
Setting the stage for ASP functions

Pedro Cabalar

Department of Computer Science,
University of Corunna, SPAIN

cabalar@udc.es

Abstract

In the recent years, several approaches for introducing evaluable,
non-Herbrand functions in Answer Set Programming have been pro-
posed. In this note we overview their different behaviours and fea-
tures regarding their potential use, pointing out possible advantages
and disadvantages together with future open topics and challenges.

1 Introduction

The usual view of functions in Logic Programming has been strongly influ-
enced by one of the fundamental Prolog mechanisms, unification, and the
corresponding semantic assumption of Herbrand interpretations. Under this
perspective, function symbols act as syntactic constructors that allow form-
ing objects in the universe, such as tuples or lists of elements, to put a
pair of examples. Being constructors, it is natural that two syntactically
different terms, such as vector(1, 2) and vector(2, 1), designate two differ-
ent elements in the universe (in this case, for instance, two different vectors
in a 2D coordinate system). Unfortunately, Prolog restriction to Herbrand
functions has a cost from the representational point of view: functions in
their usual mathematical meaning are not directly representable and must
be simulated with predicates with an extra argument to capture the function
value. For instance, the sum of two vectors cannot be represented as a func-
tion sum(vector(1, 2), vector(2, 1)) since, under Herbrand interpretations, it

1



would be different from, say, sum(vector(1, 1), vector(2, 2)) although both
expressions must be mapped to vector(3, 3) to get the intended meaning.
The usual Prolog representation for this function would look like:

sum(vector(X,Y),vector(Z,T),vector(V,W)) :- V is X+Z, W is Y+T.

where sum(A,B,C) would correspond to sum(A,B) = C in functional no-
tation. Although this difference may just seem syntactic sugar, the truth is
that the functional notation would allow us building nested expressions that
are much more comfortable from the representational point of view. For
instance, this is so common for arithmetics, that Prolog provides a built-in
predicate ‘is’ capable of evaluating a numeric expression with nested arith-
metic operators, so that we can write a literal like:

X is Y+3*(Z-2*W)

instead of the rule body

mult(2,W,A1), subtract(Z,A1,A2), mult(3,A2,A3), add(Y,A3,X)

which is clearly less readable and more prone to errors. Of course, we could
also build a similar predicate isvec for evaluation of vector expressions, so
that, for instance, we could write now a nested term like:

isvec(sum(vector(1,3),sum(vector(1,1),vector(2,2))), X)

to get the result in X. However, relying on this method means building
a functional evaluation mechanism inside Prolog each time we deal with a
family of evaluable functions. Think, for instance, what would happen if we
wanted to evaluate an expression of the form:

sum(vector(age(John), age(Mary) + 10), vector(2, 3))

The need for dealing with evaluable functions (or operators) and combin-
ing them with Herbrand functions (or constructors) is part of the motivation
of Functional Logic Programming (FLP) [14]. For instance, a fragment1 of
code in the FLP language Mercury could look like:

1We assume that vector was previously declared as a constructor.

2



sum(vector(X,Y),vector(Z,T)) = vector(X+Z,Y+T).

which is a more readable and natural definition of the sum of vectors, and
treats this operator in a more coherent way with respect to the sum of in-
tegers, for instance. FLP languages usually introduce further features from
functional programming like type systems and higher order constructs, but
these are out of the discourse of the current survey.

2 Herbrand Functions in ASP

In the case of Answer Set Programming (ASP), in the past, Herbrand func-
tions have been traditionally considered a trouble to be avoided. The original
definition of the stable model semantics [13] was thought for propositional
programs: the use of variables was understood as a shorthand for their ground
instantiations. As a consequence, the ASP paradigm has mostly inherited
this orientation. ASP can be seen as a constraint-based problem solving
paradigm [20, 24] whose computation methods rely on two fundamental steps:
a grounding phase that replaces variables by their possible instantiations and
a solving phase that computes stable models or answer sets for the result-
ing ground program. The simple introduction of a single function symbol f
would make the Herbrand universe infinite f(c), f(f(c)), f(f(f(c))), . . . and
disable any direct attempt of obtaining a finite ground program. Thus, one
of the distinctive features of ASP with respect to Prolog has traditionally
been that function symbols were forbidden.

In the last years, however, this picture has changed in different ways.
First, from the theoretical point of view, we have nowadays a general defini-
tion of stable model that covers any arbitrary first order theory, thanks to the
definition of Quantified Equilibrium Logic (QEL) [25], a nonmonotonic for-
malism relying on a monotonic intermediate logic, or the equivalent General
Theory of Stable Models [12], a syntactic construct very close to Circum-
scription [22]. Under these extensions, we can even remove the restriction to
Herbrand models, so that assumptions like, for instance, domain closure or
unique names are now optional, at least at a theoretical level. Second, ASP
grounders gradually accept a limited use of function symbols as constructors.
For instance, grounders gringo and lparse allow using Herbrand functions
with a limited nesting, something that, for instance, would allow us repre-
senting vectors with the construct vector(X, Y ), but not lists, since the latter
require arbitrary nesting. The most significative breakthrough in this aspect

3



has been the possibility of grounding ASP programs with arbitrarily nested
Herbrand functions [8] and its implementation with solver DLV-complex [9].
When a program with functions, disjunction and negation satisfies a given
property, so-called being finitely-ground, it has nice computational features:
brave and cautious reasoning become decidable, and its answer sets are com-
putable. An interesting result is that finitely-ground programs can encode
any computable function. As it can be expected, however, checking whether
a program is finitely recursive is undecidable.

3 Evaluable Functions in ASP

While these advances in the interpretation and implementation of Herbrand
functions have made ASP fully comparable to Prolog in this aspect, in the
case of evaluable functions, the state of the art in ASP is at a preliminary
stage, still far away from the situation we find in FLP, for instance. Even
so, the recent bibliography has shown an increasing interest in the topic with
the constant inclusion of contributions related to non-Herbrand functions in
the main conferences related to ASP. In this preliminary stage, most efforts
have been focused on establishing a suitable semantic definition for this kind
of functions, although several implementations are already available. Unfor-
tunately in this case, the amount of contributions is not meaning a similar
increase in scientific progress due to the lack of agreement in the understand-
ing and expected behavior of evaluable functions. While Herbrand functions
do not leave much choices for their semantic treatment (after all, they are a
syntactic concept), evaluable functions can be understood in many different
ways. In the last five years there have been five different proposals and we
are only beginning to understand their formal relations, correspondences and
differences in behavior. We will discuss next each proposal by chronological
ordering, trying to summarize their main features, and potentially strong
and weak points.

3.1 Lin and Wang’s rigid functions

The first of the approaches we consider was introduced by Lin and Wang
in [19]. In this approach functions are complete (or total) in the sense that
any term f(x) is always associated some value in the universe. Furthermore,
the evaluation of a function is what we can call rigid knowledge. Let us

4



explain this in more detail. For the syntactic class of logic programs, all
the approaches can be formulated in terms of a program reduct, a syntactic
transformation in the spirit of the original reduct construction by Gelfond
and Lifschitz [13]. Formally, if we have an interpretation I (or assumption),
candidate model of a program Π, we define a program reduct ΠI by some
transformation on Π that (among other things) removes default negation.
Then we choose some selected model(s) from ΠI and, to form a stable model,
we check that one of them coincides with the initial assumption.

Lin and Wang’s functions are “rigid” in the sense that if we take an
interpretation I to build the reduct ΠI , then the models of ΠI also use
the interpretation of functions fixed by I. So, there is no variability in the
interpretation of functions when deciding whether I is a stable model or not.

Lin and Wang’s formalism is a many-sorted first order language, so that
all constants, variables, predicate arguments, function arguments and values
belong to a predefined type or sort, containing a finite and non-empty set
of elements. As an example, the following would be an encoding of the
Hamiltonian cycle problem:

⊥ ← not arc(X,next(X))

visited(next(0))

visited(next(X)) ← visited(X)

⊥ ← not visited(X)

where each Hamiltonian cycle in the graph corresponds to a stable model.
The cycle is encoded by function next(X) saying which is the next node of
X in the path. The rules above would be accompanied by the following type
and sort definitions:

arc ⊆ node× node next : node −→ node
visited ⊆ node X : node

One of the main advantages of Lin and Wang’s approach is its simplicity.
Since functions are somehow “external” to the model minimization process,
their implementation using an external solver for Constraint Satisfaction
Problems (CSP) is relatively simple2. In fact, Lin and Wang presented a
tool called FASP that relied on a constraint solver backend and showed how

2The process requires computing Clark’s completion and loop formulas in the style
of [18].

5



it resulted competitive with non-functional ASP encodings for problems in-
volving functional dependencies. In particular, in those domains, the use
of functions allowed much smaller results in the grounding phase although,
of course, the computed results are not directly comparable, since FASP
grounding yields a CSP problem with finite domain variables rather than a
ground ASP program with propositional atoms.

From a logical point of view, it was proved in [6] that Lin and Wang’s
approach corresponds exactly to Quantified Equilibrium Logic with static
domains and Herbrand interpretations, which was actually the way in which
domains and functions were treated in the original definition of QEL [25].
Thus, in a sense, FASP can be considered a sorted implementation of the
original semantics presented in [25].

Perhaps a brief explanation about QEL may help us to understand the
logical meaning of rigid total functions. QEL relies on a monotonic interme-
diate logic called Quantified Here-and-There (QHT) (a first order extension
of Heyting’s logic of Here-and-There [15]). Interpretations in QHT have the
form 〈D, σ, Ih, It〉 where D is the universe or set of elements, σ is a mapping
from terms to elements in D, and Ih, It respectively called worlds here and
there, are sets of ground atoms for predicates satisfying Ih ⊆ It. Intuitively, It
informally corresponds to candidate interpretations used to build the reduct
ΠIt whereas Ih would be each possible model of that reduct. An equilibrium
model must satisfy Ih = It and that Ih is minimal fixing It. When 〈D, σ, It, It〉
is an equilibrium model, we say that the first order interpretation 〈D, σ, It〉
is a stable model. Under this setting we say that interpretations are static in
the sense that D and σ are common for worlds here and there (in fact, this
is a standard terminology in intuitionistic and intermediate logics).

The main disadvantage of rigid functions is that they cannot be used for
non-monotonic reasoning (NMR). In particular, there is no way of defining a
function default value without resorting to predicate-based representations of
functions, so that part of the representational advantages of functions would
be lost. Note that function default values are crucial, for instance, if we want
to deal with a functional fluent. For instance, take the location of a block
loc(B) in the Blocks World domain. We would need to specify its inertia
law informally as follows: loc(B) at state i + 1 should have by default the
same value as in state i unless we can find evidence of a change to a different
value.

Generally speaking, if we plan to use evaluable functions for NMR, one
would expect that functions alone should be capable of capturing full ASP

6



by the following simple translation. For each ASP atom p we would define
a 0-ary function with the same name p that ranges in the Boolean domain
{true, false}. Then, we should be able to specify in some way that the
function default value is false. Finally, we would replace each ASP positive
literal p by fp = true and each negative literal not p by p = false. As an
example, the following ASP ground program:

p ← not q

q ← r, not p

r ← not s

would be re-encoded using this technique as the functional logic program:

p = true ← q = false

q = true ← r = true, q = false

r = true ← s = false

Since Lin and Wang’s functions cannot deal with default values, the above
translation in this case would collapse to classical propositional logic (i.e.,
stable models in FASP would just correspond to the classical models of the
original ASP ground program).

3.2 Cabalar’s partial functions

The idea of functions with default values had been explored in the past by
Cabalar and Lorenzo [7] although their formalism was not a proper extension
of stable models, since it did not considered default negation. In [6], Cabalar
introduced such an extension under the name of QELF . This formalism has
two main differences with respect to Lin and Wang’s functions:

(i) functions can be partial, that is, a function f(x) may have no designated
value and be left undefined

(ii) functions are not rigid but flexible instead, that is, we can vary their
meaning when deciding whether an interpretation I is a stable model.

The definition of QELF is a variant of QEL where interpretations have
the form now 〈D, σh, Ih, σt, It〉, that is, we have two differentiated mappings σ
for assigning domain elements to terms. These mappings can now be partial

7



but must respect the condition that if σh(x) is defined, then the interpretation
“there” coincides σt(x) = σh(x). This follows the intuitionistic principle of
knowledge persistence as in the the analogous condition Ih ⊆ It for sets of
atoms.

Note that features (i) and (ii) are actually independent. We can have
partial functions that are rigid: this would mean that we cannot specify
default values for them, but they can be left undefined. A clear example
of this would be, for instance, the division div(x, y) that must be undefined
when y = 0 but whose interpretation is predefined in any context and has not
any particular default value. To force a function to become rigid in QELF

we would include the excluded middle axiom:

f(x) = y ∨ ¬(f(x) = y) (1)

assuming that x and y are universally quantified and that ¬ stands for default
negation. We can also fix total functions with flexible interpretation. In
this way, a function would always be total in the stable models, but for
deciding whether some particular interpretation I is a stable or equilibrium
model, we could vary functions in σh by making them partial. In other words,
minimal models of the reduct ΠIt could leave some functions undefined. As
an example, consider the program:

color(X) = blue← node(X), next(0) = X

where blue is a Herbrand constant. Intuitively, this means that the next node
of 0 will be assigned color blue. When we allow partial functions, color(X)
will be left undefined for any element that is not the next node of 0. If we
add a constraint of the form

⊥ ← node(X), not ∃Y (color(X) = Y ) (2)

for any element X this intuitively means that all nodes in a stable model
must have some defined color3. Then, the resulting program has no stable
models, since for any node X that is not the next of 0, no matter the color
Y we choose for color(X) = Y we will always have a smaller model where
color(X) is left undefined. In other words, there is no evidence in the program
to “complete” the information about the color values for the rest of nodes.

3For a discussion about programs with existential quantifiers in the body see for in-
stance [5, 16].

8



In [6] it was shown that, by removing (i) and (ii) with axioms like (2) and
(1) respectively, we actually obtain Lin and Wang’s rigid functions.

Suppose that we want to represent instead that all nodes have color red
by default. This could be expressed with the rule:

color(X) = red← node(X), not ∃Y (Y 6= red, color(X) = Y )

or in an abbreviated representation

color(X) = red← node(X), not (color(X) # red)

where the ‘ # ’ operator is a kind of difference expressing that the function
value exists, but is different from red.

Similarly, as an example of inertia rule, we could have for instance:

loc(B)i+1 = X ← block(B), loci(B) = X,not (loci+1(B) # X)

Although as it can be imagined, this is the author’s preferred approach,
probably the main objection to Cabalar’s definition when compared to the
others’ is the technical difficulty derived from handling partial functions.
As explained in [6] this difficulty affects to the interpretation of equality
and requires some special syntactic constructs to properly exploit nested
functional terms in logic programs. To understand some of the possible
issues that may arise, consider for instance a theory containing the single
atom:

visited(next(0)). (3)

Since we have not provided information about next(0) we would expect a
unique stable model with next(0) undefined and visited(X) false for any
element X. However, forcing the truth of an atom means that its arguments
must be defined and thus, the program above has no stable models. In
practice, logic program rules must be translated by reinforcing the rule body
with definedness conditions for all terms in the head. Thus, when (3) is
understood as a program fact, it is actually translated as the formula:

visited(X)← next(0) = X

so that next(0) = X in the body imposes the condition that next(0) is
defined with value X. The definitions in [6] were implemented in a system
called lppf that deals with partial functions and accepts nested functional
terms.

9



3.3 Lifschitz’s intensional functions

In [17], Lifschitz introduced a third approach for functions in ASP called
Intensional Functions (IF). In this formalism, functions are total and flexible,
but unlike QELF , are never left undefined. In this way, when we consider
models of the program reduct ΠI we may make an interpretation of functions
different from the one in I, but still total. To stress the difference between
QELF and IF suppose that I fixes the assignment color(1) = blue. Then,
in QELF models of ΠI could either make color(1) = blue or leave color(1)
undefined. In IF, models of ΠI could assign any value (not necessarily blue)
such as color(1) = red, for instance, but will never leave color(1) undefined.

The original motivation for Lifschitz’s approach has a close connection
to the idea of causal justification (inspired by McCain and Turner’s causal
logic [21]). Informally speaking, any function value in a stable model must
be justified in the sense that no other value would make true the “same”
theory. When compared to the usual stable model condition, rather than
checking that a candidate interpretation I is minimal among models of ΠI ,
IF requires instead that I is the only model of ΠI (regarding interpretation
of functions).

One of the nicest features of IF is the simple and intuitive representation
we can get for a function’s default value. The formula:

f(x) = a← ¬(f(x) 6= a) (4)

means that the default value for f(x) is a. In fact, the reading of the formula
expresses this idea in a straightforward manner: f(x) is a if we cannot prove
that it is different from a.

The main disadvantage of IF is that it is closer to non-monotonic causal
logic than to the behavior that one would expect from logic programming
under the stable models semantics. The following are a pair of examples
extracted from [3] whose IF semantics is counter-inutitive from the ASP
point of view. The program Π1:

d = 2← c = 1 d = 1

has an IF-stable model I where I(c) = 2 and I(d) = 1 but there is no evidence
in the program for assigning I(c) = 2. As a second example, the disjunctive
program Π2:

c = 1 ∨ d = 1 c = 2 ∨ d = 2

10



has no IF-stable models whereas, if we thought of equalities above as ground
atoms, one would probably expect to get two stable models, one with c =
1, d = 2 and the other with d = 1, c = 2.

One final remark confirming that IF is an approach less close to ASP is
the fact that its formulation in analogous terms to equilibrium logic requires
abandoning the monotonic basis of the logic of Here-and-There and replacing
it instead by a different formalism called Bi-state logic [10].

3.4 Bartholomew and Lee’s intensional functions

In [3], Bartholomew and Lee introduced a reformulation of intensional func-
tions (we will call BL) that keeps the main functional properties of IF, but
provides a closer behavior to ASP. As in IF, functions are flexible and always
total, but in BL, the model minimization condition is taken up again instead
of requiring an unique causal explanation.

Without entering into formal details, BL keeps the nice representational
properties of IF such as the natural formulation of default values as in (4).
On the other hand, programs like Π1 and Π2 seen before have a closer in-
terpretation to ASP. For instance, Π1 has no stable model, since we have no
evidence in the program to fix any value for c. Note that this lack of informa-
tion in QELF would be accommodated in a different way, yielding a unique
stable model with c undefined and d = 1. Example Π2 in BL yields the two
expected stable models corresponding to {d = 1, c = 2} and {c = 1, d = 2}.

From a logical point of view, it was recently (and independently) shown
in [11] and [4] that BL corresponds to a variant of Quantified Equilibrium
Logic that allows flexible total functions. In fact, [4] contains a detailed
formal comparison between BL and QELF that has clarified the picture,
showing relevant differences, but also an important syntactic class where both
semantics coincide (under the assumption of total functions). In particular,
Bartholomew and Lee define a class of theories for which BL and QELF

coincide: these are called c-plain theories and correspond to the absence of
nested functions or equalities between functions. This is an important result
since, as shown in [6] for logic programs and later in [4] for any arbitrary
theory, it is always possible to reduce a formula in QELF to a strongly
equivalent expression in c-plain form. In other words, we can always “unfold”
nested functions in QELF . To put an example, the formula f(g(x), y) = h(y)
with functions f, g, h can be reformulated by introducing auxiliary variables
as ∃z, t(g(x) = z ∧ h(y) = t ∧ f(z, y) = t). This mechanism is well known in

11



Functional Logic Programming (it has received the name of “flattening” [23,
26]) and was the basic technique used in system lppf to transform functional
logic programs into regular ASP.

Unfortunately, function unfolding in BL does not preserve strong equiv-
alence in the general case. An example extracted from [4] is the simple
formula f = g comparing two 0-ary functions. In QELF this formula is
strongly equivalent to ∃x, y(f = x ∧ g = y ∧ x = y) but in BL no. For
instance, if we take a universe with the three elements {1, 2, 3}, f = g would
have no BL-stable models, whereas its unfolding has three BL-stable models
with f = g = 1, f = g = 2 and f = g = 3 respectively. As we explained
before, the latter is the meaning assigned by QELF for both formulas.

The question whether c-plain formulas constitute a normal form in BL,
as does happen in QELF , is still an open problem. There could perhaps
exist a different syntactic transformation that may allow us to obtain, from
an arbitrary formula with nested functions, a BL-strongly equivalent c-plain
formula. Finding such a transformation is interesting because it may also
help to understand the meaning of nested functions in this semantics.

3.5 Balduccini’s partial functions

The last approach to go on stage was presented by Balduccini in [2] and con-
sisted in a combination of partial functions with strong negation. The main
motivation of this approach was obtaining an efficient implementation [1],
called ASP{f}, that was able exploit functional dependences to save ground-
ing effort. This was an important result, since it obtained an improvement
comparable to Lin and Wang’s FASP system, but allowing partial functions
and using an ASP solver as a backend.

However, as recently proved in [4], Balduccini’s approach does not mean a
significative innovation with respect to QELF . In fact, when strong negation
is not involved, both semantics coincide (in the restricted syntactic fragment
for which Balduccini’s semantics is defined). Furthermore, [4] also showed
that strong negation can be encoded as a derived operator in QELF .

4 Conclusions

In this informal survey, we have reviewed the main current approaches for
interpreting evaluable functions in ASP. As a summary, QELF deals with

12



flexible, partial functions and generalizes both Lin and Wang’s rigid func-
tions and Balduccini’s ASP{f} language. In fact, the latter can be under-
stood as an implementation of QELF for a syntactic subset. On the other
hand, Bartholomew and Lee’s (total) intensional functions (BL) are close to
Lifschitz’s approach in its simplicity but, at the same time, improve some
counterintuitive results from the latter (when understood from an ASP per-
spective). Finally, QELF and BL have the same behavior when functions
are not nested or compared using equality, but differ in the general case.

The most important open topic for the immediate future is reaching an
agreement on a suitable interpretation of evaluable functions and extending
the current prototype systems to fully operative tools or to language exten-
sions in the main ASP solvers.

References

[1] Marcello Balduccini. An answer set solver for non-herbrand programs:
Progress report. In ICLP Technical Communications), pages 49–60,
2012.

[2] Marcello Balduccini. A “conservative” approach to extending answer
set programming with nonherbrand functions. In Esra Erdem, Joohyung
Lee, Yuliya Lierler, and David Pearce, editors, Correct Reasoning, pages
24–39. Springer-Verlag, 2012.

[3] Michael Bartholomew and Joohyung Lee. Stable models of formulas with
intensional functions. In Proceedings of International Conference on
Principles of Knowledge Representation and Reasoning (KR’12), pages
2–12, 2012.

[4] Michael Bartholomew and Joohyung Lee. On the stable model semantics
for intensional functions. In Proceedings of International Conference on
Logic Programming (ICLP’13), 2013. (to appear).

[5] Pedro Cabalar. Existential quantifiers in the rule body. In Proc. of the
23rd Workshop on (Constraint) Logic Programming (WLP’09), 2009.

[6] Pedro Cabalar. Functional answer set programming. Theory and Prac-
tice of Logic Programming, 10(2-3):203–233, 2011.

13



[7] Pedro Cabalar and David Lorenzo. Logic programs with functions and
default values. In Proc. of the 9th European Conf. on Logics in AI
(JELIA’04) (LNCS 3229), pages 294–306, 2004.

[8] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable functions in ASP: Theory and implementation. In
24th Intl. Conf. on Logic Programming, volume 5366 of Lecture Notes
in Computer Science, pages 407–424. Springer-Verlag, 2008.

[9] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. An ASP system with functions, lists, and sets. In 10th Intl. Conf.
on Logic Programming and Nonmonotonic Reasoning, volume 5753 of
Lecture Notes in Computer Science, pages 483–489. Springer-Verlag,
2009.

[10] Luis Fariñas del Cerro, David Pearce, and Agust́ın Valverde. Bi-state
logic. In Esra Erdem, Joohyung Lee, Yuliya Lierler, and David Pearce,
editors, Correct Reasoning, pages 265–278. Springer-Verlag, 2012.

[11] Luis Fariñas del Cerro, David Pearce, and Agust́ın Valverde. FQHT: The
logic of stable models for logic programs with intensional functions. In
Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI’13), 2013. (to appear).

[12] P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models.
In Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 372–379, 2007.

[13] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proc. of the 5th Intl. Conf. on Logic Program-
ming, pages 1070–1080, 1988.

[14] Michael Hanus. The integration of functions into logic programming:
from theory to practice. Journal of Logic Programming, 19,20:583–628,
1994.

[15] Arend Heyting. Die formalen Regeln der intuitionistischen Logik.
Sitzungsberichte der Preussischen Akademie der Wissenschaften,
Physikalisch-mathematische Klasse, pages 42–56, 1930.

14



[16] Joohyung Lee and Ravi Palla. System F2LP - computing answer sets
of first-order formulas. In Proc. of the 10th Intl. Conf. on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’09), pages 515–521,
2009. Lecture Notes in Artificial Intelligence 5753.

[17] Vladimir Lifschitz. Logic programs with intensional functions. In Pro-
ceedings of International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’12), 2012.

[18] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program
by sat solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[19] Fangzhen Lin and Yisong Wang. Answer set programming with func-
tions. In Proc. of the 11th Intl. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR’08), 2008.

[20] V. Marek and M. Truszczyński. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-
Year Perspective, pages 169–181. Springer-Verlag, 1999.

[21] Norman McCain and Hudson Turner. Causal theories of action and
change. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI’97), pages 460–465, 1997.

[22] J. McCarthy. Circumscription: A form of non-monotonic reasoning.
Artificial Intelligence, 13:27–39, 1980.

[23] Lee Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Intl.
Symp. on Programming Language Implementation and Logic Program-
ming, number 528 in LNCS, pages 15–26. Springer-Verlag, 1991.

[24] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25:241–273, 1999.

[25] David Pearce and Agust́ın Valverde. Towards a first order equilibrium
logic for nonmonotonic reasoning. In Proc. of the 9th European Conf.
on Logics in AI (JELIA’04), pages 147–160, 2004.

[26] Céline Rouveirol. Flattening and saturation: Two representation
changes for generalization. Machine Learning, 14(1):219–232, 1994.

15


