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Logical foundations of Logic Programming

Fixing logical foundations for LP

LP definitions rely on:
syntax transformations (“reduct”) + fixpoint constructions

Example: “M is the minimal model of ΠM ”

A logical style definition:
get minimal models inside some (monotonic) logic.

Logically equivalent programs ⇒ same minimal models.

Full logical interpretation of connectives.
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Logical foundations of Logic Programming

Stable models successfully identified

(Monotonic) intermediate logic of here-and-there (HT )
(a.k.a. Gödel’s 3-valued logic)

Classical ⊆ HT ⊆ Intuitionistic h //
��

t
��

Pearce’s Equilibrium Logic: minimal HT models
Equilibrium models = stable models [Pearce 97]

Π1 and Π2 are strongly equivalent iff they are
HT -equivalent [Lifschitz, Pearce & Valverde 01]
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Logical foundations of Logic Programming

Logical foundation for WFS was missing

Possible reasons:
No logic could be identified as deductive basis for WFS.
Intuitionistic is too strong. Example: signature {A,B}

Program WFS
¬A → A A undefined, B false

undefined!
¬A → B

Good algorithmic properties, but poor model-based defs.
Partial stable models [Przymusinski 94] use 3-valued logic,
but still depends on program reduct.

WFS too tied to restricted syntax. Example: no agreement
on disjunction.
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Logical foundations of Logic Programming

A first solution: HT 2 frames

HT 2 [Cabalar 01]: each HT world has a primed “version”

h //

�� ��?
??

??
??

��
t

��

��

h′ //
LL t ′RR

hOO

�� ��?
??

??
??

tOO

��
h′

??�������
t ′

Relation ≤

Relation R
implication negation

Minimal HT 2 models are called partial equilibrium models
partial equilibrium models = partial stable models
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Logical foundations of Logic Programming

In this work . . .

1 [Došen 86] framework N
Negation as a modal operator.
Weaker than intuitionistic and Johansson minimal logic.
We combine this with the semantics of [Routley & Routley
72] to classify HT 2.

2 We axiomatise HT 2.

3 We derive a 6-valued characterisation of HT 2.
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Classification of HT 2 frames
Axiomatisation of HT 2

6-valued matrix
Capturing partial stable models
Strong equivalence

Došen logic N

Inference rules: modus ponens plus α→β
¬β→¬α

Axioms: positive logic plus ¬α ∧ ¬β → ¬(α ∨ β)

Models: an extra accesibility relation R is used for negation
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Došen logic N

Definition (N model)

is a quadruple M = 〈W , ≤,R,V 〉 such that:
1 W non-empty set of worlds
2 ≤ partial ordering among worlds
3 R accessibility relation s.t. (≤ R) ⊆ (R ≤−1)

4 V valuation function At ×W −→ {0,1} satisfying:
V (p,w) = 1 & w ≤ w ′ ⇒ V (p,w ′) = 1

V (ϕ→ ψ,w) = 1 iff ∀w ′such that w ≤ w ′, V (ϕ,w ′) = 0
or V (ψ,w ′) = 1.
V (¬ϕ,w) = 1 iff ∀w ′such that wRw ′, V (ϕ,w ′) = 0.
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Routley variant N∗

Axioms: N plus
¬(α→ α) → β
¬(α ∧ β) → ¬α ∨ ¬β

Intuitionistic negation ‘−’ is definable in N∗ as:
−α := α→ ¬(p0 → p0).

Definition (N∗ model)
is an N model satisfying

for all x , there exists the ≤-greatest x∗ R-accessible from x
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Routley style semantics

x |= ¬ϕ iff x∗ 6|= ϕ

Definition (Routley frame)

is a triple 〈W ,≤, ∗〉 with W and ≤ as before
and ∗ : W → W is such that x ≤ y iff y∗ ≤ x∗

Completeness: obtained via canonical model
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HT 2 as an N∗ frame

An HT 2 frame corresponds to a N∗ frame with
W = {h,h′, t , t ′} and

t ′AA

����
��

�

t h′oo

h

OO

where “higher” means ≤-greater
and the arrow represents the action of ∗
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The axioms of HT 2

Let HT ∗ extend N∗ by adding rule α∨(β∧¬β)
α and:

A1. −α ∨ −− α

A2. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3.

∧2
i=0((αi →

∨
j 6=i αj) →

∨
j 6=i αj) →

∨2
i=0 αi

A4. α→ ¬¬α
A5. α ∧ ¬α→ ¬β ∨ ¬¬β
A6. ¬α ∧ ¬(α→ β) → ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)

A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)
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The axioms of HT 2

Let HT ∗ extend N∗ by adding rule α∨(β∧¬β)
α and:

A1. + −α ∨ −− α

A2. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3.

∧2
i=0((αi →

∨
j 6=i αj) →

∨
j 6=i αj) →

∨2
i=0 αi

A4. α→ ¬¬α
A5. α ∧ ¬α→ ¬β ∨ ¬¬β
A6. ¬α ∧ ¬(α→ β) → ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)

A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

A1 (Weak excluded middle for ’−’) strongly directed frame

Pedro Cabalar, Sergei Odintsov, David Pearce Logical Foundations of WFS



Introduction
Contributions
Conclusions

Classification of HT 2 frames
Axiomatisation of HT 2

6-valued matrix
Capturing partial stable models
Strong equivalence

The axioms of HT 2

Let HT ∗ extend N∗ by adding rule α∨(β∧¬β)
α and:

A1. −α ∨ −− α

A2. + −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3.

∧2
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∨
j 6=i αj) →

∨
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∨2
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A6. ¬α ∧ ¬(α→ β) → ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)

A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

A2 Bounds the depth to 2 worlds
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The axioms of HT 2

Let HT ∗ extend N∗ by adding rule α∨(β∧¬β)
α and:

A1. −α ∨ −− α

A2. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3. +

∧2
i=0((αi →

∨
j 6=i αj) →

∨
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∨2
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A4. α→ ¬¬α
A5. α ∧ ¬α→ ¬β ∨ ¬¬β
A6. ¬α ∧ ¬(α→ β) → ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)

A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

A3 Bounds the branching to 2 worlds
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The axioms of HT 2

Let HT ∗ extend N∗ by adding rule α∨(β∧¬β)
α and:

A1. −α ∨ −− α

A2. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3.

∧2
i=0((αi →

∨
j 6=i αj) →

∨
j 6=i αj) →

∨2
i=0 αi

A4. α→ ¬¬α
A5. α ∧ ¬α→ ¬β ∨ ¬¬β
A6. ¬α ∧ ¬(α→ β) → ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)

A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

A4-A8 Fix negation ¬
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Main result

Theorem

HT ∗ = HT 2.

Proof sketch.

Soundness easy to check using HT 2 semantics.
Completeness relies on canonical model method and the
corresp. of HT 2 frames as N∗ frames.
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HT = Gödel’s 3-valued

·

��



·QQ

·

��



pRR

p

��

��

pRR

0 1 2

. . . and the tables are derived from frames.
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HT 2 becomes 6-valued

· //

�� ��=
==

==
==

��
·

��



· //
MM ·QQ

· //

�� ��=
==

==
==

��
·

��



· //
MM pRR

· //

�� ��?
??

??
??

��
·

��



p //
LL pRR

00 01 11

· //

�� ��<
<<

<<
<<

��
p

��

��

· //
MM pRR

· //

�� ��=
==

==
==

��
p

��

��

p //
LL pRR

p //

�� ��=
==

==
==

��
p

��

��

p //
LL pRR

02 12 22

. . . and the tables are derived from frames.
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Partial equilibrium models

Let H,H ′,T ,T ′ denote sets of atoms verified at h,h′, t , t ′.
Represent a model as a pair 〈H,T〉, where H = (H,H ′) and
T = (T ,T ′).
Define the ordering H1 ≤ H2 as H1 ⊆ H2 and H ′

1 ⊆ H ′
2.

Extend this to an order among models, E, as follows:
〈H1,T1〉E 〈H2,T2〉 if: (i) T1 = T2; (ii) H1 ≤ H2.
〈H,T〉 is said to be total if H = T.

Definition (Partial equilibrium model)
A model M of theory Π is a partial equilibrium model of Π if it is
total and E-minimal.
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Partial equilibrium models

Among the partial equilibrium models of a theory we can
distinguish those with minimal information which we call
the well-founded models.

Theorem
For a normal or disjunctive logic program Π, 〈T,T〉 is a partial
equilibrium model of Π iff T is a partial stable model of Π.
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Partial Equilibrium Logic and Strong equivalence

Definition (Partial Equilibrium Logic (PEL))

Partial Equilibrium Logic (PEL) is characterised by truth in all
partial equilibrium models.

Definition (Strong equivalence)

Two theories Π1,Π2 are said to be strongly equivalent if for any
set of formulas Γ, Π1 ∪ Γ and Π2 ∪ Γ have the same partial
equilibrium models.
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Partial Equilibrium Logic and Strong equivalence

Theorem
Two theories Π1,Π2 are strongly equivalent iff they are
equivalent in HT 2.

Theorem (ICLP’06)

If Π1,Π2 are not HT 2-equivalent, there is a Γ such that Π1 ∪ Γ
and Π2 ∪ Γ have different well-founded models.
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Summary

A deductive base for WFS is now identified:

1 HT 2 frames belong to Routley variant of Došen frames.
Is HT 2 the strongest deduct. base for WFS in this family?

2 HT 2 axiomatised

3 6-valued matrix may be useful for HT 2 equivalence.
Examples: simpler proof of corresp. to partial stable
models, tableaux system, . . .
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Recent work

general properties of PEL inference
complexity
program transformations
programs with nested expressions
tableaux proof system
extensions of PEL with strong negation
splitting theorem for theories under PEL
reduction of HT 2 to HT
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Further reading

P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and
Extending Well-Founded and Partial Stable Semantics using
Partial Equilibrium Logic. In Proceedings ICLP 06, to appear.

P. Cabalar, S. Odintsov & D. Pearce. Strong Negation in
Well-Founded and Partial Stable Semantics for Logic Programs.
In Proceedings of IBERAMIA’06, (LNCS, to appear).

P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. On the logic
and computation of Partial Equilibrium Models (extended
abstract). Unpublished draft available at
http://www.dc.fi.udc.es/~cabalar/lcpem.pdf.
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