
Operating Systems

Grado en Informática 2024/2025

Lab Assignment 2: Memory

We continue to code the shell we started in the first lab assignment. Now the shell will have the
ability to allocate or deallocate memory blocks via malloc, mmmap or shared memory. The shell will
keep a list ot the memory blocks allocated (only the ones allocated with the command allocate, not the
ones it needs to allocate for its normal working).

Command Param Param
allocate -malloc n Allocates a block of malloc memory of size n bytes. Updates the list

of memory blocks
allocate -mmap file perm Maps a fille to memory with permissions perm. Updates the list of

memory blocks
allocate -create

shared
cl n Creates a block of shared memory with key cl and size n and attaches

it to the process address space.Updates the list of memory blocks
allocate -shared cl Attaches block a shared memory to the process address space (the

block must be already created but not necessarily attached to the
process space). Updates the list of memory blocks

deallocate -malloc n Deallocates a block of malloc memory of size n (provided it has been
previously allocated with allocate). Updates the list of memory
blocks

deallocate -mmap file Unmaps a file from memory (provided it has been previously
mapped).Updates the list of memory blocks

deallocate -shared cl Detaches a block of shared memory of key cl (provided it has been
previously allocated).Updates the list of memory blocks

deallocate -delkey cl Removes de memory block of key cl from the system. IT DOES
NOT DETACH THE SHARED MEMORY WITH THAT KEY
SHOULD IT BE ATTACHED

deallocate addr Deallocates the block with addres addr. (if it is a malloc block, it
frees it; if it is a sharedcmemory block, it detaches it….). Updates the
list of memory blocks

memfill addr cont ch fills the memory with character ch, starting at address addr, for cont
bytes

memdump addr cont dumps the contents of cont bytes of memory at address addr to the
screen. Dumps hex codes, and for printable characters the associated
charrcter

memory -funcs Prints the addresses of 3 program functions and 3 library functions
memory -vars Prints the addresses of 3 external, 3 external initialized, 3 static, 3

static initialized and 3 automatic variables

memory -blocks Prints the list of allocated blocks
memory -all Prints all of the above (-funcs, -vars and -blocks)
memory -pmap Shows the output of the command pmap for the shell process

(vmmap en macos)
readfile file addr cont Reads cont bytes of a file into memory address addr
writefile file addr cont writes to a file cont bytes starting at memory address addr
read df addr cont The same as readfile but we use a (already opened) file descriptor
write df addr cont The same as writefile but we use a (already opened) file descriptor
recurse n executes the recursive function n times. This funcion has an

automatic array of size 2048. a static array of size 2048 and prints the
addresses of both arrays and its parameter (as well as the number o
recursion) before calling itself

IMPORTANT:

We have to implement (list implementation free) a list of memory blocks. For each block we
must store

• Its memory address
• Its size
• Time of allocation
• Type of allocation (malloc memory, shared memory, mapped file)
• Other info: key for shared memory blocks, name of file and file descriptor for mapped files.

The shell commands allocate and deallocate allocate and deallocate memory blocks and add
(or remove) them from the list. Each element on the list has info of a memory block we created with
the shell command allocate The information about that block is the one previously stated. We'll deal
with three types of memory blocks.

• malloc memory. this is the most common memory we use, we allocate it with the library
function malloc and deallocate it with the library function free

• shared memory. this is memory that can be shared among several processes. The memory is
identified by a number (called key) so that two processes using the same key get to the same
block of memory. We use the system call shmget to obtain the memory and shmat and shmdt to
place it in (or detatch it from) the process address space. shmget needs the key, the size and the
flags. We'll use flags=IPC_CREAT | IPC_EXCL| permisions to create a new one (gives error if
it already exists) and flags=permisions to use an already created one. To delete a key we'll use
the deallocate -delkey command (this command deallocates nothing, just deletes the key).
Status of the shared memory in the system can be checked via the command line with the ipcs
command. An additional C file (ayudaP2.txt) is provided with some useful functions

• mapped files. We can also map files in memory so that they appear in the address space of a
process. System calls mmap and munmap do the trick. Again, the additional C file
(ayudaP2.txt) is provided with some useful functions

The contents of our list must be compatible with what the system shows with the pmap
command (procstat vm, vmmap ...depending on the platform)

The recursive function has a static and a dynamic array for the same size (2048 bytes) and prints
their addresses together with the parameter address and value

LEGITIMATE RUNTIME ERRORS

Although NO RUNTIME ERROR WILL BE ALLOWED (segmentation, bus error . . .) and
programs with runtime errors will yield no score, this program can legitimately produce segmentation
fault errors in scenarios such as these:

• memdump or memfill try to access an invalid address supplied through the command line
• memfill , readfile or read corrupt the user stack or the heap

REMEMBER:

• Information on the system calls and library functions needed to code these programs is available
through man: (shmget, shmat, malloc, free, mmap, munmap, shmctl, open, read, write,
close . . .)

• A reference shell is provided (for various platforms) for students to check how the shell should
perform. Ths program should be checked to find out the syntax and behaviour of the various
commands. PLEASE DOWNLOAD THE LATEST VERSION (the version command, on
newer reference shell, shows which version you are using)

• The program should compile cleanly (produce no warnings even when compiling with gcc -
Wall)

• These programs can have no memory leaks (you can use valgrind to check)
• When the program cannot perform its task (for whatever reason, for example, lack of privileges)

it should inform the user (See errors section)
• All input and output is done through the standard input and output
• Errors should be treated as in the previous lab assignment

WORK SUBMISSION
• Work must be done in pairs.
• Moodle will be used to submit the source code: a zipfile containing a directory named P2

where all the source files of the lab assignment reside
• The name of the main program will be p2.c, Program must be able to be compiled with gcc

p2.c, Optionally a Makefile can be supplied so that all of the source code can be compiled with
just make. Should that be the case, the compiled program should be called p2 and placed on the
same directory as the sources (no build directories or similar)

• ONLY ONE OF THE MEMBERS OF THE GROUP will submit the source code. The names
and logins of all the members of the group should appear in the source code of the main
programs (at the top of the file)

• Works submited not conforming to these rules will be disregarded.
• DEADLINE: 23:00, Friday November the 22th, 2023

