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1 Introduction

This note is a contribution to the methodology of applied, computational logics
in light of their potential role in securing the accountability of Artificial Intelli-
gence (AI) systems. A key feature of the idea of accountability is that solutions,
actions and decisions made by intelligent systems should ultimately be explain-
able to the end user in a comprehensible manner. In view of this, explainable AI
has recently become a hot topic of research. Much of symbolic AI is supported
by logic-based systems whose reasoning mechanisms are, or should be, trans-
parent and comprehensible. But is it really the case that a logic-based system
can provide convincing explanations accessible to the non-expert? In practice
this is doubtful as such systems may contain many lines of code and numerous
computational reasoning steps. Even the expert user or developer may not be
able to survey and assimilate the entire reasoning process for a given outcome.

This point has been recognised for quite some time. Already [5] contains an
extensive survey of approaches to adding explanations or justifications to an-
swer set programs. Recently the XLoKR workshop series on Explainable Logic-
Based Knowledge Representation has featured systems such as ASP, descrip-
tion logics, default logics, argumentation theory and more. However until now
attention has mainly focused on how to add human-understandable explana-
tions to the reasoning steps computed by a primary logic-based systems. While
these works are valuable, for the most part they implicitly take for granted the
adequacy of the primary reasoning formalism that they aim to extend.

If logic is to play a significant role in making AI systems explainable, then
logic itself needs to be accountable. Many logics applied in AI systems are
in competition with one another. Since logics are an integral part of our ap-
proaches to knowledge representation and reasoning, they can no longer be
considered as a kind of ‘theory-neutral’ component, as logic was often treated
by philosophers of science in the past. In light of this we should ask ourselves,
what kinds of adequacy conditions should applied logics fulfil in order to be
candidates to support accountable and ultimately trustworthy AI. In doing so
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we hope to dispel the idea that anything goes, ie that the engineer has a free
hand just to pick off the shelf any reasoning mechanism that appeals to her.
Instead we argue for a principled approach to designing applied logics and for-
mal reasoning tools for uptake in AI; an approach that complies with suitable
adequacy conditions and respects a sound methodology. One consequence will
be to attempt to rule out ad hoc solutions to formal reasoning problems.1

2 Conceptual analysis and explication

The formal analysis of concepts was a major component of the work of logical
empiricist philosophers in the 20th Century, and Rudolf Carnap was perhaps in
this respect its most illustrious representative. Carnap’s method of explication is
probably the clearest account of how logic and formal methods should be ap-
plied to the rational reconstruction of scientific concepts. Carnap’s method is
most clearly articulated in the introduction to his Logical Foundations of Probabil-
ity [2]. As he explains, the method

consists in transforming a more or less inexact concept into an exact one or, rather,
in replacing the first by the second. We call the given concept the explicandum, and
the exact concept proposed to take the place of the first the explicatum. The expli-
candum may belong to everyday language or to a previous stage in the development
of scientific language. The explicatum must be given by explicit rules for its use, for
example, by a definition which incorporates it into a well-constructed system of sci-
entific either logico-mathematical or empirical concepts. [2]

Part of the task consists in specifying adequacy conditions that the explicatum
should satisfy: a pre-formal analysis of the explicandum may suggest a series
of properties desirable for the explicatum.

If a concept is given as explicandum, the task consists in finding another concept
as its explicatum which fulfils the following requirements to a sufficient degree.

1. The explicatum is to be similar to the explicandum in such a way that, in most cases
in which the explicandum has so far been used, the explicatum can be used; how-
ever, close similarity is not required, and considerable differences are permitted.

2. The characterization of the explicatum, that is, the rules of its use (for instance
in the form of a definition), is to be given in an exact form, so as to introduce the
explicatum into a well-connected system of scientific concepts.

3. The explicatum is to be a fruitful concept, that is, useful for the formulation of
many universal statements (empirical laws in the case of a nonlogical concept,
logical theorems in the case of a logical concept).

4. The explicatum should be as simple as possible; this means as simple as the more
important requirements (1), (2), and (3) permit. [2]

Ultimately the question whether the explicatum is or is not correct is not a fac-
tual one, but a question of methodological adequacy [2].

Although logic has formed a prominent part of the design of intelligent sys-
tems, most developers of logic-based systems have shied away from specifying

1 The full version of the paper elaborates more on this issue and includes a case study
of the adequacy of logics underlying ASP. In this abridged version, we focus just on
adequacy conditions for logics in KR.
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a clear methodology of the type that Carnap has proposed. One exception is the
programme proposed by Michael Gelfond, a founder of answer set program-
ming and a leading contributor to logic-based AI. The aim of his programme
is to reconstruct some of the most basic forms of human knowledge and to
exploit this knowledge for practical problem solving. It combines scientific and
engineering knowledge of real systems with practical human skills and abilities
and commonsense reasoning. It deals with both static and dynamic domains.
Gelfond’s programme combines the physicalist language of engineering and
physical systems with epistemic notions such as belief, agency and action. The
new programme of rational reconstruction is much less self-conscious than its
predecessor and is less well known. Nevertheless it has clear goals and method-
ology, even if they are sometimes buried in technical articles and lectures.

Gelfond’s programme for KR has two main objectives [6]. First, achieving
an understanding of “basic commonsense notions we use to think about the
world: beliefs, knowledge, defaults, causality, intentions, probability, etc., and
to learn how one ought to reason about them.” Secondly it aims “to understand
how to build software components of agents – entities which observe and act
upon an environment and direct its activity towards achieving goals.”([6])

These goals shape the criteria used to evaluate and select languages for
KR. In particular, Gelfond [6] endorses four main adequacy criteria: clarity, ele-
gance, expressiveness and relevance. These are further elaborated in [7]:

– Naturalesness: Constructs of a formal language L should be close to formal con-
structs used in the parts of natural language that L is designed to formalize. The
language should come with a methodology of using these constructs for knowl-
edge representation and programming.

– Clarity: The language should have simple syntax and clear intuitive semantics
based on understandable informal principles.

– Mathematical Elegance: Formal description of syntax and semantics of the lan-
guage should be mathematically elegant. Moreover, the language should come
with mathematical theory facilitating its use for knowledge representation and
programming.

– Stability: Informally equivalent transformations of a text should correspond to
formally equivalent ones.

– Elaboration Tolerance: It should be possible to expand a language by new relevant
constructs without substantial changes in its syntax and semantics.

Gelfond’s first criterion is close to Carnap’s first condition of similarity, while
his second criterion echoes Carnaps´s fourth condition of simplicity. Gelfond’s
third criterion is close to Carnap’s second requirement of exactness, while elab-
oration tolerance and Gelfond’s other criterion of relevance (from [6]) clearly
relate to Carnap’s requirements 2 and 3.

One condition that Gelfond does not entertain is the requirement of efficiency
understood in a computational sense. Efficiency is evidently an aim in design-
ing computational systems and a requirement of any KR language is that it can
eventually be processed by a computer. But Gelfond’s methodology suggests
that conceptual adequacy should initially at least take preference over compu-
tational efficiency.
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A similar point has been recently made by Jones, Artikis and Pitt in their
proposed methodology for the design of socio-technical systems [11]. They are
concerned with the way in which social concepts are reconstructed and rep-
resented in computational, socio-technical systems. [11] deals mainly with so-
cial concepts such as trust, role and normative power. But their reconstruction
in computational systems will typically involve a strongly logical component.
[11] proposes a multi-stage process of representing and implementing these
concepts. The first stage involves theory construction, passing from some ob-
served social phenomena S to pre-formal representations. Then, Step2-Phase1
representations provide an analysis of conceptual structure “constrained pri-
marily by considerations of expressive capacity, not those of computational
tractability”[11] Later we come to the stage of implementation where simpli-
fications may have to be made to achieve comptational tractability.. For [11], a
primary requirement for assessing the adequacy of a conceptual characterisa-
tion is expressive capacity. As criteria, they list the capacity to (i) identify the
principle elements; (ii) test for consistency; (iii) articulate specific, characteristic
aspects of the concept; (iv) ‘place’ the concept in relation to its near relatives.
(iv) is clearly related to Carnap’s second and third requirements, and also to
Gelfond’s criteria of naturalness and relevance.

These three approaches to the formal analysis of concepts come from very
different backgrounds and yet display important commonalities. They each
urge a principled approach to formal reconstructions, based on a clear method-
ology. They propose a preliminary, informal analysis of concepts, preferably
informed by scientific or philosophical reflection, suggesting that this may lead
to specifying criteria of adequacy that the formal concepts should satisfy. Then
there is the shared idea that the formal characterisations fit into the broader
scheme of scientific concepts covering related domains. Lastly, there is the idea
of fruitfulness or relevance for problem solving, as well as the aim of expressive
capacity. These are all considerations that we may bring to bear on the study of
possible conditions for the adequacy of logical systems in AI. We will focus on
applied logics for KR, trying to extract some formal adequacy conditions.

3 Nonmonotonic reasoning and strong equivalence

Logic-based systems for KR in AI are typically nonmonotonic in character, to
allow for the representation of defaults and to be able to express exceptions
to general rules. Since these systems depart considerably from ordinary, bread
and butter logics, classical or otherwise, it is not immediately obvious that they
fulfil the needs of explainability and accountability for AI in practical cases.
Can all such systems really be considered logics? Do they lend themselves to
support explainable AI? How can we choose between rival solutions to specific
kinds of reasoning?

One way to approach these questions is by way of some concepts that were
studied already in the early years of nonmonotonic reasoning (NMR). In par-
ticular, to ask what constitutes a (monotonic) logical basis for an NMR sys-

4



tem. If our logic for KR, despite nonmonotonicity, is clearly anchored to a stan-
dard, monotonic logic, this may help to clarify and even legitimate its reasoning
mechanism. This suggests that we might focus initially on how an NMR system
extends and relates to a given, underlying monotonic logic. To consider what it
means saying that a logic L forms a well-behaved monotonic basis for a given
nonmonotonic consequence relation, three main conditions come to light.2

Definition 1. Let C be a (possibly nonmonotonic) consequence relation and let CL be
the consequence relation for a monotonic logic L. We say that L forms a deductive
base for C if the following conditions hold:

Sublogic : CL ≤ C (ie CL(Γ) ⊆ C(Γ) for all Γ) (1)
Left absorption : CLC = C (2)

right absorption : CCL = C (3)

Absorption guarantees that if theories are equivalent in L they remain equiv-
alent at the nonmonotonic level (ie under C). Moreover closing the nonmono-
tonic consequences of a theory under L-consequence does not produce any-
thing new. One characteristic of standard, monotonic logics is the presence of
replacement theorems that guarantee when equivalent formulas or theories are
interchangeable salva veritate in any context. In nonmonotonic logics, replace-
ment properties are more complex, since equivalence may also be derived from
the absence of information. For instance, two theories Π1 and Π2 may yield
the same C-consequences but these may differ after adding new information Γ.
This motivates:

Definition 2. In the context of a nonmomontonic consequence relation C, two theories
Π1 and Π2 are said to be strongly equivalent if for all Γ, C(Π1 ∪ Γ) = C(Π2 ∪ Γ)

In other words, Π1 and Π2 remain equivalent in whatever context Γ they are
embedded. One property of deductive bases is immediate but very powerful:
if L is a deductive base for C, then L-equivalence of Π1 and Π2 is a sufficient
condition for strong equivalence. A given nonmonotonic relation C may have
several monotonic deductive bases and equivalence in any of them is a suffi-
cient condition for strong equivalence, but not always a necessary condition.
To guarantee a suitable replacement property one can add a further refinement
and say that a deductive base is strong if it satisfies:

CL(Π1) ̸= CL(Π2) ⇒ there exists Γ such that C(Π1 ∪ Γ) ̸= C(Π2 ∪ Γ).

If a deductive base is strong we obtain what is known as a strong equivalence
theorem, namely that two theories are interchangeable in any context under
the nonmonotonic inference if an only if they are equivalent in the monotonic
base.3 This has important consequences for simplifying nonmonotonic theories

2 The term deductive base defined below is taken from [3,4]; however similar ideas can
be found in [12] and elsewhere.

3 Equivalence usually means same intended models; but if consequence is defined in
terms of intended models, then this will imply equivalence wrt C.
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and programs and studying their properties. For example if the base logic has
a suitable proof theory we can use it to test for program equivalences.

4 Methodologies for applied logics

Given the discussion above, let us try to compile some guidelines for the design
and development of logic-based systems for KR and AI. We propose an initial
list of criteria that we group in the following three kinds of conditions.

Type I. General requirements for good design and sound methodology

1. Is it logic?
2. Is the reasoning based on a known underlying logic?
3. Is it a combination of known logics?

The first condition may at first sight appear to be circular. But if understood
correctly, it does make sense. In KR there are formal reasoning methods that
appear to be logic-based yet fail some natural properties that one would expect
to hold. Computational logics have vastly extended the boundaries of what
the repertoire of logic, in its mathematical paradigm, was formerly supposed
to include. Nevertheless, some properties seem to be constitutive and basic to
logic, especially if we consider the KR context. We sometimes find formalisms
defined only for syntactic fragments or under syntax restrictions and with ad
hoc semantic definitions that do not rely on any standard method for defining a
logic. So we keep Condition 1 as an imprecise but useful first test of adequacy.

Condition 2 is inspired by the discussion of the previous section. If our sys-
tem is based on a known logic whose reasoning mechanisms are well under-
stood and appropriate for the domain, we have advanced on the path to veri-
fying its adequacy. Condition 3 is related to Carnap’s third and Gelfond’s fifth
requirements. Much work has been done on combining logics, and in KR many
opportunities arise for their application. One may think of combinations such
as knowledge with belief, tense and modality, space and time, nonmonotonic-
ity combined with epistemic reasoning, and others. A primary logic that can
be combined with other logics to gain new functionalities can be a very fruitful
conceptual tool. Criteria for combining logics are also important. For instance,
a combined formalism should have a clear connection to its constituent logics –
for instance, a modal extension of ASP should collapse to ASP when no modal
operators are used. Also, the combined formalism should inherit and generalise
recognisable properties from its constituent logics.

Type II. Specific adequacy conditions for the logical concepts to be formalised
These include adequacy conditions that pertain to a specific concept and con-
text, perhaps based on a pre-formal analysis of the concept.

1. Does it adequately reconstruct/formalise the intended concepts?
2. Does it offer suitable reasoning mechanisms for those concepts?
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3. Does it accommodate new cases in a clear and natural manner?
4. Does it possess desirable metatheoretic properties?

The first of these may include for instance the expressive capacity of the formal
language and be based on prior analysis of the concept. The second condition
relates to semantics and inference. The third requirement relates to Carnap’s
and Gelfond’s ideas of simplicity and clarity. A successful formalisation should
yield a general approach that goes beyond just a few isolated cases of reasoning.
Moreover, it should handle new examples in a natural manner without need-
ing ad hoc adjustments and revisions. 4 may include matters of tractability of
reasoning, properties that are generally regarded as ‘good’ for a logic, or prop-
erties that are desirable in a given KR context. These will tend to change from
domain to domain and so can best be made precise given a specific context.

Type III. Methods of reasoning that may lead to explainable AI and support
the rational acceptability of conclusions Lastly we may consider require-
ments that will allow for reasoning steps to be displayed in a way that can
explain the outcome of a logic-based, computational system in practical cases.

1. Can it be combined with methods of explanation?
2. Can explanations be broken down into simple steps for human comprehen-

sion and rational acceptance?

This is currently an very active field of inquiry. It may involve the ability to
apply a secondary type of logic that can add justification steps, or perhaps ar-
gumentation trees, to computations carried out in the primary logical system.
Such methods should be convincing to a rational agent and, if possible, gras-
pable by a human user.

5 Related and Future Work and Conclusions

We have argued that for logic to play a key role in making AI systems more
accountable, we also have to analyse and question the adequacy of the primary
reasoning system itself. Here there is much territory still to be explored. As ex-
amples of works that have initiated a critical analysis and discussion of the ad-
equacy of logical systems in AI, we can mention [8,10,9], focused on epistemic
reasoning and multi-agent systems in particular.

We have tried to raise awareness of the need to to take a principled approach
to the design of logical systems, to reject the assumption that anything goes when
proposing a new reasoning formalism, and to avoid ad hoc solutions designed
to ‘save the phenomena’. We have also looked at some general requirements for
the formal reconstruction of concepts and proposed some preliminary desider-
ata for logics to be applied in AI systems.

There is much more to be done. This is the first of a three-part work in
progress. The second part will treat extensions of logic programming, such as
those dealing with aggregates, temporal logic or epistemic reasoning. The third
part will extend work already started on explanatory ASP [1].
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