
A Functional Action Language Front-End

Pedro Cabalar

Dept. Computer Science,
Corunna University,

Fac. Informatica, Campus Elvina,
E-15071, Corunna, SPAIN,
cabalar@dc.fi.udc.es

Abstract. In this paper we extend the notation of functional logic pro-
grams introduced in [1] by: (i) describing a formal translation of nested
function references; (ii) dealing with set terms in the rule heads to allow
non-determinism; and (iii) introducing high level constructions for rep-
resenting action domains. The semantics we consider in this work, both
for functional logic programs and for the actions language, just consists
in a translation into (non-ground) logic programs under the answer sets
semantics.

1 Introduction

The use of logic programs for representing action domains typically involves deal-
ing with a series of common representational tasks: declaring action and fluent
sorts, encoding inertia, generating action occurrences, dealing with qualifica-
tions, etc. Although these features can be directly encoded in logic programs in
a methodological way, they sometimes mean a considerable programming effort
that may deviate the attention from the actions domain itself, apart from making
the representation less readable. In this way, it has been frequent instead to the
define high-level action languages [2–4] (in many cases with their own high-level
semantics) for which a translation into logic programs is provided.

One of those typical situations we face when encoding most action scenarios
is dealing with some relational fluent or action, say for instance location(x, y),
that has an implicit functional nature location(x) = y. In this case, the un-
derlying program must be extended with several constraint rules for explicitly
asserting the uniqueness of value for location(x). In fact, some action languages
allow handling these so-called multivalued fluents [3], to avoid the explicit rep-
resentation of these constraints. However, the functional nature of a fluent can
also be exploited for achieving a more compact and readable representation if we
consider nesting function references (something not done in action languages)
like for instance in a term like:

accessible(location(x)) ∧ distance(location(robot), location(x)) < 30

In this work we revisit one extension [1] of the Logic Programming (LP)
paradigm consisting in the use of functions instead of relation symbols. The



original motivation for this extension comes from the use of LP as underlying
semantics for an actions language that exploits functional notation (PAL [5])
in a similar way to [6], where functions are also introduced into the classical
planning language STRIPS. In the paper, we present a syntactic extension of
the approach [1] where: (i) we describe a formal translation of nested function
references; (ii) we allow set terms, both for sort definitions and for a new con-
struct in the rule heads that provide non-deterministic choice; and finally (iii) we
introduce new types of functions for dealing with representation and reasoning
in action domains.

Our main interest is focused on the construction of a front-end that trans-
lates from the functional notation into standard logic programs. For this reason,
rather than providing a functional semantics (as done in [1]), we will focus in-
stead on the translation into Answer Set Programming (ASP) (which may also
be seen as a kind of indirect semantics). The translation follows a similar strat-
egy to other Functional Logic Programming (FLP) systems (like, for instance,
NUE-Prolog [7]) where functional programs are converted into logic programs
via flattening (functions of arity N become predicates of arity N + 1 with an
extra argument for the function value).

An important remark should perhaps be made here. Despite of sharing a
similar syntax, our motivation is quite different from the usual programming
style in the area of FLP [8]. On the one hand, FLP is closer to Prolog-style
programming where we deal with complex data structures (lists, functors, etc)
and the solution to a problem is some instantiation of variables. In this way,
the main research topics in FLP have to do with lazy evaluation, narrowing (a
kind of rewriting) or dealing with higher order functions. On the other hand,
the approach we present here can be seen as the functional counterpart of ASP,
where we are more concerned with a comfortable knowledge representation for
constraint satisfaction problems. In a similar way to ASP, we do not consider
functors or lists (in fact, we deal with a finite domain), and the solution has
the shape of a set of models (or functional answer sets). Besides, our approach
is suitable for nonmonotonic reasoning since, as shown in [1], the availability
of default values for functions allows the same expressiveness as logic programs
with default negation.

The paper is organized as follows. In the next section, we study the syntax of
many-sorted functional logic programs, extended here for dealing with sorts and
set terms. Section 3 explains the translation of this syntax into logic programs
under asnwer sets semantics. Next, we informally comment some aspects for
improving the translation with respect to variable grounding. In Section 5, we
present the syntax extension for representing actions scenarios. Finally, Section 6
concludes the paper with a discussion and addresses some lines for future work.

2 Many-Sorted Functional Logic Programs

The syntax is defined as follows. We start from a signature Σ = 〈F ,S,V〉 con-
sisting of a finite set F of function names, a finite set of sort names, and a set V



of constant values. Letters f, g, . . . will be used to denote elements of F whereas
v, w, . . . will stand for constant values. We assume that V contains at least the
boolean constants true and false. Similarly, S contains at least the sort name
boolean whose interpretation will be later fixed to {true, false}.

We define two types of terms: scalar and set terms. A scalar term can be
built up with:

– any constant value v,
– any variable X,
– a function reference f(t1, . . . , tn) with ti scalar terms or
– an arithmetic expression like −t1 or t1 ⊗ t2, with ⊗ ∈ {+,−, ∗, /, mod} and

t1, t2 scalar terms.

A set term is:

– any sort name,
– an expression like {t1, . . . , tn}, with n ≥ 0 and ti scalar terms,
– any construction A ∪B, A ∩B or A \B, with A,B set terms, or
– any expression like {t | L1, . . . , Lm , X1 :A1, . . . , Xn :An}, with m,n ≥ 0,

Li literals (to be defined later), Xj variable names and Aj set terms.

This last construction is called an intensional set term, and the Xi are its bounded
variables. An occurrence of a variable X in a term is said to be free when it is
not in the scope of some intensional set, or is not one of its bounded variables
otherwise.

Each function f ∈ F will be accompanied by a sentence called the definition
of f , of the form:

f : D1 ×D2 × · · · ×Dn −→ R [= d] (1)

with n ≥ 0 (when n = 0 the arrow is omitted), where D1, D2, . . . Dn and R
are set terms (to be defined next), and the declaration of the scalar term d is
optional, representing a default value d ∈ R. We will assume that a function
without default value can be partial (that is, some elements in the domain may
have no associated value). We use the standard terminology for functions, so
that:

domain(f) def= D1 ×D2 × · · · ×Dn

arity(f) def= n

range(f) def= R

and, when specified:

default(f) def= d

We assume that no free variable occurs in the domain or the range of f .
In fact, one additional expected condition is imposed now on scalar terms to

be considered syntactically correct: for any function reference f(t1, . . . , tn) we



must have arity(f) = n in the definition of f . For commodity sake, we adopt
the notation t to stand for some tuple of expressions t1, . . . , tn with n ≥ 0.

A literal is defined as any expression like t1 ⊗ t2 with ⊗ ∈ {≤,≥, <, >, =
, 6=} where t1, t2 are scalar terms, or the expression unknown(f(t)) (possibly
negated), with t a tuple of scalar terms. Intuitively, this literal will be true
whenever f(t) has no associated value in the current state of affairs. When the
literal has the shape f(t) = t0 and range(f) = boolean we also admit the logical
notation, so that literal f(t) stands for f(t) = true whereas ¬f(t) stands for
f(t) = false.

A rule is a construction like:

H ← B1, . . . , Bm, X1 :A1, . . . , Xn :An

where H is called the head of the rule, the Bi’s are literals that receive alto-
gether the name of body of the rule, and the Aj are set terms, and Xj are the
bounded variables of the rule. We assume that rules do not contain free variable
occurrences. The rule head H can be a literal like f(t) = t0 with t a tuple of
scalar terms or an expression like f(t) ∈ A with A a set term. In both cases,
f receives the name of head function of the rule. We will also allow H to be a
special symbol ⊥ to stand for inconsistency, assuming that when this symbol is
derived, the final model will be rejected. When m = 0 the rule is called a fact
and we simply write H, omitting the arrow.

As an abbreviation, we allow declaring general variables:

var X :A

with X a variable name and A a set term, so that X becomes an implicit bounded
variable for all rules in which X occurs free in some literal.

For defining the extent of a sort, we adopt a similar criterion to [9] allowing
both an explicit and complete description using a sentence like:

sort s = A

with s a sort name, and A a set term, or using instead a boolean function
s : V −→ boolean = false with the same sort name s (but now with arity 1), so
that the sort extent is implicitly defined by:

sort s = {X | s(X)}

A functional logic program (FLP for short) is a set of rules, function and
sort definitions. We say that an FLP is well-formed when there are no cyclic
dependences for function and sort definitions. To be precise, let us define a
dependence graph where each node is a sort name s, a function name f or the
definition of some function f , write it def(f). We add an edge (x, y), pointing
out that y depends on x, when:

– y is the head function of some rule, and x is a (different) function or sort
name occurring in that rule,



– y is a sort name and x a fluent or sort name occurring in the definition of y,
– y = def(f) and x a fluent or sort name occurring in the definition of f , or
– y = f and x = def(f) for some function name f .

Then, a program is said to be well-formed if there is no cyclic path in the
dependences graph including a sort name s or a function definition def(f).

Example 1. (Hamiltonian circuit)
Given a graph G, a hamiltonian circuit is a round path that visits all the nodes
of G exactly once. We assume that G contains at least some node, call it 0.

arc : node× node −→ boolean = false

visited : node −→ boolean = false

next : node −→ node

var X, Y : node

⊥ ← next(X)=next(Y ), X 6= Y (2)
next(X) ∈ {Z | arc(X, Z), Z : node} (3)

visited(0) (4)
visited(next(X))← visited(X) (5)

⊥ ← ¬visited(X) (6)

ut

Function arc acts as a predicate that is false by default, so that we just wish to
specify the existing arcs (and not the non-existing ones). Function next points
out, for any node, which is the next node in the path. As it is a function, the
next node is unique. Rule (2) is used to guarantee that two different nodes do
not “jump” to a common next node. Rule (3) generates some possible value for
each next(Y ). In this way, with (2) and (3) we guarantee that all nodes have
exactly one successor and one predecessor. However, it could still be the case
that we had several unconnected cycles. To rule out this possibility, predicate
visited (false by default) is used to point out which nodes are accessible from
node 0, including itself with fact (4) and propagating through connected nodes
with rule (5). Finally, (6) guarantees that all nodes are visited.

The FLP in Example 1 is well-formed, provided that the definition of sort
node refers to constants, or at least, does not refer to arc, visited or next.

3 Translation into logic programs

Since our aim is to introduce this language as a front-end for ASP solvers, the
semantics we consider in this work1 is just described by a translation into logic
programs.
1 In [1] the reader will find a proper semantics for a syntactic subset of FLPs where

sort definitions and set terms were not present yet.



Given an FLP Π, we will call Π ′ to the corresponding logic program (LP).
For each function in Π defined as in (1) we will handle a predicate like

holds(f,X1, . . . , Xn, V )

in Π ′, or holds(f,X, V ) for short.
We will provide a translation of terms and literals as follows. For each term

(or literal) t in the FLP we will describe the corresponding term t′ in the LP plus
an additional set of LP literals, call them lits(t). The idea for these additional
literals is that t can be replaced by t′ in a rule body, provided that lits(t) are
also included in that LP body.

For an easier description of translations, we will consider rule bodies as sets
of literals and, furthermore, we will also allow including a set of literals lits in
a body {B1, . . . , Bn, lits} actually meaning {B1, . . . , Bn} ∪ lits. For any body
B = {L1, . . . , Ln}, we define B′ and lits(B) respectively as {L′

1, . . . , L
′
n} and

lits(L1) ∪ · · · ∪ lits(Ln). Similarly, given tuple t = 〈t1, . . . , tn〉, we have (t)′ =
〈t′1, . . . , t′n〉 and lits(t) = lits(t1) ∪ · · · ∪ lits(tn).

Definition 1 (Translation of scalar terms). The translation of a scalar term
t is the pair 〈 t′, lits(t) 〉 defined as follows:

1. When t is a constant or a variable t′
def= t and lits(t) def= ∅.

2. When t = f(t), we define t′
def= V with V a new fresh variable and

lits(t) def= { holds(f, (t)′, V ) } ∪ lits(t)

3. When t is an arithmetic expression t1 ⊗ t2, t′
def= t′1 ⊗ t′2 and lits(t) def=

lits(t1) ∪ lits(t2). Similarly, when t = −t1, we have t′ = −t′1 and lits(t) def=
lits(t1).

ut

Definition 2 (Translation of literals). The translation of a literal L is again
a pair 〈 L′, lits(L) 〉 where:

1. When L = t1 ⊗ t2 with ⊗ a relational symbol, the translation is similar to
that of arithmetical terms: L′ def= t′1 ⊗ t′2 and lits(L) def= lits(t1) ∪ lits(t2).

2. When L = t ∈ A, L′ = A′(t′) and lits(L) = lits(t), where A′ is obtained
from the translation of set term A, defined below.

3. When L = unknown(f(t)), L′ def= not known(f, (t)′) and lits(L) = lits(t).
ut

The translation of a set term A will be done by including a new predicate
symbol A′ in the LP with the corresponding set of LP rules, rules(A), to fix
the set extent. A problem we must solve is the case in which A contains free
variables Y . Note that this may only happen when A is a rule head like in:

f(t) ∈ A← B1, . . . , Bm, X1 :A1, . . . , Xn :An



On the one hand, these free variables Y are needed for fixing the set extent,
but on the other hand, once they are included in different rules they lose their
meaning, unless we repeat the body B (or its relevant part) we had in the original
FLP rule where A appeared. Let us call body(B) to the translation of a rule body,
to be defined later.

Definition 3 (Translation of set terms). The translation of a set term A,
possibly with free variables Y and occurring in a rule with body B, is a pair
〈 A′, rules(A) 〉 where A′ is a predicate name and rules(A) a set of rules, defined
as follows:

1. When A is a sort name s, we just define A′ def= s and rules(A) = ∅.
2. When A = {t1, . . . , tn}, we fix A′ to some new fresh predicate name, and

rules(A) contains the rules:

A′(Y , t′i)← lits(ti), body(B)

varying 1 ≤ i ≤ n. Note that, when n = 0, rules(A) would be empty, but we
still fix A′ to some new predicate name.

3. When A = B∪C we again fix A′ to some new name and rules(A) to include
rules(B) ∪ rules(C) plus the rules:

A′(Y ,X)← B′(Y ,X), body(B)
A′(Y ,X)← C ′(Y ,X), body(B)

Similarly, when A = B ∩ C, the rule to be added to rules(B) ∪ rules(C)
would be:

A′(Y ,X)← B′(Y ,X), C ′(Y ,X), body(B)

and for A = B \ C we would include instead:

A′(Y ,X)← B′(Y ,X),not C ′(Y ,X), body(B)

4. When A = {t | L; X1 : A1, . . . , Xn : An}, with L some set of literals,
we again define A′ as a new predicate name and rules(A) would contain⋃n

i=1 rules(Ai) plus the rule:

A′(Y , t′)← lits(t), L′, lits(L), A′
1(X1), . . . , A′

n(Xn), body(B)

When A does not occur in a rule, the translation is the same but removing Y
and body(B) everywhere. ut

Definition 4 (Translation of sort definitions). The translation of a sort
definition like sort s = B is a set of rules consisting of rules(B) plus the rule:

s(X)← B′(X)

If no definition for s was given, then the extent of s is given by a unary fluent
with the same name, and so, the translation would just contain the rule:

s(X)← holds(s,X, true)



Definition 5 (Translation of a body). The translation of a rule body B like
B1, . . . , Bm, X1 :A1, . . . , Xn :An is the LP body denoted as body(B):

B′
1, . . . , B

′
m, lits(B1), . . . , lits(Bm), A′

1(X1), . . . , A′
n(Xn)

together with the set of rules called rules(B) =
⋃n

i=1 rules(Ai).

Definition 6 (Translation of a rule). The translation of an FLP rule r is
the set of rules {r′} ∪ sets(r) where sets(r) is the union of all the rules(A) for
each set term A occurring in r, whereas r′ is defined as:

1. If r is like ⊥ ← B then r′ is the constraint:

⊥ ← body(B)

2. If r is like f(t) = t0 ← B with some body B, then r′ is the rule:

holds(f, (t)′, t′0)← lits(t), lits(t0), body(B)

3. If r is like f(t) ∈ A← B and Y occurs free in A then r′ is the rule:

1 { holds(f, (t)′, V ) : A′(Y , V ) } 1← lits(t), body(B) (7)
ut

With the inclusion of (7) we are assuming that the underyling ASP language
contains weight constraints (like the backends [10, 11] for lparse [12]). A differ-
ent option for a disjunctive LP solver (like DLV [13]) could be replacing (7) by
the pair of rules:

holds(f, (t)′, V ) ∨ ¬holds(f, (t)′, V )← lits(t), body(B)
⊥ ← not known(f, (t)′, V )

Definition 7 (Translation of a function definition). The translation of a
function definition like (1) consists of the union of rules from all its set terms
rules(D1) ∪ · · · ∪ rules(Dn) ∪ rules(R), plus the following axioms:

known(f,X)← holds(f,X, V ), R′(V )
¬holds(f,X,W )← holds(f,X, V ), R′(V ), R′(W ), V 6= W

holds(f,X, d′)← not ¬holds(f,X, d′), lits(d)

ut

Note that retrieving the function values from the final answer sets we obtain
from Π ′ is straightforward: it suffices with considering f(v) = w for each atom
holds(f, v, w) occurring in the asnwer set.

The FLP in Example 1 would lead to a logic program that contains, among
other, the rules:



⊥ ← V0 = V1, X 6= Y, holds(next, X, V0),
holds(next, Y, V1),
node(X), node(Y )

s0(X, Z)← holds(arc, X,Z, true),
node(X), node(Z)

1 { holds(next, X, V ) : s0(X, V ) } 1← node(X)
holds(visited, 0, true)
holds(visited, Y, true)← holds(visited,X, true),

holds(next, X, Y ),
node(X), node(Y )

⊥ ← holds(visited,X, false), node(X)

4 Some ideas about grounding

The translation procedure explained before is still a preliminary approach that
can be improved in many different ways, especially for avoiding the introduction
of unneeded extra variables and for exploiting grounding features of ASP solvers.

A first improvement is detecting repeated occurrences of both scalar and set
terms. For instance, when we apply our translation to a rule like:

⊥ ← f(g(a)) > 0, g(a) < g(b)

we would generate two different auxiliary variables to capture the value of the
two occurrences of the same term g(a), leading to:

⊥ ← holds(g, a, V0), holds(f, V0, V1), V1 > 0
holds(g, a, V2), holds(g, b, V3), V2 < V3

In many cases, this can be avoided by a simple syntactic check, although an
improved procedure should also detect situations like g(a + b) and g(b + a).

A trivial improvement for simplifying the obtained logic program is convert-
ing boolean functions into predicates in the LP without need of reifying the
truth value. This change is straightforward, although would have complicated
the current description of the translation procedure.

Another consideration has to do with the problem of fixing the range of
variables introduced in the LP by using domain predicates. Although we have
said that all FLP variables are bounded by some definition like X : A, the
set term A may depend on functions which can be defined by rules and default
values. In other words, a set term in the FLP does not necessarily correspond to a
domain predicate in the LP. However, an important observation should be made
here: if we deal with a well-formed FLP, function and sort definitions are not
cyclic. Therefore, we could reorganize the FLP in levels and apply the splitting



theorem [14] for a modular computation of the answer sets of its translation. At
each level, we would handle a set of rules but the extent of all the involved set
terms would have been decided at the previous level. Moreover, although we did
not adopt any restriction in this sense, it seems more natural that the extent
of sorts and function domains and ranges are fixed for all the obtained models
(this is imposed for instance in [9]).

One more feature that can be exploited is that, when we use a variable as a
function argument or value, we are implicitly limiting the range of that variable.
For instance, in Example 1, we could actually remove the declaration of X and
Y as global variables of range node because they are always used as a node
argument for some function. For instance, the mere occurrence of term next(X)
in a literal points out that X must vary in range node. This can be important too
for delimiting the range of the auxiliary variables we introduce in the translation.
Depending on the ASP solver we use, we may be required to fix each new variable
V with a domain predicate. Although this was not explained in the translation,
it can be easily done by referring to the function range. As an example, a term
like f(t) translated as holds(f, (t)′, V ) could be accompanied by the LP literal
R′(V ) where R is the declared range2 of function f .

Of course, this sorted nature of FLP descriptions could be exploited in a
much better way for a future front-end that also accomplishes the grounding
task (replacing, for instance, to lparse).

5 Reasoning about actions and change

The methodology of using Logic Programming as an underlying nonmonotonic
formalism for representing action domains was originally proposed in [15], and
has been followed in many cases, like the use of stable models for A and B
languages [2], the use of a variant3 of Clark’s completion for C+ language [3] or
the use of both WFSX and stable models for language PAL [5]. In this section
we briefly comment how to adapt the FLP syntax for a simpler representation
of action domains, leading to a Functional Action Language.

First of all, in an actions reasoning problem, we must distinguish between
two separated kinds of symbols: fluents, which correspond to system variables
whose value may change along time; and actions, that describe the possible
ways in which an external agent may cause a system transition. Although the
use of functional fluents has already been considered, for instance, in functional
STRIPS [6] or in language C+ (in this last case, only unnested), functional
actions is a relatively unexplored possibility that can be directly proposed in our
case.

For simplicity sake, we will consider a single transition with just two states:
the predecessor and the successor states. We will write f ′ to stand for the value

2 Note that as said before, if we apply splitting, the range of the function can be
considered a domain predicate.

3 Actually, a generalization called literal completion.



of f at the successor state, reserving f itself for referring to the current (or
predecessor) one.

Apart from the distinction between actions and fluents, the main property
of action theories is that they must deal with an implicit default different from
the function default value: the inertia principle. Thus, instead of defining a fixed
default value for each fluent, we will have as default its previous value. So, in some
sense, the fact for the previous state f(t) = d acts like declaring default(f ′) = d
for f at the successor state.

Fluents can be further specialized into three categories:

1. static fluents
2. inertial fluents
3. events

all of them allowing an explicit default value. The idea of a static fluent cor-
responds to some function whose interpretation is fixed along the transitions
sequence. For instance, if we have a planning algorithm for browsing a graph,
the set of arcs of the graph can be described by a static fluent, since its struc-
ture does not change along the actions execution. This is also a good example
for showing the interest of a default value for a static fluent. If we declare:

static arc : node× node −→ boolean = false

we will only need to declare the existing arcs, making false by default any pair
arc(a, b) for which (a, b) is not an arc. Note that restricting ourselves to static
fluents is the same than just dealing with functional logic programs. Thus, the
tag static is optional, assuming that any function definition will correspond to
a static function by default.

As inertial fluents would be the most frequent ones in actions scenarios, we
will use the tag fluent to define them. Although their default value is fixed
by inertia, declaring an extra default value could also be interesting. This extra
default value could be useful, for instance, for a compact declaration of particular
states, like the initial state or the goal in a planning problem, when we want
complete knowledge for that fluent. As an example, think about a chess-like
problem where most cells are empty. Clearly, the content of each cell will vary
along time and follow the inertia law. However, when declaring the inital state,
we are interested in exclusively representing the facts for occupied cells, assuming
that the rest of the board cells are empty by default. This can be achieved by
declaring the inertial fluent:

fluent cell : [1, 8]× [1, 8] −→ chessmen ∪ {empty} = empty

Finally, an event would just be a fluent that does not follow the inertia law.
In this case, when no value is specified for the fluent, it is usual to require a
default value. For instance, consider a system where, at some situations, a ring
can be heard, but with different volume levels 1, 2, 3, 4 or it is not heard at all,
using volume 0. This can be declared as an event:

ring : {0, 1, 2, 3, 4} = 0



so that, when no value has been derived for ring, we can assume ring = 0 by
default.

As for functional actions, a default value would also make sense: it can be
used for representing the situation in which the action is not performed at all.
For example, consider an action press brake of pressing the brakes with a given
intensity in interval {0, . . . , 8}, having default value 0. If we want to apply some
rule that depends on the nonexecution of press brake we could just use the
literal press brake = 0.

Example 2. (Hanoi towers)
An example also studied in [6] is the typical Hanoi Towers problem, where we
have a set of n disks, that can be placed in three pegs. We can move one disk at
a time from one peg to another, but taking into account that any disk can only
be placed on top of a bigger disk. We want to move a tower of disks from one of
the pegs to another. We will use an action function move(P ) = Q meaning that
we move the top disk of peg P to peg Q. Two action attributes4 (located in the
same state than move) called source and dest will represent the values of P and
Q respectively. We include the definitions:

sort peg = {p1, p2, p3}
sort disk = {1, . . . , n}
sort location = disk ∪ {ground}

static size : disk −→ integer

fluent loc : disk −→ location
fluent top : peg −→ location = ground

fluent source : peg
fluent dest : peg
action move : peg −→ peg

together with the rules:

move(P ) ∈ peg

source = P ← move(P ) = Q

dest = Q← move(P ) = Q

top′(dest) = top(source)
top′(source) = loc(top(source))

loc′(top(source)) = top(dest)
⊥ ← top(source) = ground

⊥ ← size(loc(D)) < size(D)

ut
4 See [16] for an interesting discussion of action attributes and their utility for an

elaboration tolerant representation.



Note that we generated one move(P ) ∈ peg but we did not require asserting
that only one peg is moved: this will just be guaranteed by the use of attribute
source which cannot take more than one value.

Example 3. (8-puzzle)
The well known 8-puzzle planning problem could be modeled as follows. Let n
denote the size of each size of the square puzzle (for 8-puzzle, n = 3).

sort coord = {1, . . . , n}
fluent hole row : coord

fluent hole col : coord

fluent board : coord× coord −→ {1, . . . , n2−1} ∪ {empty} = empty

action move : {up, down, left, right}

The set of rules would be:

hole row′ = hole row + 1← move = down

hole row′ = hole row − 1← move = up

hole col′ = hole col + 1← move = right

hole col′ = hole col − 1← move = left

board(hole row, hole col) = empty

board′(hole row, hole col) = board(hole row′, hole col′)

ut

For space reasons, the translation of this extended syntax will be just briefly
commented, although it can be easily guessed. First, all atoms like holds(f, t, V )
will take an extra argument holds(f, t, V, I) where I points the situation number,
i.e., the position of the considered state along the sequence of transitions. Second,
standard axioms like:

holds(f, t, V, I + 1)← holds(f, t, V, I),not ¬holds(f, t, V, I + 1)

allow dealing with the inertia default. For non-static functions, we maintain the
default value behavior:

holds(f,X, d′, I)← not ¬holds(f,X, d′, I), lits(d)

although in the case of inertial fluents, I is fixed to 0. Finally, FLP rules where a
non-static function or a primed function f ′ occurs are replicated indexing these
functions for all the possible values of situation index I (we assume that the
narrative length is fixed to some integer constant N). In this way, there is no
real need for an explicit distinction between “static” rules and “dynamic” rules.



6 Discussion and future work

As said in the introduction, the current work can be seen as a proposal for a
functional “variant” of ASP. Our motivation has been mainly practical, focusing
on the availability of a translation from the functional notation to the ASP syn-
tax for non-ground programs. The approach must be seen as a preliminary step
towards a full functional logic programming system. Therefore, many interesting
topics remain open and deserve future study. Clearly, one of them is finding a
closer relation to the approaches from the area of Functional Logic Programming
(FLP). To put an example, a similar treatment of sorts has been already done
in the family of languages OBJ [17]: ideas like the definition of subsorts can be
directly extrapolated here5.

As pointed out by a referee, an interesting topic from FLP to be analyzed
in this framework is the treatment of higher order functions: that is, writing
generic code by using functions as arguments of other functions. It must be
noticed that, although most FLP systems deal with this feature, in the ASP
context, where general use of functors is avoided and domains are kept finite,
introducing higher order functions is far from straightforward. For this reason,
we have considered that this is out of the scope of the current work. However, a
related recent approach for writing generic code for ASP is the idea of introducing
templates [18] in ASP programs. This work can perhaps be used as a starting
point in the future for the introduction of a limited kind of higher order functions
in the current framework.

Future work will also involve replacing the translation into non-ground pro-
grams by a full grounding system (so that, for instance, it is possible to use
smodels directly as a back-end). In principle, the sorted nature of the proposed
language should help to improve the grounding process, avoiding in some cases
the need for restricting variables with domain predicates, by guessing the sort
of the variable by its use as argument or value of a given function. One more
interesting topic for future analysis is the construction of a solver that directly
deals with ground functional programs, so that the uniqueness of value of each
function could be embodied in the search process.

Acknowledgements Thanks to Ramón P. Otero for his past guidance during
the development of language PAL [5], which somehow motivated the current
research and which had took some essential ideas6 from his Expert Systems
Tool Medtool [19]. This work was partially supported by CICyT project TIC-
2003-9001-C02 and WASP (IST-2001-37004).

5 Notice that, still, the current language allows elaborated definitions for the extension
of any sort s, as we can use to this aim any set of program rules with head s(X).

6 The unknown operator used here was already present in Medtool formalism.



References

1. Cabalar, P., Lorenzo, D.: Logic programs with functions and default values.
In: Proc. of the 9th European Conference on Logics in Artificial Intelligence
(JELIA’04). (2004)

2. Gelfond, M., Lifschitz, V.: Action languages. Linköping Electronic Articles in
Computer and Information Science 3 (1998)

3. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artificial Intelligence 153 (2004) 49–104

4. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming

approach to knowledge-state planning, ii: the DLVK system. Artificial Intelligence
144 (2003) 157–211

5. Cabalar, P., Cabarcos, M., Otero, R.P.: PAL: Pertinence action language.
In: Proceedings of the 8th Intl. Workshop on Non-Monotonic Reasoning
NMR’2000 (Collocated with KR’2000), Breckenridge, Colorado, USA (2000)
(http://xxx.lanl.gov/abs/cs.AI/0003048).

6. Geffner, H. In: Functional STRIPS: a more flexible language for planning and
problem solving. Kluwer (2000)

7. Naish, L.: Adding equations to NU-Prolog. In: Proceedings of The Third Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming. Number 528 in Lecture notes in computer science, Passau, Germany,
Springer-Verlag (August, 1991) 15–26

8. Hanus, M.: The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20 (1994) 583–628

9. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Proc. of the 7th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning
(LPNMR’04). (2004)

10. : SMODELS web page http://www.tcs.hut.fi/software/smodels/ (2005)
11. : CMODELS web page

http://www.cs.utexas.edu/users/tag/cmodels.html (2005)
12. Syrjnen, T.: Lparse 1.0 user’s manual (2005)
13. : DLV web page http://www.dbai.tuwien.ac.at/proj/dlv/ (2005)
14. Lifschitz, V., Turner, H.: Splitting a logic program. In: International Conference

on Logic Programming. (1994) 23–37
15. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. The

Journal of Logic Programming 17 (1993) 301–321
16. Lifschitz, V.: Missionaries and cannibals in the causal calculator. In: Principles

of Knowledge Representation and Reasoning: Proceedings of the 7th International
Conference (KR’00). (2000) 85–96

17. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introduc-
ing OBJ. In Goguen, J., ed.: Applications of Algebraic Specification using OBJ.
Cambridge (1993)

18. Ianni, G., Ielpa, G., Calimeri, F., Pietramala, A., Santoro, M.C.: Enhancing an-
swer set programming with templates. In: Proceedings of the 10th International
Workshop on Non-Monotonic Reasoning NMR2004, Whistler, BC, Canada (June,
2004)

19. : The Medtool project and related activities are described in web documents
http://www.dc.fi.udc.es/ai/medtool.html (2001)


