Introduction
GIBBDIILIBBDIIGIBBDIISIBBD I

Four Components of a Computer System

user user user user
1 2 3 e n
A A A f 3
L 4 k4 ki h 4
compiler assembler text editor o database
system

system and application programs

operating system

computer hardware

Operating System Concepts — 7t Edition, Jan 12, 2005 1.2

Operating System Modules

[\ Library User level

Tema N system call interface , kernel level
Sistema \\
: I F I Inter process
Fichero he SUDSy8tem 4 communication
P
Buffer Caché Process Control @ed@ Tema Procesos
— Subsystem e
character| block A Managemen > Tema Memoria
_ t A
Tema /,Devrceﬁﬂﬁf — .
Entrada/C \
' < y— kernel level
Salida — Hardware control—
hardware User level

Operating System Concepts — 7t" Edition, Jan 12, 2005 1.3 Silberschatz, Galvin and Gagne ©2005

Storage-Device Hierarchy

storage capacity access time
A
_ . registers Ij *
a i | T,
= L h - | primary I
- cache storage O
9 H Il
volatile L vV
storage main memory
______________________ e e
nonvolatile v
storage nonvolatile memory secondary
A I [storage
i Vv
hard-disk drives
|
L V
. optical disk _
O (]
o A I tertiary 3
= = <}
L Ll V storage -
magnetic tapes
Y \

Operating System Concepts — 7t Edition, Jan 12, 2005 1.4

Storage-Device Hierarchy

Level 1 2 3 ! 5
Name registers cache main memory solid-state disk | magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-015 D5l 80-250 25,000-50,000 5,000,000
Bandwidth (MB/sec) |20,000-100,000 |5,000-10,000 | 1,000-5,000 500 20-150
Managed by compiler hardware operating system | operating system |operating system
Backed by cache main memory | disk disk disk or tape

Characteristics of Various Types of Storage

Operating System Concepts — 7t Edition, Jan 12, 2005

15

‘:!: o
Silberschatz, Galvin and Gagne ©2005

File System Implementation

m directory
v file index block

o] 1D\2|:| 3] Jeep -

16

20[_l21[Jo2[A23
24[]25[Joe[J27[]

28 J29[J30[J31[]
w

Example of
Indexed Allocation

B », 3 g

Operating System Concepts — 7th Edition, Jan 12, 2005 1.6 Silberschatz, Galvin and Gagne ©2005

Memory Management: Virtual Memory

N
. N~

proiram \ swap out o N 2 e |
o st o 70
g 8] 9 Ho[4[]
1 120 113 114 15[]

program

B >\ swap in 16D17Q18g19@
J 20[121[j22] 23] |

-

main
memory

Operating System Concepts — 7th Edition, Jan 12, 2005 1.7 Silberschatz, Galvin and Gagne ©2005

Multiprogramming

® Multiprogramming needed for efficiency
e Single user cannot keep CPU and I/O devices busy at all times

e Multiprogramming organizes jobs (code and data) so CPU always has
one to execute

e A subset of total jobs in system is kept in memory
e One job selected and run via job scheduling
e When it has to wait (for 1/0O for example), OS switches to another job

®m Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running,
creating interactive computing

e Response time should be < 1 second

e Each user has at least one program executing in memory = process
e |f several jobs ready to run at the same time = CPU scheduling
o

If processes don't fit in memory, swapping moves them in and out to
run

e Virtual memory allows execution of processes not completely in
memory

Operating System Concepts — 7t" Edition, Jan 12, 2005 1.8 Silberschatz, Galvin and Gagne ©2005

Memory Layout for Multiprogrammed System

: operating system
job 1
job 2
job 3
job 4
512M

Operating System Concepts — 7t Edition, Jan 12, 2005 1.9

Basic idea of Multiprogramming

- Programa 1 - , Programa 2 _ -

Pl INACTIVO Pl INACTIVO PL =~ P2 IINACTIIV(I) P2 INACTIVO P2

Actividad
del procesador

—» Tiempo

(a) Ejecucion secuencial

.+——— Programa |

<+——— Programa 2

= Tiempo

(b) Ejecucién multiprogramada

ey,

Operating System Concepts — 7t" Edition, Jan 12, 2005 1.10 Silberschatz, Galvin and Gagne ©2005

kernel Architecture (UNIX)

User program

ey

User level

l T system call interface .

I kernel level

J'Fi[e'Subsysloa-m ~

Buffer, Cache Process Control

Subsystem

character‘ bl::vck

+ Device driver

Inter process
communication

Scheduler

Memory
Managemen
t

‘ v

Hardware control

| kernel level

hardware

| User level

Operating System Concepts — 7t Edition, Jan 12, 2005 1.11

System Calls

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.hs>

ssize t read (int fd, void *buf, size t count)
return function parameters
value name

A program that uses the read () function mustinclude the unistd.h header
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read

® void *buf—a buffer into which the data will be read

®* size_t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

System Calls

®m [nterrupt driven by hardware
B Software error or request creates exception or trap
e Division by zero, request for operating system service

m Other process problems include infinite loop, processes modifying
each other or the operating system

B Dual-mode operation allows OS to protect itself and other system
components

e User mode and kernel mode
e Mode bit provided by hardware

» Provides ability to distinguish when system is running user
code or kernel code

» Some instructions designated as privileged, only
executable in kernel mode

» System call changes mode to kernel, return from call resets
it to user

Operating System Concepts — 7t Edition, Jan 12, 2005 1.12

System Calls and Software Interrupts

x86 PC hardware interrupts

IRQ8

IRQ9
IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
IRQ15

Figure 14-11 8259 Chips in Master/Slave
Relation for 286 and x86 PCs

INTA l INTA
INTR INTR
8259
MASTER 50266
SPIEN 80386
80486
Pentium
T T NMI
Vee
D7 of
System board Port
Parity check 70H
1O channel

parity check (expansion slot)

IRQ

Usage

system timer (cannot be changed)

keyboard controller (cannot be changed)

cascaded signals from IRQs B-15

second RS-232 serial port (COMZ2: in Windows)

first R5-232 serial port (COM1: in Windows)

parallel port 2 and 3 or sound card

floppy disk controller

first parallel port

real-time clock

open interrupt

open interrupt

open interrupt

PS/2 mouse

math coprocessar

primary ATA channel

=lzlzlR2lzlo|e|~|o| o=

secondary ATA channel

Operating System Concepts — 7t Edition, Jan 12, 2005

1.13

HARDWARE INTERRUPT
VERSUS
SOFTWARE INTERRUPT

HARDWARE
INTERRUPT
EEEEEEEEEEEEEEEEEESR
An interrupt that is
generated from an
external device

Generated by external
devices
EEEEEEEEEEEEEEEEEEN
Asynchronized events
EEEEEEEEEEEEEEEEENESR
Do not increment the
program counter
EEEEEEEEEEEEEEEEEEN
Do not get a higher
priority

SOFTWARE
INTERRUPT

A type of interrupt that is
caused by an instruction
in the program

Generated by executing
instructions

Synchronized events

Increase the program
counter

Get a higher priority

Visit www.PEDIAA.com

Silberschatz, Galvin and‘Gagne 05

System Calls

user application

open()
user
mode
system call interface
kernel
mode A
— open()
Implementation
i » of open()
. system call
return
Operating System Concepts — 7th Edition, Jan 12, 2005 1.14 Silberschatz, Galvin and Gagne ©2005

System Calls: Transition from User to
Kernel Mode

B Timer to prevent infinite loop / process hogging resources
e Set interrupt after specific period
e Operating system decrements counter
e When counter zero generate an interrupt

e Set up before scheduling process to regain control or terminate
program that exceeds allotted time

user process
user moqe
user process executing » calls system call return from system call (mode bit = 1)
\ Fa
A 7
* 7
kernel trap return
= mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0))

Operating System Concepts — 7t Edition, Jan 12, 2005 1.15

System Calls: Transition from User to
Kernel Mode

MEMORIA
PROCESON ‘W
L MODO
USUARIO
PROCESO 2
Rutina de biblioteca
Yot PROCESO 1
LOAD R8, FORK_SYSTEM_CALL
|1 TRAP
1 ALOADLRO «—
= SERVICIO f 4
= ERVICIO fork
R8 | FORK—SYSTEM—CALJ — LOAD RS, resultado —
e R de TRAP -
e = g T R9 [NUCLEO
TABLA S
5
SISTEMA OPERATIVO J
PROCESO RUTINA DE TRAP & TRATAMIENTO RUTINA DE
DE USUARIO BIBLIOTECA DE INTERRUP. SERVICIO

T 1 TR s e sl

PROCESO DE USUARIO HW SISTEMA OPERATIVO

Operating System Concepts — 7t Edition, Jan 12, 2005 1.16

System Calls

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.

Windows
Process CreateProcess()
control ExitProcess()

File
management

Device
management

Information
maintenance

Communications

Protection

Operating System Concepts — 7t Edition, Jan 12, 2005

WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

1.17

Unix

fork()
exit()
wait ()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe(Q)
shm_open ()
mmap ()

chmod ()
umask ()
chown ()

System Calls

C program invoking printf() library call, which calls write() system call

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()

{

—printf ("Greetings"); |«

.
return 0;

}

user
mode

standard C library

kernel
mode

write()

write()
system call

Operating System Concepts — 7t Edition, Jan 12, 2005 1.18

	Introduction
	Four Components of a Computer System
	Operating System Modules
	Storage-Device Hierarchy
	Storage-Device Hierarchy
	File System Implementation
	Memory Management: Virtual Memory
	Multiprogramming
	Memory Layout for Multiprogrammed System
	Basic idea of Multiprogramming
	System Calls
	System Calls
	System Calls and Software Interrupts
	System Calls
	System Calls: Transition from User to Kernel Mode
	System Calls: Transition from User to Kernel Mode
	System Calls
	System Calls

