

Unix File System

UNIX FILE SYSTEM J. Santos

2

1. Introduction to the UNIX File System: logical vision

Logical structure in each FS (System V):

BOOT SUPERBLOCK INODE LIST DATA AREA

Silberschatz, Galvin and Gagne ©2005
Operating System Concepts – 7th Edition,
Feb 6, 2005

Related commands: du,
df, mount, umount, mkfs

UNIX FILE SYSTEM J. Santos

3

More examples:

Mounting a second disc:

 mount -t ext4 /dev/hda1 /home2

Mounting a CD unit:

 mount -r -t iso9660 /dev/scd0 /cdrom

Mounting a pendrive:

 mount -w -o noatime /dev/sda1 /memstick

Unmounting that pendrive:

 umount /dev/sda1

 or

 umount /memstick

Related commands: lsblk,

 (sudo) blkid, cfdisk, parted

 Mount
Option Description

auto and
noauto

The Linux "auto" mount option allows the the device to be mounted automatically at bootup. The Linux "auto"
mount option is the default option. You can use the "“noauto" mount option in /etc/fstab, if you don't want the
device to be mounted automatically. With the Linux noauto mount option, the device can be mounted only
explicitly and later you can use "mount -a" command to mount the devices listed in Linux /etc/fstab file.

user and
nouser

The Linux "user" mount option allows normal users to mount the device, whereas the Linux "nouser" mount
option allows only the super user (root) to mount the device. "nouser" is the default mount option.

exec and
noexec

"exec" mount option allows you to execute binaries stored on that partition and "noexec" option will prevent it.
"exec" is the default Linux mount option.

ro The Linux "ro" (Read Only) mount option is used to mount the filesystem read-only.
rw The Linux "rw" (Read Write) mount option is used to mount the filesystem read-write.

sync
The "sync" mount option specifies the input and output to the filesystem is done synchronously. When you copy
a file to a removable media (like floppy drive) with "sync" option set, the changes are physically written to the
floppy at the same time you issue the copy command.

async

The "async" mount option specifies the input and output to the filesystem is done asynchronously. When you
copy a file to a removable media (like floppy drive) with "async" option set, the changes are physically written to
the floppy some time after issuing the copy command. If "async" option is set and if you remove the media
without using the "unmount" command, some changes you made may be lost.

defaults Uses the default options that are rw, suid, dev, exec, auto, nouser, and async. Usually the Linux operating
systems use this option in /etc/fstab file.

UNIX FILE SYSTEM J. Santos

4

Typical directory structure in an UNIX platform.

Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7th Edition, Feb 6, 2005

UNIX FILE SYSTEM J. Santos

5

Directories and their description

• / : The slash / character alone denotes the root of the filesystem tree.

• /bin : Stands for “binaries” and contains certain fundamental utilities, such as ls, cp, rm,
bash, which are generally needed by all users.

• /sbin : Binaries related to administration utilities, such as fsck, mkfs and mount.

• /boot : Contains all the files that are required for successful booting process.

• /dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-
devices.

• /etc : Contains system-wide configuration files and system databases. Originally also
contained “dangerous maintenance utilities” such as init, but these have typically been
moved to /sbin or elsewhere.

• /home : Contains the home directories for the users.

• /lib : Contains system libraries, and some critical files such as kernel modules or device
drivers.

• /media : Default mount point for removable devices, such as USB sticks, media players,
etc.

• /mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example,
if the system uses multiple hard disks or hard disk partitions. It is also often used for
remote (network) filesystems, CD-ROM/DVD drives, and so on.

• /proc : procfs virtual filesystem showing information about processes as files.

• /root : The home directory for the superuser “root” – that is, the system administrator. This
account’s home directory is usually on the initial filesystem, and hence not in /home (which
may be a mount point for another filesystem) in case specific maintenance needs to be
performed, during which other filesystems are not available. Such a case could occur, for
example, if a hard disk drive suffers physical failures and cannot be properly mounted.

• /tmp : A place for temporary files. Many systems clear this directory upon startup; it might
have tmpfs mounted atop it, in which case its contents do not survive a reboot, or it might
be explicitly cleared by a startup script at boot time.

• /usr : Originally the directory holding user home directories, its use has changed. It now
holds executables, libraries, and shared resources that are not system critical, like the X
Window System, KDE, Perl, etc. However, on some Unix systems, some user accounts
may still have a home directory that is a direct subdirectory of /usr, such as the default as
in Minix. (on modern systems, these user accounts are often related to server or system
use, and not directly used by a person).

• /usr/bin : This directory stores all binary programs distributed with the operating system
not residing in /bin, /sbin or (rarely) /etc.

• /usr/include : Stores the development headers used throughout the system. Header files
are mostly used by the #include directive in C/C++ programming language.

• /usr/lib : Stores the required libraries and data files for programs stored within /usr or
elsewhere.

• /var : A short for “variable.” A place for files that may change often – especially in size, for
example e-mail sent to users on the system, or process-ID lock files.

• /var/log : Contains system log files.

• /var/mail : The place where all the incoming mails are stored. Users (other than root) can
access their own mail only. Often, this directory is a symbolic link to /var/spool/mail.

• /var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

• /var/tmp : A place for temporary files which should be preserved between system reboots.

UNIX FILE SYSTEM J. Santos

6

Directory /usr/include contains C file headers (stdio.h, math.h, string.h, …), not libraries!
Two clasess of libraries in directory /usr/lib:

• Static libraries (*.a)
• Dynamic libraries (*.so)

Example: #include <stdio.h>

 #include <math.h>

 main(){

 float x,y;

 y=sin(x);

 printf(“\nsin (%f)= %f”, x, y);

 }

Static linking:
When compiling/linking: gcc example.c –lm

Dynamic linking:
When compiling/linking: gcc example.c –lm

Specifies the “extra” library required by the
linker
The library is /usr/lib/libm.a

The file a.out is self-sufficient since it has all the code (the
linker inserts the code of function sin() in a.out).
Statically linked files consume more disk and memory as all
the modules are already linked

The linker uses the dynamic version of the
library: /usr/lib/libm.so

The code of the sin() function is not incorporated in the file a.out.
That code is searched (shared memory) in run-time of the code.
Dynamically linked files consume less disk and memory, and the
binaries (a.out) do not need to be compiled/linked when new
versions of the libraries are available.

Last question: Where is the code of C function printf()?

The answer is …….. the standard C library: /usr/lib/libC.a

/usr/lib/libC.so

UNIX FILE SYSTEM J. Santos

7

2. Introduction to the UNIX File System: physical vision of disk
partitions

Partitions of the disk in a PC

Master Boot Record structure

Information in each partition

UNIX FILE SYSTEM J. Santos

8

The widespread MBR partitioning scheme, dating from the early 1980s, imposed limitations which
affected the use of modern hardware. Intel therefore developed a new partition-table format in the late
1990s, GPT, which most current OSs support.

http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Intel

UNIX FILE SYSTEM J. Santos

9

2.1 System V vs. BSD (Fast File System)

BSD: Blocks and fragments. BSD uses blocks and a possible last “fragment” to assign data
space for a file in the data area.

Example:

All the blocks of a file are of a large block size (such as 8K), except the last.

The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill out the
file.

Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment (which
would not be filled completely).

Logical structure in each FS (System V):

BOOT SUPERBLOCK INODE LIST DATA AREA

Logical structure in each FS (BSD):

BOOT SUPERBLOCK CILINDER
GROUP 0

CILINDER
GROUP1

……… CILINDER
GROUP N

 CG i

SUPERBLOCK

(replicated)
CILINDER GROUP i HEAD INODE LIST of

CILINDER GROUP i
DATA AREA of
CILINDER GROUP i

Organization of the disk in cylinder
groups [Márquez, 2004]

UNIX FILE SYSTEM J. Santos

10

3. Internal representation of files

3.1 Inodes

• The operating system associates an inode to
each file.

• We have to differentiate between:

o Inodes in disk, in the Inode List.

o In memory, in the Inode Table, with a

similar structure to the Buffer Cache.

Inode in disk

OWNER

GROUP

FILE TYPE

ACCESS PERMISSIONS

FILE DATES: access, data

modification, inode

modification

Number of LINKS

SIZE

DISK ADDRESSES

UNIX FILE SYSTEM J. Santos

11

3.1.1 File types & file permissions

Related command (and system call) to the file mode: chmod
Related command (and system call) to the file owner chown

UNIX FILE SYSTEM J. Santos

12

Changing the file permissions: command chmod.

Two syntax possibilities:

chmod u+rw g-x o+x file_name

chmod a+rx file_name

UNIX FILE SYSTEM J. Santos

13

Meaning of file permissions in a directory:

r - the entries of the directory can be listed.

w - the entries can be removed or new entries can be created

x - the directory can be accessed (system call chdir, command cd)

“Sticky bit”

(Traditional) Meaning in an executable file: the code remains in main memory (or in swap
space) until the process ends. Linux kernel ignores the sticky bit on files.

Meaning in a directory:

Example in the “temporal” directory /tmp

/tmp root root drwxrwxrwt

In a directory with the sticky bit activated, the contents of the directory (directory entries),
can be deleted (or renamed) only by:

- The Supersuser (root)

- The owner of the directory

- The owner of the file/entry to be deleted

Same command to set the sticky bit: chmod +t /usr/local/tmp.

UNIX FILE SYSTEM J. Santos

14

3.1.2 File dates
Example [Bach, 86]:

accessed Oct 23 1984 1:45 P.M. (last read) st_atime in struct stat

modified Oct 22 1984 10:30 A.M. (last data modification) st_mtime in struct stat

inode Oct 23 1984 1:30 P.M. (last inode modification) st_ctime in struct stat

3.1.2 Links
Two concepts:

- hard links (two directory entries associated with the same inode)

- soft/symbolic links (a file that contains the path that “points to” another file)

Hard link:
Related command: ln source_file_name target_file_name

for obtaining the information of a file:

struct stat buf;

stat (file_name, &buf);

dir1

aa, 2407

directory entry

assigned inode

dir3

bb, 2407

Boot SB Data Area

Inode List

inode
2407

UNIX FILE SYSTEM J. Santos

15

Another example with hard links [Bach, 86]:

System call link. Syntax: link(source_file_name, target_file_name);

link(“/usr/include/realfile.h”, “usr/src/uts/sys/testfile.h”);

link(“/usr/src/uts/sys”, “usr/include/sys”);

The following three paths refer to the same file:

“/usr/src/uts/sys/testfile.h”

“/usr/include/sys/testfile.h”

“/usr/include/realfile.h”

Soft link:
Same command, ln, with option -s:

$ ln -s {source-filename} {symbolic-filename}
For example create a softlink for /webroot/home/httpd/test.com/index.php as
/home/vivek/index.php:

$ ln -s /webroot/home/httpd/test.com/index.php /home/vivek/index.php
$ ln -s /mnt/my_drive/movies ~/my_movies

$ ls -l outputs:

lrwxrwxrwx 1 vivek vivek 2007-09-25 22:53 38 index.php ->
/webroot/home/httpd/test.com/index.php

lrwxrwxrwx 1 juan alumnos 2020-09-25 22:53 20 my_movies -> /mnt/my_drive/movies

The “l” character is a file type flag that represents a symbolic link. The -> symbol shows the file the symlink points to.

Note: Unlike a hard link, a symbolic link can point to a file or a directory on a different
filesystem or partition.

UNIX FILE SYSTEM J. Santos

16

3.2 Structure of the block layout in the disk

• A file has associated:

o An inode of the Inode List.

o Blocks of the data area. These blocks of the file are information contained in
the inode file, with the following scheme:

Disk addresses of the inode

[Tanenbaum, 2003]

Slower access to larger files

UNIX FILE SYSTEM J. Santos

17

block
525

block 122
(index
block)

256 indexes

block
122

block
330

256 data
blocks

Example: Let’s calculate the maximum size of a file using the different possibilities (direct addresses
and indirect addresses), considering blocks of 1Kytes and addresses of 4 bytes.

1Kbytes

Single indirect
block address

Boot SB Inode List

Data Area

Maximum file size using the direct
block addresses: 10 Kbytes

122

block 525

1Kbytes

block 224

1Kbytes

525

88

224

block 88

1Kbytes
10 direct
block
addresses

10 direct
block
addresses

block 122
(index
block)

330
….

block 330

1Kbytes

Boot SB Inode List

Data Area

Maximum file size using the single
indirect block address: 10 Kbytes +
256 x 1Kbytes = 10 Kbytes + 256
Kbytes = 266 Kbytes

UNIX FILE SYSTEM J. Santos

18

256 index
blocks

1 Kbytes

1 Kbytes

1 Kbytes

1 Kbytes

index block
(second level)

256
indexes

Double indirect
block address

10 direct
block
addresses

Single indirect
block address

index block
(first level)

256
indexes

index block
(second level)

256
indexes

data block

data block

256 data
blocks

data block

data block

256 data
blocks

1 Mbyte

Maximum file size using the double indirect block address: 10 Kbytes + 256 Kbytes + 256 x 256 x 1Kbytes =

266 Kbytes + 28 x 28 x 1Kbytes = 266 Kbytes + 216 Kbytes = 266 Kbytes + 26 x 210 Kbytes = 266 Kbytes + 64 Mbytes

UNIX FILE SYSTEM J. Santos

19

256 index
blocks

1 Kbytes

1 Kbytes

256
indexes

256
indexes

1 Kbytes

1 Kbytes

256
indexes

256
indexes

256 index
blocks

index block
(third level)

Double indirect
block address

10 direct
block
addresses

Single indirect
block address

index block
(first level)

256
indexes

index block
(second level)

256
indexes

index block
(second level)

256
indexes

index block

index block

256 index
blocks

1 Gbyte

Maximum file size using the triple indirect block address: 10 Kbytes + 256 Kbytes + 64 Mbytes +
256 x 256 x 256 x 1Kbytes =
10 Kbytes + 256 Kbytes + 64 Mbytes + 28 x 28 x 28 x 1Kbytes =
10 Kbytes + 256 Kbytes + 64 Mbytes + 224 Kbytes =
10 Kbytes + 256 Kbytes + 64 Mbytes + 24 x 220 Kbytes = 10 Kbytes + 256 Kbytes + 64 Mbytes + 16 Gbytes

Triple indirect
block address

data block

data block

256 data
blocks

data block

data block

256 data
blocks

index block

Number of disk accesses (in data area) for reading block corresponding to byte 1600? -> 1 access
Number of disk accesses (in data area) for reading block corresponding to byte 50000000? -> 3 accesses
Example:

int fd = open (“f1”, O_RDONLY);
 lseek(fd, 50000000, 0);
 chard c=fgetc(fd);

UNIX FILE SYSTEM J. Santos

20

System V directory entry:

BSD directory entry:

Inode number
 (2 bytes)

Name (14 bytes)

Inode number
 (4 bytes)

Length of the
entry
(2 bytes)

Length of the file
name (2 bytes)

Name ('\0'-ended until a length multiple of
4) (variable)

4. Directories

• A directory is a file whose content is interpreted as “directory entries”.

• Directory entry format:

Related system calls: opendir, readdir, closedir (defined in <dirent.h>)

UNIX FILE SYSTEM J. Santos

21

block
132

block
406

block
“/”

List of Inodes

First block of LI

Boot SB

Data Area

Typical question: Calculate the minimum number of disk accesses (supposing the caches are
empthy) to complete the open of the previous file:

open (/usr/ast/correo, O_RDWR);

Necessary steps: parsing the path:

1. Read inode of “/” (number 1 in the example) in the List of Inodes in disk.
2. Read content of inode 1 (in the Data Area). Read the first block data of the file “/”. Search

for an entry with name “usr”. If found, pick up its inode number (6 in the example).
3. Read inode of “/usr” (6) in the List of Inodes in disk.
4. Read content of inode 6. Read the first block data of the file “/usr” (number 132 in the

example). Search for an entry with name “ast”. If found, pick up its inode number (26 in the
example).

5. Read inode of “/usr/ast” (26) in the List of Inodes in disk.
6. Read content of inode 26. Read the first block data of the file “/usr” (number 406 in the

example). Search for an entry with name “correo”. If found, pick up its inode number (60 in
the example).

7. Read the inode of “correo” to the in-core list of inodes (Inode Cache). (Note that open() does
not read the content of the file).

Number of disk accesses?
3 blocks were read in the Data Area: first block with the data (directory entries) of “/”, blocks 132
and 406. Note that the optimal case was present in the example, since the required entry was
always in the first block of the directory.
4 inodes were read to the in-core list of inodes. But, how many blocks in the disk were read?
In the optimal case, supposing the four inodes are in the same block, then the first read of the block
that contains inode “1”, brings all the inodes to memory (Buffer Cache). Therefore, the required
number of blocks to be read in the disk is 1. Note that the example does not give all the
necessary information to know if the different inodes are in the same block.

Example of the necessary steps in the search of the inode of the file /usr/ast/correo [Tanenbaum, 2003]

UNIX FILE SYSTEM J. Santos

22

5. Brief description of the kernel structures related to the file
system

The buffering mechanism of
the Buffer Cache regulates
data flow between secondary
storage block devices and the
kernel, decreasing the number
of accesses to the disk. There
is a similar mechanism
associated to virtual memory
with a Page Cache.

Block diagram of the
system kernel.

UNIX FILE SYSTEM J. Santos

23

Scheme of the main kernel structures related to the file system
(Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7th Edition, Feb 6, 2005)

UNIX FILE SYSTEM J. Santos

24

6. System calls for the file system

Example of openings from two processes:

Proc A:

fd1=open(“/etc/passwd”, O_RDONLY);

fd2=open(“local”, O_RDWR);

fd3=open(“/etc/passwd”, O_WRONLY);

int open (char *name, int mode, int permissions);

open mode:
 mode 0: read
 mode 1: write
 mode 2: read-write

Or using the constatnts defined in the header <fcntl.h>

 O_RDONLY only read
 O_RDWR read-write
 O_WRONLY only write
 O_APPEND append
 O_CREAT create
 ...

int read (int df, char *buff, int n);

 df – file descriptor open returns
 buff – address, in the user space,

 where the data are transferred
 n – number of bytes to be read

int write (int df, char *buff, int n);

Proc B:

fd1=open(“/etc/passwd”, O_RDONLY);

fd2=open(“private”, O_RDONLY);

Data structures after the openings of Proc A

 Data structures after the two processes opened the files

 [Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

UNIX FILE SYSTEM J. Santos

25

int newfd= dup (int df);

 df – file descriptor of an open file
 newfd – new file descriptor that
 references the same file

dup2(fd, newfd);

Data structures after dup

Example:

fd1=open(“/etc/passwd”, O_RDONLY);

fd2=open(“local”, O_RDWR);

fd3=open(“/etc/passwd”, O_WRONLY);

dup(fd1);

It returns the first free
file descriptor, number 6

in this case

 [Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

UNIX FILE SYSTEM J. Santos

26

7. SETUID executables

The kernel associates two user IDs to a UNIX process:

1. The real user ID: user who runs the process.

2. The effective user ID: used to check file access permissions, to assign ownership of
newly created files and to check permission to send signals.

The kernel allows a process to change its effective used ID when it execs a “setuid program” or
when it invokes the setuid() system call explicitly.

A SETUID program is an executable file that has the SETUID bit set in its permission model
field. When a setuid program is executed, the kernel sets the effective user ID to the
owner of the executable file.

Example of application: command passwd

Files in /etc:

rw- r-- r-- root root passwd users defined in the system

rw- r-- --- root shadow shadow encrypted passwords

rw- r-- r-- root root group groups defined and their users

Permissions of the executable command:

/usr/bin/passwd root rws r-x r-x

It means that the SETUID bit is ON

The effective user ID is set to the
owner of the executable file: root

Consequently

The passwd process can access the
passwd file to change (“w” permission)
the encrypted password

Currently in file shadow

UNIX FILE SYSTEM J. Santos

27

Notes:

In addition to the classic Data Encryption Standard (DES), there is an advanced symmetric-key
encryption algorithm AES (Advanced Encryption Standard). The AES-128, AES-192 and AES-256 use
a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively

Most linux systems use Hash Functions for authentication: Common message-digest functions include
MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash.

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Key_%28cryptography%29

UNIX FILE SYSTEM J. Santos

28

SETUID system call

Syntax: setuid (uid)

uid is the new user ID. Its result depends on the current value of the effective used ID

The system call succeeds in the following cases:

1. If the effective user ID of the calling process is the superuser (root), the kernel sets as
real and effective user ID the input parameter uid.

2. If the effective user ID of the calling process is not the superuser:

2.1 If uid = real user ID, the effective user ID is set to uid (success).

2.2 Else if uid = saved effective user ID, the effective user ID is set to uid (success).

2.3 Else return error.

Example of case 1: login process

 process getty process login

login: filemon

password: *****

If authentication
succeeds

setuid (ID of filemon);

exec (bash, …..);

bash shell

 AS the user ID of the calling
process (login) is root, then the
launched shell has as real and
effective user IDs those of the user
who logs in the system.

UNIX FILE SYSTEM J. Santos

29

Example of case 2:

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

When “mjb” executes the file:

uid 5088 euid 8319

fdmjb -1 fdmaury 3

after setuid(5088): uid 5088 euid 5088

fdmjb 4 fdmaury -1

after setuid(8319): uid 5088 euid 8319

When “maury” executes the file:

uid 8319 euid 8319

fdmjb -1 fdmaury 3

after setuid(8319): uid 5088 euid 8319

fdmjb -1 fdmaury 4

after setuid(8319): uid 8319 euid 8319

Users: maury (ID 8319)
 mjb (ID 5088)

Files: maury maury r-- --- ---
 Mjb mjb r-- --- ---
 a.out maury rws –x --x

UNIX FILE SYSTEM J. Santos

30

8. The Linux Ext2fs File System

 Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for locating data
blocks belonging to a specific file

 The main differences between ext2fs and ffs concern their disk allocation policies.

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being subdivided into
fragments of 1Kb to store small files or partially filled blocks at the end of a file.

 Ext2fs does not use fragments; it performs its allocations in smaller units:

The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks are also
supported.

 Ext2fs uses allocation policies designed to place logically adjacent blocks of a file
into physically adjacent blocks on disk, so that it can submit an I/O request for
several disk blocks as a single operation.

Silberschatz, Galvin and Gagne ©2005
Operating System Concepts – 7th Edition,
Feb 6, 2005

Ext2fs Block-Allocation Policies

UNIX FILE SYSTEM J. Santos

31

9. Journaling File Systems

 The system maintains a catching of file data and metadata (Buffer Cache).

 There can be inconsistencies in the file system due to a system crash of electric outage
before the modified data in the cache (dirty buffers) have been written to disk.

Related command: fsck (file system check)

 A journaling file system is a fault-resilient file system in which data integrity is ensured
because updates to files' metadata are written to a serial log on disk before the original
disk blocks are updated. The file system will write the actual data to the disk only after
the write of the metadata to the log is complete. When a system crash occurs, the
system recovery code will analyze the metadata log and try to clean up only those
inconsistent files by replaying the log file.

 Linux file systems with journal: ext3, ext4, ReiserFS, XFS from SGI, JFS from IBM.

Example:

Remove a file f1 with n hard links=1

$rm f1 (n hard links should be 0 after removing the file)

After power failure, two problematic possibilities:

1. File f1 exists in parent directory

num hard links=0, inode free in Inode List

2. File f1 does not exist in parent directory

num hard links=1, inode assigned

Command chkdsk detects those anomalies checking:

- The whole directory tree

- The Inode List

A journaling file system would only check the inodes and directories related to the operation
(rm, or operations involving metadata on the disk), and not the whole directory tree.

UNIX FILE SYSTEM J. Santos

32

Bibliography:

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

[Carretero y col., 2001] Carretero Pérez, J., de Miguel Anasagasti, P., García Carballeira, F.,
Pérez Costoya, F., Sistemas Operativos: Una Visión Aplicada, McGraw-Hill, 2001.

[Márquez, 2004] Márquez, F.M., UNIX. Programación Avanzada, Ra-Ma, 2004.

[Sánchez Prieto, 2005] Sánchez Prieto, S., Sistemas Operativos, Servicio Public. Univ. Alcalá,
2005.

[Silberschatz y col. 2005] Silberschatz, A., Galvin, P. and Gagne, G., Operating System
Concepts – 7th Edition, Feb 6, 2005.

[Stallings 2005] Stallings, W. Operating Systems (5th Edition), Prentice-Hall, 2005.

[Tanenbaum 2003] Tanenmaum, A., Sistemas Operativos Modernos, Prentice-Hall, 2003.

