
Operating Systems

Grado en Informática. Course 2025-2026

Lab assignment 0: Introduction to the C programming language

To get acquainted with the C programming language we’ll start to code a
shell, coding of this shell will be continued in next lab assignments. In this
shell we have to keep two lists: one for the commands input to the shell, and
other ot the shell’s opened files

We’ll start with a nearly empty shell, which is basically a loop that

� prints a prompt

� reads from the standard input a line of text which includes a command
(with its arguments).

� stores this command in a list of commands that it has been given, each
with its order number in a list we’ll call the historic of commands.

� separates the command and its arguments

� processes the comand with its arguments

At this moment this shell has to understand only the commands described
below. In the next lab assignments we will be COMPLETING this shell:
we BUILD lab assignment 1 ON the code of lab assigment 0, lab
assigment 2 ON the code of lab assigment 1 and so on

This shell must also have the ability of opening and closing files with the open
and close system calls (DO NOT USE THE fopen() and fclose() library
funcions). It can also duplicate file descriptors (with the dup system call).
The shell must keep a list of its open files (simply enough: it adds an item
to this list each time it successfully opens a file with the command open and
removes an entry each time it closes a file (successfully) with the command
close). We can examine with the appropiate command (openor listopen),
and it must be coherent with the list the system has (available with lsof -p

shell pid in linux, or procstat -f shell pid in FreeBSD).

The provided file ayudaP0.c provides some code that can be used for this
lab assignment.

authors Prints the names and logins of the program authors. authors -l prints
only the logins and authors -n prints only the names

getpid Prints the pid of the process executing the shell.

getpid -p Prints the pid of the shell’s parent process.

1



chdir [dir] Changes the current working directory of the shell to dir (using the
chdir system call). When invoked without auguments it prints the
current working directory (using the getcwd system call).

getcwd Prints the current working directory of the shell (using the getcwd sys-
tem call).

date [-t|-d] Prints the current date in the format DD/MM/YYYY and the current
time in the format hh:mm:ss.

date -d Prints the current date in the format DD/MM/YYYY

date -t Prints and the current time in the format hh:mm:ss.

hour Prints and the current time in the format hh:mm:ss. (same as date -t)

historic [N|-N] Shows the historic of commands executed by this shell. In order to
do this, a list to store all the commands input to the shell must be
implemented.

– historic Prints all the comands that have been input with their
order number

– historic N Repeats command number N (from historic list)

– historic -N Prints only the lastN comands

historic [-clear|-count] Clear the historic list or report its number of elements

– historic -count Reports how many commands there are on the
historic list

– historic -clear Clears the historic list

Students are free to decide whether historic stars numbering commands
at 0 or at 1. Hypothetically, there’s a scenario where trying to repeat
a historic command could yield an infinite loop or a stack overflow
(depending on how it is coded), so students may choose to not store
calls to historic N itself in the historic list if they want so (See the
NOTES ON LIST IMPLEMENTATIONS at the end of this document)

open [file] mode Opens a file and adds it (together with the file descriptor and the
opening mode to the list of shell open files. For the mode we’ll use cr for
O CREAT, ap for O APPEND, ex for O EXCL, ro for O RDONLY,
rw for O RDWR, wo for O WRONLY and tr for O TRUNC.
Open without arguments lists the shell open files. For each file it lists
its descriptor, the file name and the opening mode. The shell will
inherit from its parent process its open descriptors -usually 0, 1 and 2
(stdin, stout, and stderr). To get the opening mode from a descriptor
(df) we can use fcntl(fd,F GETFL).

close [df] Closes the df file descriptor and eliminates the corresponding item from
the list

2



dup [df] Duplicates the df file descriptor (using the dup system call, creating the
corresponding new entry on the file list

listopen Lists the shell open files, This is the same as the open command without
arguments

infosys Prints information on the machine running the shell (as obtained via
the uname system call/library function)

help [cmd] help displays a list of available commands. help cmd gives a brief help
on the usage of comand cmd

quit Ends the shell

exit Ends the shell

bye Ends the shell

IMPORTANT

� This program should compile cleanly (produce no warnings even when
compiling with gcc -Wall)

� NO RUNTIME ERROR WILL BE ALLOWED (segmenta-
tion, bus error . . . ), unless where explicitly spcified. Programs
with runtime errors will yield no score.

� This program can have no memory leaks (please use valgrind to check)

� When the program cannot perform its task (for whatever reason, for
example, trying to change the current working directory to a directory
that does not exist or that shell has not enough privileges), it should
inform the user, giving an appropiate description of the error such as
the one given by strerror(), perror(), sys errlist[errno] . . .

� All input and output in the shell must be done through the standard
input and the standard output. We can use EITHER the (read(0,
, ) and write(1, ,) pair OR the fgets and printf pair. Mixing read
and write with fgets and printf for the shell’s input/output is strongly
discouraged

� Executable files of an implementation of this shell are provided. Please
check out them for any doubts.

� Students must use ONE OF THE LIST IMPLEMENTATIONS co-
mented below.

Information on the system calls and library functions needed to
code this program is available through man: (printf, fgets, read, write,
exit, getpid, getppid, getcwd, chdir, time, open, close, dup . . . ).

CLUES

3



A shell is basically a loop

while (!terminado){

imprimirPrompt();

leerEntrada();

procesarEntrada();

}

imprimirPrompt() and leerEntrada() can be as simple as calls to printf y
gets (there’s a reason why fgets() should be used instead of gets())

The first step when processing the input string is splitting it into words.
For this, the strtok library function comes in handy. Please notice that
strtok does not allocate memory neither does it copy strings, it just breaks
the input string by inserting end of string (’\0’) characters. The following
function splits the string pointed by cadena (suposedly not null) into a NULL
terminated array of pointers (trozos). The function returns the number of
words that were in cadena

int TrocearCadena(char * cadena, char * trozos[])

{ int i=1;

if ((trozos[0]=strtok(cadena," \n\t"))==NULL)

return 0;

while ((trozos[i]=strtok(NULL," \n\t"))!=NULL)

i++;

return i;

}

NOTES ON LIST IMPLEMENTATION

� the implementations of list should consist of the data types and the
access funtions. All access to the list should be done used the afore-
mentioned access functions.

� students can choose from one of these three list implementations

0) linked list: The list is composed of dynamically allocated nodes.
Each node has some item of information and a pointer to the fol-
lowing node. The list itself is a pointer to the first node, when the
list is empty this pointer is NULL, so creating the list is asign-
ing NULL to the list pointer, thus the functions CreateList,

InsertElement and RemoveElement must receive the list by ref-
erence as they may have (case of inserting or removing the first
element) to modify the list. There can also be used a double linked

4



version of this list (each node has two pointers)

1) linked list with head node: Similar to the linked list except
that the list itself is a pointer to an empty (with no information)
first node. Creating the list is allocating this first element (head
node). CreateList must receive the list by reference whereas
InsertElement and RemoveElement can receive the list by value.
There can also be used a double linked version of this list (each
node has two pointers)

2) array of pointers; The list is an array (either statically or dy-
namically allocated) of pointers. Each pointer points to one ele-
ment in the list which is allocated dynamically. For the purpose
of this lab assignment we can assume, should we want so, this
statically allocated array dimension to be 4096, which should be
declared a named constant, and thus easily modifiable. To imple-
ment the list with this array we can use either a NULL terminated
array or we can use aditional integers. We could also make the
list completely dynamic by using a dynamically allocated pointer
instead the fixed size array of pointers

WORK SUBMISSION

� Work must be done in pairs.

� All code must be in a folder named P0 (capital P). A zip file (p0.zip)
containing that very directory (together with its files) is what is going
to be submitted

� The name of the main program file will be p0.c in a folder named P0.
Program must be able to be compiled with gcc p0.c Alternatively a
Makefile can be supplied in the folder P0 so that the program can be
compiled with just make. The final executable will be named a.out

� Only one of the members of the workgroup will submit the source code.
The names and logins of all the members of the group should
be in the source code of the main program (at the top of the file,
as comments)

� DEADLINE: September, Friday the 26th. This lab assignment will
yield no score, neither will it be evaluated. However all the code
for this assigmnet must be reutilized for the following assigments.
This assigment will also help get acquainted with the submission pro-
cedure of all of the following lab assignments (from the next assign-
ment on, work wrongly submitted will no be evaluated)

� Submission procedure will be announced at a later date

5


