Logical Foundations of Well-Founded Semantics

Pedro Cabalar¹ Sergei Odintsov² David Pearce³

¹University of Corunna (Spain) cabalar@udc.es

²Sobolev Institute of Mathematics (Novosibirsk, Russia) odintsov@math.nsc.ru

³Universidad Rey Juan Carlos (Madrid, Spain) davidandrew.pearce@urjc.es

KR 2006

イロト イボト イヨト イヨト 二日

DQC

Pedro Cabalar, Sergei Odintsov, David Pearce Logical Foundations of WFS

Outline

Introduction

• Logical foundations of Logic Programming

2 Contributions

- Classification of HT² frames
- Axiomatisation of HT²
- 6-valued matrix
- Capturing partial stable models
- Strong equivalence

3 Conclusions

イロト イボト イヨト イヨト 二日

San

Logical foundations of Logic Programming

イロト イポト イヨト イヨト

=

San

Outline

Introduction

• Logical foundations of Logic Programming

Contributions

- Classification of HT² frames
- Axiomatisation of HT²
- 6-valued matrix
- Capturing partial stable models
- Strong equivalence

3 Conclusions

Logical foundations of Logic Programming

イロト 不同 トイヨト イヨト 二日

- LP definitions rely on: syntax transformations ("reduct") + fixpoint constructions Example: "M is the minimal model of ITM"
- A logical style definition: get minimal models inside some (monotonic) logic.
- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.

Logical foundations of Logic Programming

イロト 不同 トイヨト イヨト 二日

Fixing logical foundations for LP

LP definitions rely on: syntax transformations ("reduct") + fixpoint constructions Example: "M is the minimal model of Π^M"

- A logical style definition: get minimal models inside some (monotonic) logic.
- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.

Logical foundations of Logic Programming

イロト 不同 トイヨト イヨト 二日

- LP definitions rely on: syntax transformations ("reduct") + fixpoint constructions Example: "M is the minimal model of Π^M"
- A logical style definition: get minimal models inside some (monotonic) logic.
- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.

Logical foundations of Logic Programming

・ロト ・ 同ト ・ ヨト ・ ヨト

- LP definitions rely on: syntax transformations ("reduct") + fixpoint constructions Example: "M is the minimal model of Π^M"
- A logical style definition: get minimal models inside some (monotonic) logic.
- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.

・ロト ・ 同ト ・ ヨト ・ ヨト

San

- LP definitions rely on: syntax transformations ("reduct") + fixpoint constructions Example: "M is the minimal model of Π^M"
- A logical style definition: get minimal models inside some (monotonic) logic.
- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.

Logical foundations of Logic Programming

Stable models successfully identified

 (Monotonic) intermediate logic of *here-and-there* (*HT*) (a.k.a. Gödel's 3-valued logic)

Classical \subseteq *HT* \subseteq Intuitionistic

・ロット 御マ キョット キョン

- Pearce's *Equilibrium Logic*: minimal *HT* models Equilibrium models = stable models [Pearce 97]
- Π₁ and Π₂ are strongly equivalent iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]

Logical foundations of Logic Programming

Stable models successfully identified

 (Monotonic) intermediate logic of *here-and-there* (*HT*) (a.k.a. Gödel's 3-valued logic)

 $Classical \subseteq HT \subseteq Intuitionistic$

・ロット 御マ キョット キョン

- Pearce's *Equilibrium Logic*: minimal *HT* models Equilibrium models = stable models [Pearce 97]
- Π₁ and Π₂ are strongly equivalent iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]

Logical foundations of Logic Programming

Stable models successfully identified

 (Monotonic) intermediate logic of *here-and-there* (*HT*) (a.k.a. Gödel's 3-valued logic)

Classical \subseteq *HT* \subseteq Intuitionistic

ヘロア 人間 アメヨア 人口 ア

- Pearce's *Equilibrium Logic*: minimal *HT* models Equilibrium models = stable models [Pearce 97]
- Π₁ and Π₂ are strongly equivalent iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]

Logical foundations of Logic Programming

Stable models successfully identified

 (Monotonic) intermediate logic of *here-and-there* (*HT*) (a.k.a. Gödel's 3-valued logic)

 $Classical \subseteq HT \subseteq Intuitionistic$

・ロト ・ 同ト ・ ヨト ・ ヨト

- Pearce's Equilibrium Logic: minimal HT models Equilibrium models = stable models [Pearce 97]
- Π₁ and Π₂ are strongly equivalent iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]

Logical foundations of Logic Programming

Stable models successfully identified

 (Monotonic) intermediate logic of *here-and-there* (*HT*) (a.k.a. Gödel's 3-valued logic)

Classical \subseteq *HT* \subseteq Intuitionistic

・ロト ・ 同ト ・ ヨト ・ ヨト

- Pearce's Equilibrium Logic: minimal HT models Equilibrium models = stable models [Pearce 97]
- Π₁ and Π₂ are strongly equivalent iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]

San

Logical foundation for WFS was missing

Possible reasons:

• No logic could be identified as deductive basis for WFS. Intuitionistic is too strong. Example: signature {*A*, *B*}

ProgramWFS $\neg A \rightarrow A$ A undefined, B follow

- Good algorithmic properties, but poor model-based defs.
 Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.
- WFS too tied to restricted syntax. Example: no agreement on disjunction.

San

Logical foundation for WFS was missing

Possible reasons:

ProgramWFS
$$\neg A \rightarrow A$$
A undefined, B false

- Good algorithmic properties, but poor model-based defs.
 Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.
- WFS too tied to restricted syntax. Example: no agreement on disjunction.

Sac

Logical foundation for WFS was missing

Possible reasons:

- Good algorithmic properties, but poor model-based defs.
 Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.
- WFS too tied to restricted syntax. Example: no agreement on disjunction.

Logical foundation for WFS was missing

Possible reasons:

ProgramWFS
$$\neg A \rightarrow A$$
A undefined, B false undefined! $\neg A \rightarrow B$

- Good algorithmic properties, but poor model-based defs.
 Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.
- WFS too tied to restricted syntax. Example: no agreement on disjunction.

DQC

Logical foundation for WFS was missing

Possible reasons:

- Good algorithmic properties, but poor model-based defs. Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.
- WFS too tied to restricted syntax. Example: no agreement on disjunction.

Logical foundations of Logic Programming

A first solution: HT² frames

• HT² [Cabalar 01]: each HT world has a primed "version"

Relation \leq

Pedro Cabalar, Sergei Odintsov, David Pearce Lo

Logical Foundations of WFS

500

Logical foundations of Logic Programming

A first solution: *HT*² frames

• HT² [Cabalar 01]: each HT world has a primed "version"

Relation \leq

• Minimal *HT*² models are called partial equilibrium models

partial equilibrium models = partial stable models

Pedro Cabalar, Sergei Odintsov, David Pearce

Logical Foundations of WFS

Logical foundations of Logic Programming

A first solution: *HT*² frames

• HT² [Cabalar 01]: each HT world has a primed "version"

 $\begin{array}{l} \text{Relation} \leq \\ \text{implication} \end{array}$

Relation *R* negation

Sac

Minimal HT² models are called partial equilibrium models

partial equilibrium models = partial stable models

Pedro Cabalar, Sergei Odintsov, David Pearce

Logical Foundations of WFS

Logical foundations of Logic Programming

A first solution: *HT*² frames

• HT² [Cabalar 01]: each HT world has a primed "version"

 $\begin{array}{l} \text{Relation} \leq \\ \text{implication} \end{array}$

Relation *R* negation

nac

• Minimal HT² models are called partial equilibrium models

partial equilibrium models = partial stable models

Logical foundations of Logic Programming

A first solution: *HT*² frames

• HT² [Cabalar 01]: each HT world has a primed "version"

 $\frac{\text{Relation} \leq}{\text{implication}}$

Relation *R* negation

Sac

- Minimal HT² models are called partial equilibrium models
- partial equilibrium models = partial stable models

Logical foundations of Logic Programming

イロト イポト イヨト イヨト 二日

San

[Došen 86] framework N

- Negation as a modal operator.
- Weaker than intuitionistic and Johansson minimal logic.
- We combine this with the semantics of [Routley & Routley 72] to classify *HT*².

2 We axiomatise HT².

We derive a 6-valued characterisation of HT².

Logical foundations of Logic Programming

イロト 不得 トイヨト イヨト

-

San

[Došen 86] framework N

- Negation as a modal operator.
- Weaker than intuitionistic and Johansson minimal logic.
- We combine this with the semantics of [Routley & Routley 72] to classify *HT*².

We axiomatise HT².

We derive a 6-valued characterisation of HT².

Logical foundations of Logic Programming

イロト イボト イヨト イヨト 二日

San

[Došen 86] framework N

- Negation as a modal operator.
- Weaker than intuitionistic and Johansson minimal logic.
- We combine this with the semantics of [Routley & Routley 72] to classify *HT*².
- We axiomatise HT².
- We derive a 6-valued characterisation of HT².

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

Э

San

Outline

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

• Inference rules: modus ponens plus

イロト 不得 トイヨト 不良ト 一日

DQC

• Axioms: positive logic plus $\neg \alpha \land \neg \beta \rightarrow \neg (\alpha \lor \beta)$

• Models: an extra accesibility relation *R* is used for negation

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

Došen logic N

Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

- W non-empty set of worlds
- Section 2 states and section 2 states are section 2 states and section 2 states are sectio
- **3** *R* accessibility relation s.t. $(\leq R) \subseteq (R \leq 1)$
- ④ *V* valuation function $At \times W \longrightarrow \{0, 1\}$ satisfying: V(p, w) = 1 & $w \le w' \Rightarrow V(p, w') = 1$

• $V(\neg \varphi, w) = 1$ iff $\forall w$ 'such that wRw', $V(\varphi, w') = 0$.

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

Došen logic N

Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

- W non-empty set of worlds
- $2 \leq partial ordering among worlds$
- **3** *R* accessibility relation s.t. $(\leq R) \subseteq (R \leq 1)$
- V valuation function $At \times W \longrightarrow \{0, 1\}$ satisfying: $V(p, w) = 1 \& w \le w' \Rightarrow V(p, w') = 1$
 - V(φ→ψ, w) = 1 iff ∀w'such that w ≤ w', V(φ, w') = 0 or V(ψ, w') = 1.

• $V(\neg \varphi, w) = 1$ iff $\forall w$ 'such that wRw', $V(\varphi, w') = 0$.

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

=

Sac

Došen logic N

Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

- W non-empty set of worlds
- Section 2 states and section 2 states are section and section 2 states are section 2 state
- **accessibility relation s.t.** $(\leq R) \subseteq (R \leq ^{-1})$
- ④ *V* valuation function $At \times W \longrightarrow \{0, 1\}$ satisfying: V(p, w) = 1 & $w \le w' \Rightarrow V(p, w') = 1$

• $V(\neg \varphi, w) = 1$ iff $\forall w$ 'such that wRw', $V(\varphi, w') = 0$.

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

Sac

Routley variant N*

• Axioms: *N* plus $\neg(\alpha \rightarrow \alpha) \rightarrow \beta$ $\neg(\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$

• Intuitionistic negation '-' is definable in N^* as: $-\alpha := \alpha \rightarrow \neg (p_0 \rightarrow p_0).$

Definition (*N*^{*} model)

is an N model satisfying for all x, there exists the \leq -greatest x^* R-accessible from x

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

-

Sac

Routley variant N*

- Axioms: *N* plus $\neg(\alpha \rightarrow \alpha) \rightarrow \beta$ $\neg(\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$
- Intuitionistic negation '-' is definable in N* as:
 -α := α → ¬(p₀ → p₀).

Definition (N^{*} model)

is an N model satisfying for all x, there exists the \leq -greatest x* R-accessible from x

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト

Э

Sac

Routley variant N*

- Axioms: *N* plus $\neg(\alpha \rightarrow \alpha) \rightarrow \beta$ $\neg(\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$
- Intuitionistic negation '-' is definable in N* as:
 -α := α → ¬(p₀ → p₀).

Definition (*N*^{*} model)

is an *N* model satisfying for all *x*, there exists the \leq -greatest x^* *R*-accessible from *x*

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イボト イヨト イヨト 二日

DQC

Routley style semantics

•
$$x \models \neg \varphi$$
 iff $x^* \not\models \varphi$

Definition (Routley frame)

is a triple $\langle W, \leq, * \rangle$ with W and \leq as before and $*: W \rightarrow W$ is such that $x \leq y$ iff $y^* \leq x^*$

• Completeness: obtained via canonical model

Classification of HT² frames Axiomatisation of HT² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イボト イヨト イヨト 二日

Sac

HT^2 as an N^* frame

An HT² frame corresponds to a N* frame with
 W = {h, h', t, t'} and

where "higher" means \leq -greater and the arrow represents the action of *

Classification of HT^2 frames Axiomatisation of HT^2 6-valued matrix Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト

Э

San

Outline

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不同 トイヨト イヨト 三日

Sar

The axioms of HT²

Let HT^* extend N^* by adding rule $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\alpha}$ and: A1. $-\alpha \lor - -\alpha$ A2. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$ A3. $\bigwedge_{i=0}^{2} ((\alpha_i \to \bigvee_{i \neq i} \alpha_i) \to \bigvee_{i \neq i} \alpha_i) \to \bigvee_{i=0}^{2} \alpha_i$ A4. $\alpha \rightarrow \neg \neg \alpha$ A5. $\alpha \wedge \neg \alpha \rightarrow \neg \beta \vee \neg \neg \beta$ A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$ A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$ A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

・ロト ・ 同ト ・ ヨト ・ ヨト

The axioms of HT²

Let HT^* extend N^* by adding rule $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\gamma}$ and: A1 $\bowtie -\alpha \lor -\alpha$ A2. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$ A3. $\bigwedge_{i=0}^{2} ((\alpha_{i} \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i=0}^{2} \alpha_{i}$ A4 $\alpha \rightarrow \neg \neg \alpha$ A5. $\alpha \wedge \neg \alpha \rightarrow \neg \beta \vee \neg \neg \beta$ A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$ A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$ A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A1 (Weak excluded middle for '-') strongly directed frame

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イボト イヨト イヨト 二日

Sar

The axioms of HT²

Let *HT*^{*} extend *N*^{*} by adding rule $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\alpha}$ and: A1 $-\alpha \lor - - \alpha$ A2. $\square \land \neg (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$ A3. $\bigwedge_{i=0}^{2} ((\alpha_{i} \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i=0}^{2} \alpha_{i}$ A4. $\alpha \rightarrow \neg \neg \alpha$ A5. $\alpha \wedge \neg \alpha \rightarrow \neg \beta \vee \neg \neg \beta$ A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$ A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$ A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A2 Bounds the depth to 2 worlds

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sar

The axioms of HT²

Let HT^* extend N^* by adding rule $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\gamma}$ and: A1 $-\alpha \lor - - \alpha$ A2. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$ A3. If $\bigwedge_{i=0}^{2} ((\alpha_{i} \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i \neq i}^{2} \alpha_{i}$ A4 $\alpha \rightarrow \neg \neg \alpha$ A5. $\alpha \wedge \neg \alpha \rightarrow \neg \beta \vee \neg \neg \beta$ A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$ A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$ A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A3 Bounds the branching to 2 worlds

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イロト イヨト イヨト 二日

Sar

The axioms of HT²

Let HT^* extend N^* by adding rule $\frac{\alpha \vee (\beta \wedge \neg \beta)}{\gamma}$ and: A1 $-\alpha \lor - - \alpha$ A2. $-\alpha \lor (\alpha \to (\beta \lor (\beta \to (\gamma \lor -\gamma))))$ A3. $\bigwedge_{i=0}^{2} ((\alpha_{i} \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i \neq i} \alpha_{i}) \rightarrow \bigvee_{i=0}^{2} \alpha_{i}$ A4 $\alpha \rightarrow \neg \neg \alpha$ A5. $\alpha \wedge \neg \alpha \rightarrow \neg \beta \vee \neg \neg \beta$ A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$ A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \to \beta) \lor \neg \neg (\alpha \to \beta)$ A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A4-A8 Fix negation ¬

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト

3

500

Main result

Theorem

 $HT^* = HT^2$.

Proof sketch.

Soundness easy to check using HT^2 semantics. Completeness relies on canonical model method and the corresp. of HT^2 frames as N^* frames.

Classification of HT^2 frames Axiomatisation of HT^2 **6-valued matrix** Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト

Э

San

Outline

Classification of *HT*² frames Axiomatisation of *HT*² **6-valued matrix** Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト 三日

Dac

HT = Gödel's 3-valued

... and the tables are derived from frames.

Pedro Cabalar, Sergei Odintsov, David Pearce Logical Foundations of WFS

Classification of *HT*² frames Axiomatisation of *HT*² **6-valued matrix** Capturing partial stable models Strong equivalence

HT² becomes 6-valued

... and the tables are derived from frames.

Pedro Cabalar, Sergei Odintsov, David Pearce

Logical Foundations of WFS

ъ

DQC

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix **Capturing partial stable models** Strong equivalence

イロト 不得 トイヨト イヨト

Э

San

Outline

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

Partial equilibrium models

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix **Capturing partial stable models** Strong equivalence

Partial equilibrium models

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

Partial equilibrium models

- Let *H*, *H'*, *T*, *T'* denote sets of atoms verified at *h*, *h'*, *t*, *t'*.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Sac

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix **Capturing partial stable models** Strong equivalence

Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle \mathbf{H}, \mathbf{T} \rangle$, where $\mathbf{H} = (H, H')$ and $\mathbf{T} = (T, T')$.
- Define the ordering $\mathbf{H}_1 \leq \mathbf{H}_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \trianglelefteq , as follows: $\langle H_1, T_1 \rangle \trianglelefteq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \le H_2$.
- $\langle \mathbf{H}, \mathbf{T} \rangle$ is said to be *total* if $\mathbf{H} = \mathbf{T}$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \trianglelefteq -minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Dac

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix **Capturing partial stable models** Strong equivalence

・ロット 御マ キョット キョン

Partial equilibrium models

• Among the partial equilibrium models of a theory we can distinguish those with minimal information which we call the well-founded models.

Theorem

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix **Capturing partial stable models** Strong equivalence

・ロト ・ 同ト ・ ヨト ・ ヨト

San

Partial equilibrium models

• Among the partial equilibrium models of a theory we can distinguish those with minimal information which we call the well-founded models.

Theorem

For a normal or disjunctive logic program Π , $\langle \mathbf{T}, \mathbf{T} \rangle$ is a partial equilibrium model of Π iff \mathbf{T} is a partial stable model of Π .

Classification of HT^2 frames Axiomatisation of HT^2 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

э

San

Outline

Conclusions

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト イポト イヨト イヨト

San

Partial Equilibrium Logic and Strong equivalence

Definition (Partial Equilibrium Logic (PEL))

Partial Equilibrium Logic (PEL) is characterised by truth in all partial equilibrium models.

Definition (Strong equivalence)

Two theories Π_1 , Π_2 are said to be *strongly equivalent* if for any set of formulas Γ , $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial equilibrium models.

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

-

Partial Equilibrium Logic and Strong equivalence

Definition (Partial Equilibrium Logic (PEL))

Partial Equilibrium Logic (PEL) is characterised by truth in all partial equilibrium models.

Definition (Strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas $\Gamma, \Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial equilibrium models.

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

San

Partial Equilibrium Logic and Strong equivalence

Theorem

Two theories Π_1, Π_2 are strongly equivalent iff they are equivalent in HT^2 .

Theorem (ICLP'06)

If Π_1, Π_2 are not HT^2 -equivalent, there is a Γ such that $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have different well-founded models.

Classification of *HT*² frames Axiomatisation of *HT*² 6-valued matrix Capturing partial stable models Strong equivalence

イロト 不得 トイヨト イヨト

-

San

Partial Equilibrium Logic and Strong equivalence

Theorem

Two theories Π_1, Π_2 are strongly equivalent iff they are equivalent in HT^2 .

Theorem (ICLP'06)

If Π_1, Π_2 are not HT^2 -equivalent, there is a Γ such that $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have different well-founded models.

Summary Future work

イロト 不得 トイヨト イヨト

San

A deductive base for WFS is now identified:

HT² frames belong to Routley variant of Došen frames. Is HT² the strongest deduct. base for WFS in this family?

2 HT² axiomatised

6-valued matrix may be useful for HT² equivalence. Examples: simpler proof of corresp. to partial stable models, tableaux system, ...

Summary Future work

イロト 不得 とうほう 不良 とう

San

A deductive base for WFS is now identified:

HT² frames belong to Routley variant of Došen frames. Is HT² the strongest deduct. base for WFS in this family?

e HT² axiomatised

In the second second

Summary Future work

イロト 不同 トイヨト イヨト 二日

San

A deductive base for WFS is now identified:

- HT² frames belong to Routley variant of Došen frames. Is HT² the strongest deduct. base for WFS in this family?
- IT² axiomatised
- 6-valued matrix may be useful for HT² equivalence. Examples: simpler proof of corresp. to partial stable models, tableaux system, ...

Summary Future work

(日) (同) (日) (日) (日)

DQC

Recent work

- general properties of PEL inference
- complexity
- program transformations
- programs with nested expressions
- tableaux proof system
- extensions of PEL with strong negation
- splitting theorem for theories under PEL
- reduction of HT² to HT

Summary Future work

Further reading

- P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and Extending Well-Founded and Partial Stable Semantics using Partial Equilibrium Logic. In *Proceedings ICLP 06*, to appear.
- P. Cabalar, S. Odintsov & D. Pearce. Strong Negation in Well-Founded and Partial Stable Semantics for Logic Programs. In *Proceedings of IBERAMIA'06*, (LNCS, to appear).
- P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. On the logic and computation of Partial Equilibrium Models (extended abstract). Unpublished draft available at http://www.dc.fi.udc.es/~cabalar/lcpem.pdf.