D7→ and L7→ on P . For any F-program
P we define its trivial model as a pair of F-literals (I, J) where J is the set of
heads in P and I ⊆ J the set of facts.

Proposition 3. The functional WFM of a program P is the trivial model of the
reminder program Prem.

4 Expressiveness of functional programs

The correspondence in the shape of F-programs with positive logic programs may
incorrectly lead us to think that the expressive power of the current proposal
is lower than full logic programming with default negation. In this section we
show that this impression is wrong – the use of default values constitutes an
alternative to default negation.

Contrarily to the previous translations, that showed how to convert func-
tional programs into normal or extended logic programs, we will do here the
opposite operation. In the case of a normal program, the conversion is quite
straightforward. Assume we have a (ground) normal logic program P with Her-
brand Base H. Then, we would just declare each ground atom p ∈ H as a 0-ary
boolean function p : boolean = false, so that it is assumed to be false by de-
fault. Then, the only transformation needed in program rules would be replacing
each default literal (not p) by the F-literal ¬p (that is, p=false). Notice how,
explicit negation behaves as default negation when we have default value false.

As for extended logic programs, the translation is slightly more complicated,
since we need handling simultaneously default and explicit negation for each
symbol p. This can be accomplished by the inclusion of extra atoms for rep-
resenting default negation. In this case, we would declare all atoms p ∈ H as



boolean functions p : boolean but without default value. Then, we add a new
special function declared as:

know : H× boolean −→ boolean = false

which has two arguments, so that know(p, v) is used to assert that we know
that atom p takes value v ∈ {true, false}. Of course, we must also add the rule
schemata:

know(p, true)← p

know(p, false)← ¬p

for any p ∈ H. Note that know(p, v) is false by default, and so, the literal
¬know(p, v) will work as default negation. Consequently, the translation would
just consist in making the following replacements for extended default literals:

not p
def= ¬know(p, true)

not ¬p
def= ¬know(p, false)

At a first sight, the inclusion of this special function know as a predefined
part of the language could seem interesting. For instance, we could extend its
use for any function f ∈ F and not just for boolean ones. This would allow
expressing conditions like, for instance, ¬know(age, 10) pointing out that we do
not have evidence that function age takes value 10. However, this would not
have much utility in practice, because we have no choice for just asserting that a
function does not take a given value without providing more information. In fact,
we actually have one these two cases: (a) either we assert f = v; or (b) we have
that for all v ∈ range(f), ¬know(f, v). Thus, an operator like unknown(f)
for representing case (b) seems more convenient for practical purposes. This
operator can be defined as:

unknown : H −→ boolean = true

so that any f ∈ F will be unknown by default. Again, we would also handle the
implicit rule schemata:

¬unknown(f)← f =v

5 Non-ground programs and nested functions

When we consider the use of variables, we will naturally require function arities
greater than zero. Although, in principle, the same function name and arity
could be used for an arbitrary set of ground functional terms, it will usually be
more convenient to define a function domain, that specifies the types of all the
possible arguments. The definition of a function is now a sentence like:

f : D1 ×D2 × · · · ×Dn −→ R [= d]



where the new D1 × D2 × · · · × Dn, with n ≥ 0, is called the domain of f ,
written domain(f), and being each Di a finite set of constant values. Under
this extension, a (ground) literal would simply have the shape f(w) = v where
v ∈ range(f) and w is a tuple of values w ∈ domain(f).

Consider the following program P2 with the function definitions:

sex : person −→ {male, female}
parent : person× person −→ boolean = false

offspring : person× person −→ boolean = false

father, mother, grandpa, grandma : person −→ person
likes : person× person ∪ object −→ boolean

nationality : person −→ {fr, es, pt, at, uk, . . . } = fr

birth : person −→ [1900, 2100]
older : person× person −→ boolean

for some finite ranges person, object, and the set of rules (we omit the irrelevant
facts database):

father(X)=Y ← parent(Y, X), sex(Y )=male (12)
mother(X)=Y ← parent(Y, X), sex(Y )=female (13)
offspring(X, Y )← parent(X, Y ) (14)
offspring(X, Y )← parent(X, Z), Z 6= Y, offspring(Z, Y ) (15)
grandpa(X, Y )← parent(Z, Y ), father(Z)=X (16)

likes(X, Y )← mother(X)=Y (17)
¬likes(X, Y )← mother(X)=M,mother(Y )=M,

father(X)=F, father(Y )=G,

nationality(A)=R,nationality(Y )=S, R 6= S (18)
older(X, Y )← birth(X)=A, birth(Y )=B,A < B (19)
older(X, Y )← offspring(X, Y ) (20)

⊥ ← older(X, Y ), older(Y, X), X 6= Y (21)

Notice how boolean function parent has been declared false by default in
order to avoid specifying those pairs of persons for which one is not parent of
the other (what actually constitute most of the possible combinations). On the
other hand, likes is unknown by default, since in some cases we know it is true,
in some cases we know it is false, but in most cases we just do not have any
information. For instance, rule (17) says that any person likes his/her mother,
whereas rule (18) says that X dislikes Y if they have the same mother, but their
fathers are of different nationality. Using a default French nationality (fr) can
be useful when dealing with inhabitants of Saint Malo, for instance. Relation
older is partial, since it may be the case that we ignore the birth date of some
ancestors.



As for the rules shape, variables are understood as abbreviations of all pos-
sible values and, as it can be observed, we allow arbitrary expressions relating
variables (with arithmetic and relational operators) so that they describe the
final combinations that generate a ground instance.

Until now, the use of functions has just limited to a slight change in the
shape of program literals. However, one of the most interesting advantages of
functional terms is the possibility of constructing nested expressions. Consider,
for instance, rule (16). Clearly, variable X is exclusively used for representing
the value of father(Z). Thus, it seems natural to replace this auxiliary variable
by the functional term father(Z), writing instead:

grandpa(father(Z), Y )← parent(Z, Y )

Similar steps could be applied to rules (17) and (19), respectively leading to:

likes(X, mother(X))
older(X, Y )← birth(X) < birth(Y )

However, the most interesting example would be rule (18) where we can save
many unnecessary variables:

¬likes(X, Y )← mother(X) = mother(Y ),
nationality(father(X)) 6= nationality(father(Y )) (22)

Allowing this nested use of functions does not introduce any special diffi-
culty, since a nested rule can always be easily unfolded back into the unnested
version by a successive introduction auxiliary variables. Without entering into a
formal description, consider instead as an example a rule like (22). We can go
replacing each inner subexpression by a fresh variable, generating the sequence
of transformations:

¬likes(X, Y )← mother(X) = mother(Y ),
nationality(father(X)) 6= nationality(father(Y ))

¬likes(X, Y )← V1 = V2,

nationality(father(X)) 6= nationality(father(Y )),
mother(X)=V1,mother(Y )=V2

¬likes(X, Y )← V1 = V2,

nationality(V3) 6= nationality(V4)
mother(X)=V1,mother(Y )=V2,

father(X)=V3, father(Y )=V4

¬likes(X, Y )← V1 = V2,

V5 6= V6,

mother(X)=V1,mother(Y )=V2,

father(X)=V3, father(Y )=V4

nationality(V3)=V5,nationality(V4)=V6



that ends up with a rule equivalent to (18).

6 Conclusion and Related Work

We have presented an extension of logic programs with functional terms for their
use in Knowledge Representation and Nonmonotonic Reasoning. This extension
provides a common framework for default reasoning with functions, declaring the
concept of default values of functions under three different semantics adapted
from Clark’s completion, stable models and WFS.

There exist many connections to related work that deserve to be formally
studied in future work. The closer approach inside Nonmonotonic Reasoning is
probably the so-called formalism of Causal Theories [9] inspired by the causal
logic in [13]. As a matter of fact, our description of the supported models seman-
tics for functional programs is just a rephrasing of the idea of causally explained
models previously introduced in that approach. Furthermore, the use of multi-
valued symbols does not suppose a real novelty in Causal Theories and, in fact,
the definition of default values is something usually done by the addition of
expressions like rule (3). The only part of our proposal (when restricted to sup-
ported models) that would mean a contribution in this sense is the possibility
of nesting functional terms described in Section 5, which is directly applicable
to Causal Theories.

As for the relation to Functional LP, much work remain to be done yet.
For instance, the use of default rules for FLP has already been studied in [14],
although mostly analyzed from an operational perspective with respect to nar-
rowing. It would be very interesting to establish a formal relationship between
that work and some or all the semantics we propose in this paper (perhaps, due
to the kind of programming paradigm, especially with WFS).

Other topics for future work include the extension of this framework for its
use for Reasoning about Actions and Change. We expect that the definition of
functions will allow efficiency improvements by restricting the grounding process,
as happens for instance, with the functional extension [6] of the classical planning
language STRIPS.
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D.S. Warren, editors, The Logic Programming Paradigm: A 25-Year Perspective.
Springer-Verlag, 1999.

13. N. McCain and H. Turner. Causal theories of action and change. In Proc. of the
AAAI-97, pages 460–465, 1997.

14. J. J. Moreno-Navarro. Extending constructive negation for partial functions in lazy
functional-logic languages. In Extensions of Logic Programming, pages 213–227,
1996.

15. Ilkka Niemela and Patrik Simons. Extending the Smodels system with cardinality
and weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence,
pages 491–521. Kluwer, 2000.

16. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with ex-
plicit negation. In Proceedings of the European Conference on Artificial Intelligence
(ECAI’92), pages 102–106, Montreal, Canada, 1992. John Wiley & Sons.

17. J. R. Slagle. Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. Journal of the ACM, 21(4):622–642, 1974.

18. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23:733–742, 1976.

19. A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.


