
Operating Systems.
Memory Management

Operating Systems. Memory Management 1 / 264

Contents I

1 Introduction

2 Address Space F.A.Q.

3 Swap

4 Relocation and protection

5 Simple schemes (obsolete)
No multiprogramming systems
Multiprogramming Systems

6 Segmentation (obsolete)

7 Paging

8 Mixed systems
Advantages of multilevel paging

9 Real examples: Intel’s 32 bit and 64 bit architectures
Intel’s 32 bit PC architecture
Intel/amd 64 bit PC architecture

10 Introduction to Virtual Memory
Operating Systems. Memory Management 2 / 264

Contents II

11 Software segments

12 What is Virtual Memory exactly and why does it work?
Virtual Memory
Why does VM work? Principle of locality
Thrashing

13 Page placement, fetching and replacement

14 Page Replacement Algorithms
Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

15 Adapting the Resident Set Size
Working Set Model
Page Fault Frequency

Operating Systems. Memory Management 3 / 264

Contents III

16 Demand segmentation

17 Other considerations

18 APPENDIX: Unix system calls related to memory management
system calls
malloc() C package
mapping files in memory
shared memory

Operating Systems. Memory Management 4 / 264

Introduction

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 5 / 264

Introduction

Memory

Hardware view: Electronic circuits to store and retrieve information.

The Bit (binary element) is the storage unit, the byte (8 bits) is the
addressing unit.

Although the byte is the address resolution unit, we’ll consider words.
The Word is the natural unit of data used by a particular processor
design: the majority of the registers in a processor are usually word
sized and the largest piece of data that can be transferred to and
from the working memory in a single operation is a word.

Modern general purpose computers usually have a word size of 32 or 64
bits . . .

For historical reasons it is frequent to say word = 2bytes = 16bits,
double-word = 4bytes = 32 bits, quad-word = 8bytes = 64bits

Operating Systems. Memory Management 6 / 264

Introduction

Memory access

According to the way used to access the information contained in the
its cells, memory can be classified in :

Conventional memory: given a memory address (a number), the
memory system returns the data stored at that address
Associative memory Content-addressable memories (CAM): given an
input search data (tag), the CAM searches its entire memory to see if
that tag is stored anywhere in it. If the tag found, the CAM returns a
list of one or more storage addresses where the tag was found and it
can also return the complete contents of that storage address. Thus, a
CAM is the hardware embodiment of what in software terms would be
called an associative array or hash table. Used in cache memories.

Operating Systems. Memory Management 7 / 264

Introduction

���������������

�

����� ����
� �������������������

� ����������

�� �� �� ���������

����� ���
� ���� ����� ��� ����� ���������� �����

������ ������ ������
������� �� �����

��� ����
�����

������
������

��������������������������

� ������ ���
� �������� ��� ���� �� ���
������������ ���
� ���������� ������ ���
� ��������������������
�� �����

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 8 / 264

Introduction

���������������

��

���������� �������� ����������

����

��
�������

��
�������

����������������

������

����

��
�������

��
�������

����������������

������

��

����������������
���������������������

�����������

�����������������

�������������� ���������
����������������
����������������

�����������������
���������������
�����������������

�����������������
� ��� �������
��������������������

�������������������� ����
��� �������

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 9 / 264

Introduction

Memory hierarchy

The memory access time is the time required to access instructions or
data in memory (read and write operations),

the time elapsed between the moment an address is set on the address
bus and the moment the data is stored in memory or made available to
the CPU

It is desirable to have fast memories (short access times) with large
storage capacity. Unfortulately the faster and the larger memory is,
the higher its cost will be

For this reason, faster and more expensive memories are used where
memory accesses are more frequent.

Operating Systems. Memory Management 10 / 264

Introduction

Memory hierarchy

These requirements led to the idea of Memory Hierarchy: memory is
organised in layers according to access time and capacity

1 Processor Registers
2 Cache Memory
3 Main Memory
4 Hard Disk Drives
5 Tape Drives and Optical Discs

Operating Systems. Memory Management 11 / 264

Introduction

Memory Hierarchy

Operating Systems. Memory Management 12 / 264

Introduction

���������������

��

�������������������������������������

���������������������������� ��������������

��� ���������������������� �������� ������������ �����

��� �����

�������������
�����

����� �����

������� ������

��������

��������

���������

�����������

��� �����

����� �� ����

����� �� ����

���������

�������� ������

�������� ������

����������������

����������������

��� �����
������

������������������� ������ �����

��������� ������

��������������������

�����������������������

������� ��������������������� �����

�������� ����������� ������

���������������������

������� ��������������������������������������

���������� ������������ ��������������� ������� ������������

Figure: From R.E. Bryant et al. Computer Systems: A Programmer’s Perspective (2nd edition), Pearson 2014

Operating Systems. Memory Management 13 / 264

Introduction

what is memory fragmentation

File systems and memory can show internal and external
fragmentation

Internal fragmentation: Wasted memory because assignation is made
in blocks of n bytes and the requests of processes are not an exact
multiple of n.
External fragmentation: Wasted memory that can not be assigned
because it is not contiguous. External fragmentation appears in
systems with (pure) segmentation..

Operating Systems. Memory Management 14 / 264

Introduction

The Operating Systems is a resource manager, which implies:

The OS must keep the accounting of the resource memory (how much
is free, how much is assigned to each process. . .)
The OS must have a policy for memory allocation
The OS must allocate memory to processes when they need it
The OS must recover memory allocated to processes when they no
longer need it

Operating Systems. Memory Management 15 / 264

Introduction

Memory management

The OS must keep the accounting of the system memory

The OS has to know the amount of free memory: otherwise, this
memory could not be assigned to processes
The OS also has to register the memory allocated to each individual
process (via zones in the process tables)

Whenever a process is created or whenever a process requests
memory, the OS allocates memory to that process

When a process terminates the OS releases its allocated memory

The OS also manages the virtual memory system

Operating Systems. Memory Management 16 / 264

Introduction

Segments for a process virtual address space

A Process has diferent memory zones (sometimes called regions or
segments) which differ in what it is stored in them

Code (text). The code for all the user (not kernel) functions in the
process
Static Data. For external (global) and static C variables with initial
values. Also for uninitialised external and static variables (BSS).
Heap. Dynamically allocated memory (via the malloc function in C).
Usually the static data and the heap are contiguous with the heap in
the upper part of what it is called data
Stack. Stack frames of function calls: arguments and local variables
(automatic C vars), return addresses.

Operating Systems. Memory Management 17 / 264

Introduction

Memory management: example I

Compile and run this C program

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

double t[1024*1024*32]; /*32 megas de doubles...unos 256 megas */

char * arrayPunteros[]={"hola","buenos","dias","que","lo","disfrutes",NULL,

NULL,NULL};

void regiones()

{

static double pi =3.1415926 ;

void *p = malloc(4096);

printf ("variable local: %p\n",&p);

printf ("static inicializada:%p\n",&pi);

printf ("global inicializada:%p\n",arrayPunteros);

printf ("global sin inicial.:%p\n",t);

printf ("constante: %p\n",arrayPunteros[0]);

Operating Systems. Memory Management 18 / 264

Introduction

Memory management: example II

printf ("puntero: %p\n",p);

printf ("brk: %p\n",sbrk(0));

printf ("funcion: %p\n",regiones);

printf ("funcion libreria %p\n",printf);

}

int main(int argc, char *argv[])

{

int tiempo=20;

pid_t pid=getpid();

regiones();

printf ("mi pid es %lu\n",(unsigned long) pid);

printf ("hay unos %d segs para hacer en otro terminal ’pmap %lu’

y ver las zonas\n",tiempo, (unsigned long) pid);

sleep (tiempo);

exit(0);

}

Operating Systems. Memory Management 19 / 264

Introduction

Memory management: example

Output (linux 64 bit system)
$./a.out

variable local: 0x7fff2f1416a8

static inicializada:0x5641d8cf2050

global inicializada:0x5641d8cf2060

global sin inicial.:0x5641d8cf20e0

constante: 0x5641d8cf0008

puntero: 0x5641ea5852a0

brk: 0x5641ea5a6000

funcion: 0x5641d8cef175

funcion libreria 0x7f02b5affcf0

mi pid es 9630

hay unos 20 segs para hacer en otro terminal ’pmap 9630’ y ver las zonas

Operating Systems. Memory Management 20 / 264

Introduction

Memory management: example I

Memory map for that process

$ pmap 9630

9630: ./a.out

00005641d8cee000 4K r---- a.out

00005641d8cef000 4K r-x-- a.out

00005641d8cf0000 4K r---- a.out

00005641d8cf1000 4K r---- a.out

00005641d8cf2000 4K rw--- a.out

00005641d8cf3000 262144K rw--- [anon]

00005641ea585000 132K rw--- [anon]

00007f02b5aac000 136K r---- libc-2.31.so

00007f02b5ace000 1380K r-x-- libc-2.31.so

00007f02b5c27000 316K r---- libc-2.31.so

00007f02b5c76000 16K r---- libc-2.31.so

00007f02b5c7a000 8K rw--- libc-2.31.so

00007f02b5c7c000 24K rw--- [anon]

00007f02b5c9f000 4K r---- ld-2.31.so

00007f02b5ca0000 128K r-x-- ld-2.31.so

00007f02b5cc0000 32K r---- ld-2.31.so

00007f02b5cc9000 4K r---- ld-2.31.so

Operating Systems. Memory Management 21 / 264

Introduction

Memory management: example II

00007f02b5cca000 4K rw--- ld-2.31.so

00007f02b5ccb000 4K rw--- [anon]

00007fff2f123000 132K rw--- [stack]

00007fff2f15d000 16K r---- [anon]

00007fff2f161000 8K r-x-- [anon]

total 264508K

Operating Systems. Memory Management 22 / 264

Introduction

Memory management: example

Output (linux 64 bit system, statically linked)
$./a.out

variable local: 0x7ffc6d75c0f8

static inicializada:0x4b20f0

global inicializada:0x4b2100

global sin inicial.:0x4b42c0

constante: 0x487008

puntero: 0x11acb5f0

brk: 0x11aec000

funcion: 0x401c2d

funcion libreria 0x408db0

mi pid es 9573

hay unos 20 segs para hacer en otro terminal ’pmap 9573’ y ver las zonas

Operating Systems. Memory Management 23 / 264

Introduction

Memory management: example

Memory map for that process

$ pmap 9573

9573: ./a.out

0000000000400000 4K r---- a.out

0000000000401000 536K r-x-- a.out

0000000000487000 156K r---- a.out

00000000004af000 12K r---- a.out

00000000004b2000 12K rw--- a.out

00000000004b5000 262148K rw--- [anon]

0000000010d05000 136K rw--- [anon]

00007ffcf1101000 132K rw--- [stack]

00007ffcf11d8000 16K r---- [anon]

00007ffcf11dc000 8K r-x-- [anon]

total 263160K

Operating Systems. Memory Management 24 / 264

Introduction

Memory management: example

Output (freeBSD 64 bit system)

$./a.out

static inicializada:0x401288

global inicializada:0x401240

global sin inicial.:0x4012c0

constante: 0x400b70

puntero: 0x800c09000

brk: 0x10402000

funcion: 0x4009c5

funcion libreria 0x4005d0

mi pid es 1302

hay unos 20 segs para hacer en otro terminal ’pmap 1302’ y ver las zonas

$

Operating Systems. Memory Management 25 / 264

Introduction

Memory management: example I

Memory map for that process

$ procstat vm 1302

PID START END PRT RES PRES REF SHD FLAG TP PATH

1302 0x400000 0x401000 r-x 1 4 1 0 CN--- vn /home/usuario/a.out

1302 0x401000 0x10402000 rw- 1 1 1 0 ----- df

1302 0x800401000 0x800407000 r-- 6 29 185 57 CN--- vn /libexec/ld-elf.so.1

1302 0x800407000 0x80041e000 r-x 23 29 185 57 CN--- vn /libexec/ld-elf.so.1

1302 0x80041e000 0x80041f000 r-- 1 0 1 0 C---- vn /libexec/ld-elf.so.1

1302 0x80041f000 0x800442000 rw- 27 27 1 0 ----- df

1302 0x800443000 0x8004c7000 r-- 92 408 273 145 CN--- vn /lib/libc.so.7

1302 0x8004c7000 0x800613000 r-x 292 408 273 145 CN--- vn /lib/libc.so.7

1302 0x800613000 0x80061b000 r-- 8 0 2 0 C---- vn /lib/libc.so.7

1302 0x80061b000 0x80061c000 rw- 1 0 2 0 C---- vn /lib/libc.so.7

1302 0x80061c000 0x800623000 rw- 7 0 1 0 C---- vn /lib/libc.so.7

1302 0x800623000 0x80084d000 rw- 16 16 1 0 ----- df

1302 0x800a00000 0x801200000 rw- 15 15 1 0 ----- df

1302 0x7fffdffff000 0x7ffffffdf000 --- 0 0 0 0 ----- gd

1302 0x7ffffffdf000 0x7ffffffff000 rw- 4 4 1 0 ---D- df

1302 0x7ffffffff000 0x800000000000 r-x 1 1 67 0 ----- ph

$

Operating Systems. Memory Management 26 / 264

Introduction

Memory management: example

Output (freeBSD 64 bit system, statically linked)

$./a.out

variable local: 0x7fffffffe988

static inicializada:0x490928

global inicializada:0x4908e0

global sin inicial.:0x494020

constante: 0x4756e0

puntero: 0x80080f000

brk: 0x106b2000

funcion: 0x4004f4

funcion libreria 0x4009f0

mi pid es 1320

hay unos 20 segs para hacer en otro terminal ’pmap 1320’ y ver las zonas

Operating Systems. Memory Management 27 / 264

Introduction

Memory management: example

Memory map for that process

$ procstat vm 1320

PID START END PRT RES PRES REF SHD FLAG TP PATH

1320 0x400000 0x48f000 r-x 143 880 2 1 CN--- vn /home/usuario/a.out

1320 0x48f000 0x493000 rw- 4 0 1 0 C---- vn /home/usuario/a.out

1320 0x493000 0x106b2000 rw- 16 16 1 0 ----- df

1320 0x800600000 0x800e00000 rw- 19 19 1 0 ----- df

1320 0x7fffdffff000 0x7ffffffdf000 --- 0 0 0 0 ----- gd

1320 0x7ffffffdf000 0x7ffffffff000 rwx 3 3 1 0 ---D- df

1320 0x7ffffffff000 0x800000000000 r-x 1 1 67 0 ----- ph

$

Operating Systems. Memory Management 28 / 264

Introduction

Memory management: example

Output (solaris 64 bit system)
$./a.out

variable local: 7fffbffff668

static inicializada:5017e8

global inicializada:5017a0

global sin inicial.:501820

constante: 400ea8

puntero: 10501830

brk: 10505820

funcion: 401252

funcion libreria 401068

mi pid es 1608

hay unos 20 segs para hacer en otro terminal ’pmap 1608’ y ver las zonas

Operating Systems. Memory Management 29 / 264

Introduction

Memory management: example I

Memory map for that process

$ pmap 1608

1608: ./a.out

0000000000400000 8K r-x---- [text] /export/home/usuario/a.out

0000000000501000 4K rw----- [data] /export/home/usuario/a.out

0000000000502000 262160K rw----- [heap]

00007FFFBF000000 2660K r-x---- [text] /lib/amd64/libc.so.1

00007FFFBF399000 80K rw----- [data] /lib/amd64/libc.so.1

00007FFFBF3AD000 36K rw----- [data] /lib/amd64/libc.so.1

00007FFFBF400000 348K r-x---- [text] /lib/amd64/ld.so.1

00007FFFBF557000 4K r------ [dtrace] /lib/amd64/ld.so.1

00007FFFBF658000 20K rwx---- [data] /lib/amd64/ld.so.1

00007FFFBF65D000 4K rwx---- [data] /lib/amd64/ld.so.1

00007FFFBF6D0000 24K rw----- [anon]

00007FFFBF6E5000 64K rw----- [anon]

00007FFFBF6F6000 12K r--s--- [anon]

00007FFFBF6FA000 4K r--s--- [anon]

00007FFFBF6FC000 4K r--s--- [anon]

00007FFFBF6FE000 4K r-x---- [anon]

00007FFFBFFFD000 12K rw----- [stack]

total 265448K

Operating Systems. Memory Management 30 / 264

Introduction

Memory management: example

Compile and run this C program. Then check its address space
several times as the program keeps running
#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <limits.h>

#define TROZO 100*1024*1024

#define PUNTO (10*1024*1024)

void accede (char * p, unsigned long long tam)

{

unsigned long long i;

for (i=0; i< tam; i++){

p[i]=’a’;

if ((i%PUNTO)==0)

write (1,".",1); /*imprime un punto cada 10 Mbytes accedidos*/

}

}

Operating Systems. Memory Management 31 / 264

Introduction

Memory management: example

main (int argc,char*argv[])

{

char *p;

unsigned long long total=0, cantidad=TROZO;

unsigned long long maximo=ULLONG_MAX;

if (argv[1]!=NULL){

maximo=strtoull(argv[1],NULL,10);

if (argv[2]!=NULL)

cantidad=strtoull(argv[2],NULL,10);

}

while (total<maximo && (p=malloc(cantidad))!=NULL){

total+=cantidad;

printf ("asignados %llu (total:%llu) bytes en %p\n", cantidad,total,p);

accede (p,cantidad);

getchar();

}

printf ("Total asignacion: %llu\n",total);

sleep(10);

}

Operating Systems. Memory Management 32 / 264

Address Space F.A.Q.

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 33 / 264

Address Space F.A.Q.

Address space F.A.Q.

In previous slides we have seen the address space of several processes
but What is the address space of a process?

The address space of a process is the set of memory addresses it
can access

What happens if a process acesses a memory address outside of
its address space? IT CAN NOT (That’s the very definition of
address space)

What happens if a process TRIES TO ACCESS a memory
address outside of its address space? The hardware won’t allow it,
notify the Operating System and then, the Operating System would
probably have the process killed with a segmentation fault type of
error

What is the user address space of a process? the set of memory
addresses it can access when in user mode

Operating Systems. Memory Management 34 / 264

Address Space F.A.Q.

Address space F.A.Q.

Why is not the address space of a process the same as the
memory on the machine it’s in?

several reasons

there are more processes on that machine
on modern systems the address of the processes are fake (although the
term logical or virtual is more adecuate)
the address space of a process probably needs higher addresses than
those that there exist on the machine it is in
the address space of a process might be bigger than the memory the
machine has installed
the program would be specific to that machine
. . .

Operating Systems. Memory Management 35 / 264

Address Space F.A.Q.

Address space F.A.Q.

How is the address space of a process structured? In zones
(usually called segments or regions), each one of them has a different
part of the process: code, data, stack . . .

Can the address space of a process grow?

yes, of course

the process allocates memory (for example with malloc): the data
segment grows (in linux if you allocate more tha 128K, a new region is
created)
the process maps a file: a new region for the mapped file is created
the process calls a recursive function, or a function with many (or
large) local variables: the stack grows
the process allocates shared memory: a new region for the shared
memory is created

Operating Systems. Memory Management 36 / 264

Address Space F.A.Q.

Address space F.A.Q.

Can the address space of a process shrink?

yes, of course. Deallocating items usually makes the address space
smaller

Is there any command that shows the address space of a
prcess?

Yes: pmap in linux and solaris, procsat vm in FreeBSD, procmap in
OpenBSD, vmmap en MacOS . . .

Can the address space of a process hav ’holes’ in it or does it
need to be contiguous?

It can have holes, in fact some of the regions in it are necessarily not
contiguous as there must be room left between them to allow for
region growth

Operating Systems. Memory Management 37 / 264

Swap

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 38 / 264

Swap

Swap

The Swap area is a part of the secondary storage (disk) used as
auxiliar memory

A running process needs to be in memory. Using swap can increase
the multiprogramming level,

If a process in the swap zone is selected by the scheduler, the process
needs to be loaded in memory, which increases the context switch time.
To swap processes that are waiting for I/O to be completed (pending
I/O), the OS must transfer I/O to the system buffers in kernel space
and then to the I/O device. This also adds overhead.
For these reasons, modern Operating Systems usually swap pages and
rarely swap whole processes.

Operating Systems. Memory Management 39 / 264

Swap

Swapping vs paging

Writing whole processes to the swap device was use in old (obselete)
systems to increase the multiprogramming level.

Those were called swapping systems

Modern systems have virtual memory: they write to the swap device
pages of the procesess rather than complete processes .

We call them paging systems

In virtual memory systems we get illusion of nearly unlimited memory

Operating Systems. Memory Management 40 / 264

Swap

Swap

The swap area can be a dedicated disk, partition on a disk or a file in
the file system.

Using a file as swap device is a more flexible solution, its location and
size can be changed easily.

Using a file as swap device is less efficient because it uses the
indirections of the file system to access the data.

MS Windows systems use a swap file.

Unix type systems use swap partitions, although swap files can be
configured for these systems.

Operating Systems. Memory Management 41 / 264

Swap

Swap file in MS Windows

Operating Systems. Memory Management 42 / 264

Relocation and protection

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 43 / 264

Relocation and protection

Memory management: relocation

We start with source code − > (compilation) − > object code

Several object code files − > (linking) − > executable file

Executabe file − > (load and execution) − > process in memory

Source code − > executable file − > process in memory

In the source code there are variables, functions, procedures, . . .

In the process in memory there are contents of memory addresses,
jumps to addresses that contain code. . .

When and where are these transformations done?

Operating Systems. Memory Management 44 / 264

Relocation and protection

Memory management: relocation

Absolute code: Addresses are obtained at compilation (and/or
linking) time (example: MS-DOS .COM files)

At compilation/linking time it is necessary to know the addresses for
execution of the program
Lack of portability of the executable file. It can not run in other
memory locations.

Static relocation: Addresses are obtained when the program is
loaded in memory (the executable file contains relative references)
(example: MS-DOS EXE files)

After loaded in memory, the program can not be moved to other
memory location
Swapping is possible only if processes return to the same memory
positions they used before being swapped out (fixed partitions)

Operating Systems. Memory Management 45 / 264

Relocation and protection

Static relocation

Operating Systems. Memory Management 46 / 264

Relocation and protection

Memory management: relocation

Dynamic relocation: Addresses are obtained at execution time. The
running process uses memory addresses that are not real physical
memory positions. Translation is done in execution time by
specialized hardware (example: MS XP Windows EXE files)

No restrictions to swapping. Swapped processes can be swapped in
memory in any memory location.
Distinction between Virtual or Logical address space and Physical
address space.
It is necessary hardware that translates logical addresses in physical
addresses.

Modern systems use dynamic relocation

With dynamic relocation, linking can be postponed to execution time.
Dynamic linking (MS Windows DLLs, lib*.so in linux).

Operating Systems. Memory Management 47 / 264

Relocation and protection

Dynamic Relocation

Operating Systems. Memory Management 48 / 264

Relocation and protection

Protection

Memory must be protected

A process can not directly access the OS memory
A process can not access memory of other processes

Simplest hardware to support protection

Two limit registers
One base (relocation) register and one limit register

Operating Systems. Memory Management 49 / 264

Relocation and protection

Protection

Two limit registers

Every address generated by a running process must be in the range of
the values stored in the limit registers. Otherwise an exception is
produced.
The hardware must provide these limit registers.
The values of the registers are updated in a context swicht and stored
in the Process Control Block.
Changing the values of these registers is a privileged instruction (kernel
mode)

Operating Systems. Memory Management 50 / 264

Relocation and protection

Protection and relocation

With base (relocation) and limit register

Base register contains value of lowest physical address the process can
access. Limit register contains range of logical addresses. Each logical
address must be less than the limit register (otherwise, an exception is
produced), which is added to the address contained in the base register.
The hardware must provide these base and limit registers.
The values of the registers are updated in a context swicht and stored
in the Process Control Block.
Changing the values of these registers is a privileged instruction (kernel
mode)
This hardware supports protection and is in fact s way of doing
dynamic relocation.

Operating Systems. Memory Management 51 / 264

Relocation and protection

Base and limit registers

Operating Systems. Memory Management 52 / 264

Relocation and protection

Protection and relocation

With base (relocation) and limit register

The program has the illusion of running on a dedicated machine, with
memory starting at address zero and having lim bytes available
This is in fact a segmented system with only one segment.

Operating Systems. Memory Management 53 / 264

Relocation and protection

Protection

In modern systems memory protection is supported by the addressing
mechanisms.

Segmentation and paging provide effective memory protection and
relocation.

It is necessary at least two execution modes: user mode and kernel or
system mode.

Operating Systems. Memory Management 54 / 264

Simple schemes (obsolete)

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 55 / 264

Simple schemes (obsolete) No multiprogramming systems

Simple schemes (obsolete)

No multiprogramming systems
Multiprogramming Systems

Operating Systems. Memory Management 56 / 264

Simple schemes (obsolete) No multiprogramming systems

Simple schemes: No multiprogramming systems

This approach has been obsolete for a long time

In Operating Systems without multiprogramming there were only two
memory areas: one for the OS and one for the user process.

Typically the OS in the low positions of memory and the rest for the
user process. Concept of simple monitor (example IBSYS for IBM
7094, late 1950’s)

First generation of personal computers: OS the upper part of memory
(in ROM) and the rest for user processes (example: zx spectrum
1982)

OS in the lower memory addresses but with some parts of it in the
upper part. Example: First versions of MS-DOS, IBM PC, 1981

Operating Systems. Memory Management 57 / 264

Simple schemes (obsolete) Multiprogramming Systems

Simple schemes (obsolete)

No multiprogramming systems
Multiprogramming Systems

Operating Systems. Memory Management 58 / 264

Simple schemes (obsolete) Multiprogramming Systems

Memory management: Simple schemes

For multiprogrammed OS the simplest scheme is to split the memory
in partitions with a process in each partition.

Two alternatives

Fixed size partitions: Allows for a fixed number of processes in memory
Variable size partitions: The number and size of partitions can vary

Operating Systems. Memory Management 59 / 264

Simple schemes (obsolete) Multiprogramming Systems

Memory management: Simple schemes

Fixed size partitions

Internal and external fragmentation
Used in IBM OS/360 MFT (Multiprogramming with a Fixed number of
Tasks)

Variable size partitions

Negligible internal fragmentation, but also suffers from external
fragmentation
Compactation of memory to solve external fragmentation. Very high
cost.
Used in IBM OS/360 MVT (Multiprogramming with a Variable
number of Tasks)

Again, this schemes have been obsolete for a long time. IBM
delivered its OS/360 in 1967

Operating Systems. Memory Management 60 / 264

Segmentation (obsolete)

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 61 / 264

Segmentation (obsolete)

Memory management: Segmentation

Memory-management scheme that supports user view of memory

A program is a collection of segments

A segment is a logical unit such as: main program, procedure,
function, method, object, local variables, global variables, common
block, stack, symbol table, arrays, etc

This has also become obsolete. Last machine to use segmentation
was IBM OS/2 1.3 on intel’s 286 hardware (around 1990)

Operating Systems. Memory Management 62 / 264

Segmentation (obsolete)

Memory management: Segmentation

The address space of a process has variable size blocks called
segments

A logical address is composed of a segment (or segment number) and
an offset inside the segment, <segment-number, offset>

The segment number is the entry number in the Segment Table for
that process. Each entry of the Segment Table contains the Base
Address, i.e. the starting physical address for the associated segment,
and the segment size (Limit).

Segment-table base register (STBR) (in the processor) points to the
segment table’s location in memory

Operating Systems. Memory Management 63 / 264

Segmentation (obsolete)

Memory management: Segmentation

Changing the values of these registers in a context switch is a
privileged instruction. The values are stored in the Process Control
Block.

logical address: <segment-number, offset>

physical address: Base Address + offset

if the offset is less than the limit, the physical address is obtained
adding the offset to the Base Address, otherwise an addressing error
(exception) is produced and control goes to the OS

Operating Systems. Memory Management 64 / 264

Segmentation (obsolete)

Memory management: Segmentation

Protection, with each entry in the segment table associate:

validation bit (legal/illegal segment)
read/write/execute privileges
kernel/user mode accesible segment
. . .

Protection bits associated with segments; code sharing occurs at
segment level

Since segments vary in length, memory allocation is a dynamic
storage-allocation problem

Operating Systems. Memory Management 65 / 264

Segmentation (obsolete)

Memory management: Segmentation

Operating Systems. Memory Management 66 / 264

Segmentation (obsolete)

Segmentation: example

Let us consider a system with segmentation with the following
properties:

logical addresses of 16 bits (4 bits for the segment number, 12 bits for
the offset)
each entry of the segment table has 28 bits, the 12 most significant for
the limit and the 16 least bits for the base address
A process has 2 segments and the first two entries in the segment table
of the process contain the values 0x2EE0400 and 0x79E2020
respectively

What physical address corresponds to a reference to logical address
0x12F0?
What physical address corresponds to a reference to logical address
0x0342?
What physical address corresponds to a reference to logical address
0x021F?
What physical address corresponds to a reference to logical address
0x190A?

Operating Systems. Memory Management 67 / 264

Segmentation (obsolete)

Memory management: Segmentation example

logical address 0x12F0, physical address 0x2310

a reference to the logical address 0x0342 causes an addressing error

logical address 0x021F, physical address 0x061F

a reference to the logical address 0x190A causes an addressing error

Remeber, this is an OVERSIMPLIFIED example: 4:12 bits is
unrealistic. Also there are more things in the segment table than the
base address and limit (r/w, k/u . . .)

Operating Systems. Memory Management 68 / 264

Segmentation (obsolete)

Memory management: Segmentation

Operating Systems. Memory Management 69 / 264

Segmentation (obsolete)

Fragmentation in segmentation systems

Internal fragmentation.

The segment size is a multiple of a fixed number of bytes (for example
16 bytes), therefore allocated memory may be slightly larger than
requested memory; this size difference is memory internal to the
segment, but not being used. Negligible

External fragmentation.

Segments are variable size memory blocks. After assigning and
releasing memory, holes (blocks of available memory) of various sizes
are scattered through memory.
External fragmentation: total memory space exists to satisfy a specific
request, but it is not contiguous. Compactation solves the problem at
the expense of computional cost.

Operating Systems. Memory Management 70 / 264

Segmentation (obsolete)

Segmentation: dynamic storage-allocation problem

The OS accounts for both the assigned and free memory. After
releasing a block of memory, adjacent free blocks are collapsed into a
larger free block.

How can the OS satisfy a request of size n from a list of free holes?

first fit Allocate the first hole that is big enough. Fast. Small holes
appear in low areas of memory and large holes in high areas, assuming
the search for holes start in the low areas.
next fit Allocate the next hole large enough, searching from the last
allocated block
best fit Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest leftover hole.
worst fit Allocate the largest hole; must also search entire list.
Produces the largest leftover hole

First-fit and best-fit are found to operate better than worst-fit in
terms of speed and storage utilization

Operating Systems. Memory Management 71 / 264

Segmentation (obsolete)

Segmentation: amount of memory in holes

In a system with segmentation, given s the average size of a segment
and k = average size of a hole

average size of a segment

memory in holes
total memory = k

k+2

for n segments, the amount of memory in segments is ns.

two adjacents holes collapse into a single hole, therefore there are
double number of segments than holes. For n

2 holes the amount of
memory in holes is n

2ks

therefore the rate is
memory in holes
total memory =

n
2
ks

n
2
ks+ns = k

k+2

Operating Systems. Memory Management 72 / 264

Segmentation (obsolete)

Memory management: Segmentation

Hardware support is needed

It is a form of dynamic relocation

It enables memory protection

Sharing data or code segments is possible

Logical (virtual) address speace and physical address space need not
be the same size.

Operating Systems. Memory Management 73 / 264

Segmentation (obsolete)

Segmentation implementation: Intel 8086

Intel 8086, 4 segments with a segment register for each segment
(code CS, data DS, stack SS, extra ES)

Rudimentary: no segment tables in memory.

Rudimentary: no memory protection; any program could access any
memory area.

32 bit virtual addresses (16bits segment, 16 bits offset).

1 Megabyte physical (20 bits physical address space)

32 logical addresses segment:offset yielded a 20 bit physical address
segment << 4 + offset

Operating Systems. Memory Management 74 / 264

Segmentation (obsolete)

Segmentation Implementations:Intel 286

Intel 80286: 1 Gigabyte addressable virtual memory in 64k segments

32 bit logical addresses (16 bits segment, 16 bit offset).

24 bits physical addresses (16 megabytes physically addressable)

Segment tables in memory, pointed by a processor register.

Although address were 32 bit, virtual address space was 1Gb: of the
16 bit segment, 2 bits were for privilege level, 1 bit for segment table
selection and 13 bits for segment number. That yielded 213 segments
in each of the two possible segment tables, that’s to say, a total of
214 segments. Total virtual address space: 214 ∗ 216 = 230 (1Gb)

MS Windows 3.1 in standard mode used this segmentation
mechanism. Windows 3.1 had an “Enhanced“ mode to operate with
i386 processor paging.

Intel 386 used Paged Segmentation

Operating Systems. Memory Management 75 / 264

Paging

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 76 / 264

Paging

Memory management: paging

Physical address space of a process can be noncontiguous; process
can be allocated physical memory wherever available

Avoids external fragmentation, still has internal fragmentation

Avoids problem of varying sized memory chunks

Enables dynamic relocation, protection and sharing of memory

Operating Systems. Memory Management 77 / 264

Paging

Memory management: paging

Divide physical memory into fixed-sized blocks called frames
(sometimes physical pages). Size is power of 2, between 512 bytes
and 16 Mbytes

Divide logical memory into blocks of same size called pages

Logical (virtual) address space and physical address space need not be
the same size.

The OS keeps track of all free frames. To run a program of size N
pages, the OS needs to find N free frames and load program in them

The OS sets up a page table to translate logical to physical addresses.
A processor register (Page Table Base Register) contains the base
address of the page table for a process. Changing the value of this
register in a context switch is a privileged instruction (kernel mode).
The value is stored in the Process Control Block, and loaded again
when the process is scheduled to run

Operating Systems. Memory Management 78 / 264

Paging

Memory management: paging

Address generated by CPU is divided into:

Page number (p) used as an index into a page table which contains
base address of each page (frame number) in physical memory

Page offset (d) combined with base address to define the physical
memory address that is actually accessed

Operating Systems. Memory Management 79 / 264

Paging

Memory management: paging

Operating Systems. Memory Management 80 / 264

Paging

Paging: Example

Consider a system with 16 bits logical addresses, 7 most significant
bits for the page number and the 9 least significant bits for the offset
in the page.

Page size is 512 bytes = 29

A process makes a reference to a memory address 0x095f (0000 1001
0101 1111)

This is a reference to page number 4 and page offset 0x15f

Operating Systems. Memory Management 81 / 264

Paging

Paging: Example

In the entry for page 4 in the page table, we can get the physical
address for this page

Let us assume that the Base Address of the Physical Page is 0xAE00
(1010 1110 0000 0000)

Therefore the final physical address is es 0xAF5F (1010 11111 0101
1111)

As all frames start at offset 0, in the page table we only get the most
significant bits of the frame address (without the offset part), that
would be ’1010111’ in this example, which is also the frame number

Operating Systems. Memory Management 82 / 264

Paging

Paging: A more detailed example

Logical and real space addresses need not be the same size

Let us consider a system with 16 bits logical addresses and 20 bits
physical addresses, with a page size of 512 bytes (29)

The first 7 bits of a logical address are the page number, and the
remaining 9 bits is the page offset (page size is 512 bytes)

A page table must have (27) entries (one for each page).

Operating Systems. Memory Management 83 / 264

Paging

Paging: A more detailed example

4 bytes (32 bit) each page table entry is a reasonable value as the
frame address needs 11 bits, and the remaining 21 bits are enough for
presence bit, reference bit, r/w, privilege level Even more, an
entry of 4 bytes would make the page table fit in exactly one page,
which is a very convenient design issue.

Let us also assume that the format of a page table entry is as follows:

the 11 most significant bits of a page table entry are the physical frame
number
bit 0 is the presence bit
bit 1 the reference bit
bit 2 r/w (0 for read only)
bit 3 privilege level (1 kernel mode)
the rest of the bits are reserved for O.S. use.

Operating Systems. Memory Management 84 / 264

Paging

Paging: A more detailed example

A process tries to read from memory address 0x194d (0001 1001 0100
1101)

This is a reference to page number 12 (0xC) and page offset 0x14d

Should the value of entry 0xc in the process page table be
0x24800001 (0010 0100 1000 0000 0000 0000 0000 0001). The
aforementioned read reference would get the contents of physical
memory address 0x2494d (0010 0100 1001 0100 1101)

If the process tries to write to memory address 0x183f, it would
produce an exception (and the O.S. would probably have it killed), as
this is a reference to offset 0x3f in page 0xc, and page 0xc is marked
readonly (bit 2 of the page table entry-0x24800001-is 0, page is
readonly)

Operating Systems. Memory Management 85 / 264

Paging

Paging

With paging the memory for a process need not be contigous

The page size is defined by the hardaware, for example:

The Intel x86 32 bits architecture has a page size of 4 Kbytes
The Sparc architecture has a page size of 8 Kbytes

No external fragmentation

Internal fragmentation

The larger the page sizes the larger the internal fragmentation will be

Smaller page sizes mean more entries in the page tables for processes,
so more memory is lost in page tables

Operating Systems. Memory Management 86 / 264

Paging

Page sizes for different architectures

Example: Page SizesExample: Page Sizes

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 87 / 264

Paging

Paging

The OS must account for: the free physical pages (frames) and the
frames assigned to processes

The OS manages the table pages of different process in the context
switch

Processes’ view of the memory and physical memory are now very
different

Memory Protection: because of the way paging is implemented, a
process can only access its own memory following its page table, and
its Page Table can only be changed by the OS

Paging allows memory sharing among processes: the associated
entries in their page tables point to the same physical pages

Operating Systems. Memory Management 88 / 264

Paging

Memory management: paging

Operating Systems. Memory Management 89 / 264

Paging

Paging

Hardware support is needed (for example no paging on intel 286,
paging available on i386)

Each entry of the PT has other information beside the address of the
physical page: presence bit (the page is in memory) , access bit (1
page was accessed, but can be 0 for a accessed page after a bit
reset), dirty (modified page) bit, read only, read write, privilege level
(kernel only, user), etc.

Operating Systems. Memory Management 90 / 264

Paging

Paging: Implementation of the Page Table

In theory, two different ways to implement the page tables could be
used

Dedicated processor registers
In memory

All present machines use page tables in memory

Operating Systems. Memory Management 91 / 264

Paging

Paging: Implementation of the Page Table

Dedicated registers: The processor has registers to store the page
table of the running processes.

In a context switch the page table is stored in the Process Control
Block, and the registers are loaded with the page table of the new
running process.
Address translation is fast because the page table is in the processor
registers
High cost because many processor registers are needed, for this reason
it is not used in modern systems
Slow context switch because many registers are implied

Operating Systems. Memory Management 92 / 264

Paging

Paging: Implementation of the Page Table

In memory: Page tables are kept in main memory.

The Page-table base register (PTBR) points to the page table of the
running process. In a context switch the value of this register is stored
in the Process Control Block, and the register is loaded with the page
table base address of the new running process.
Address translation is slow because every data/instruction access
requires two memory accesses: one for the page table and another for
the data/instruction
Fast context switch because only one register is implied
The two memory access problem can be solved by the use of a special
fast-lookup hardware cache (associative memory) called translate
look-aside buffers (TLBs)

Operating Systems. Memory Management 93 / 264

Paging

Paging: Implementation of the Page Table

The TLB is an associative memory that performs a parallel search,
i.e., the TLB contains pairs <number of logical page, frame
number>.

Given a logical address (p, d), If p is in associative register contained
in the TLB, get frame number out, otherwise get frame number from
page table in memory

Operating Systems. Memory Management 94 / 264

Paging

Paging: Implementation of the Page Table

Some TLBs store address-space identifiers (ASIDs) in each TLB
entry. This uniquely identifies each process to provide address-space
protection for that process. Otherwise theres a need to flush it at
every context switch

TLBs typically small (64 to 1,024 entries)

On a TLB miss, value is loaded into the TLB for faster access next
time

Replacement policies must be considered
Some entries can be wired down for permanent fast access

Operating Systems. Memory Management 95 / 264

Paging

Memory management: Paging with TLB

Operating Systems. Memory Management 96 / 264

Paging

Paging: Effective access time with TLBs

Let’s consider that TLB Associative Lookup time is ϵ (time unit).
Can be < 10% of memory access time

We define the hit ratio (α) as the percentage of times that a page
number is found in the associative registers. The bigger the number
of associative registers the highest the hit ratio will be

The Effective Access Time for a memory with access time T is

EAT = α(T + ϵ) + (1− α)(2T + ϵ)

Consider the following example α = 80% , ϵ = 20ns for TLB search,
100ns for memory access

EAT = 0.80x120+ 0.20x220 = 140ns (instead of 200 ns without TLB)

The more realistic example where α = 99%, ϵ = 20ns for TLB search,
100ns for memory access, yields

EAT = 0.99x120+ 0.01x220 = 121ns (instead of 200 ns without TLB)

Operating Systems. Memory Management 97 / 264

Paging

Inverted page tables

in systems with virtual memory, there are many pages of the
processes that are not loaded in physical memory; however the page
tables of each process have to be large enough to accommodate the
whole address space of the process

A 32 bits address space using 4K pages would need 220 pages. The
table page for a process would have to have 220 entries. Assuming 4
bytes entries, each page table would need 4 Mb

Two solutions

multilevel paging (mixed systems)
inverted page tables

one entry for each physical frame
each entry has information about the page contained in that frame
(proccess and logical address)
To optimice the search time usually a hash function is used
Used in the IBM PowerPC and IBM AS/400 architectures

Operating Systems. Memory Management 98 / 264

Paging

Inverted page table

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 99 / 264

Paging

Two level page table

TwoTwo--Level Level
Hierarchical Page TableHierarchical Page Table

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 100 / 264

Mixed systems

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 101 / 264

Mixed systems

Mixed systems

A combination of paging and/or segmentation

As paging provides better memory usage, there’s always paging as the
last managing system

segmented paging: obsolete systems, used in IBM system 370
(around 1972), the page table of a proccess was segmented
paged segmentation the segments are paged
multilevel paging: there are various levels of paging

Today’s systems use more sophisticated schemes. We will see:

intel x86 32bits PC archictecture: paged segmentation with two level
paging
intel x86 64bits PC architecture: four level paging

Operating Systems. Memory Management 102 / 264

Mixed systems Advantages of multilevel paging

Mixed systems

Advantages of multilevel paging

Operating Systems. Memory Management 103 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging

Multilevel paging is, a priori, more complex and slower than single
level paging (although ultimately it will depend also on memory
access times and the workings of both cache and TLBs)

What might be the advantages of multilevel paging vs single level?

Let’s asume a machine with 16bit physical/16bit logical address space
and 4K pages.

Remember, this example is OVERSIMPLIFIED:

physical and logical address spaces need not be the same size
a 4K page is way too large for a 16 bit adress space
today a 16 bit machine is completely obsolete

Operating Systems. Memory Management 104 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging

Although this example is NOT REAL. It can show us the advantages
of multilevel paging

We’ll see how processes page tables look in two cases

single level page table: four bits page number, 12 bits offset
two level page table: two bits first level page number, two bits second
level page number, 12 bits offset OVERSIMPLIFIED and
exaggerated: two bits for each evel page number???

Operating Systems. Memory Management 105 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging. One level page table

In this first two examples we use a one level page table, with 16
entries (remember 4 bits for page number makes for 16 posible
pages). Also remember this is not real, page size is too big for
address space, just an oversimplified example.

For a process with big address space (a 64 K process) all entries in
the page table are used

For a process with small address space (a 16K process) only four
entries are used, although the other entries are present in the page
table to show that those pages do not exist in the process address
space.

The following two figures show both processes with their
corresponding page tables

Operating Systems. Memory Management 106 / 264

Mixed systems Advantages of multilevel paging

Example One Leve PT. Big Address Space

Page C
Page 7
Page 2
Page 6
Page 5
Page 4
Page B
Page A
Page 8
Page 9
Page D
Page 1
Page 0
Page 3
Page F
Page E

F Frame 1

E Frame 0

D Frame 5

C Frame F

B Frame 9

A Frame 8

9 Frame 7

8 Frame 6

7 Frame E

6 Frame C

5 Frame B

4 Frame A

3 Frame 2

2 Frame D

1 Frame 4

0 Frame 3

Physical Memory

Page Table

ONE LEVEL PAGE TABLE FOR PROCESS WITH A BIG ADDRESS SPACE

Operating Systems. Memory Management 107 / 264

Mixed systems Advantages of multilevel paging

Example One Leve PT. Small Address Space

Physical Memory

Page Table

ONE LEVEL PAGE TABLE FOR PROCESS WITH A SMALL ADDRESS SPACE

Page 1
Page 0

Page F
Page E

F Frame 1

E Frame 0

D

C

B

A

9

8

7

6

5

4

3

2

1 Frame 4

0 Frame 3

Operating Systems. Memory Management 108 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging. Two level page table

Let’s now consider a two level paging for the same (hypothetical)
architecture: 2 bits firts level page number, two bits second level page
number and 12 bits page offset

Again, let’s enphasize that this is an OVERSIMPLIFIED example (it
would make no sense 4k pages in a 16 bits address space, with two
bits page numbres!!)

For the process with a big addres space

Access would be, in principle, slower (three memory accesses, instead
of two), but that can be overcomed with the adecuate TLBs
The page table is bigger, 20 entries instead of 16, as can be seen in the
figures

For the small address space process, the page table is smaller,
because for pages not present in the address space, the second
level table is not allocated

Operating Systems. Memory Management 109 / 264

Mixed systems Advantages of multilevel paging

Example One Leve PT. Big Address Space

Page C
Page 7
Page 2
Page 6
Page 5
Page 4
Page B
Page A
Page 8
Page 9
Page D
Page 1
Page 0
Page 3
Page F
Page E

Physical Memory

Two Level Page Table

TWO LEVEL PAGE TABLE FOR PROCESS WITH A BIG ADDRESS SPACE

3 Frame 2

2 Frame D

1 Frame 4

0 Frame 3

3 Frame E

2 Frame C

1 Frame B

0 Frame A

3 Frame 9

2 Frame 8

1 Frame 7

0 Frame 6

3 Frame 1

2 Frame 0

1 Frame 5

0 Frame F

3
2
1
0

Operating Systems. Memory Management 110 / 264

Mixed systems Advantages of multilevel paging

Example One Leve PT. Small Address Space

Physical Memory

Two Level Page Table

TWO LEVEL PAGE TABLE FOR PROCESS WITH A SMALL ADDRESS SPACE

Page 1
Page 0

Page F
Page E

3

2

1 Frame 4

0 Frame 3

3 Frame 1

2 Frame 0

1

0

3

2

1

0

Operating Systems. Memory Management 111 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging. Real world

The previous examples were made for an OVERSIMPLIFIED
hypothetical architecture, but we can see the idea behind it.

In the proposed exercises we have one that calculates (for the Intel 32
bit architecture described in the next chapter), the size of the page
table of a process for which the command pmap reports the following
address space.
antonio@abyecto:~$ pmap -x 3709

3709: ./shell

Address Kbytes RSS Dirty Mode Mapping

08048000 4 4 0 r---- shell

08049000 636 572 0 r-x-- shell

080e8000 236 128 0 r---- shell

08124000 8 8 4 r---- shell

08126000 8 8 8 rw--- shell

08128000 76 12 12 rw--- [anon]

091c9000 136 8 8 rw--- [anon]

b7f11000 16 0 0 r---- [anon]

b7f15000 8 4 0 r-x-- [anon]

bfd4f000 132 16 16 rw--- [stack]

-------- ------- ------- -------

total kB 1260 760 48

Operating Systems. Memory Management 112 / 264

Mixed systems Advantages of multilevel paging

Advantages of multilevel paging. Real world

The exercise calculates the page table size to be 20Kb.

If the page table were to be one level page table

it would need 220 entries (there are 20 bits for page number)
each entry would need at least 32 bit (4 byte) (20 bits are needed for
the physical frame, plus presence, read/write, kernel/user . . .)
This would make the page table 4Mb in size!!

Operating Systems. Memory Management 113 / 264

Real examples: Intel’s 32 bit and 64 bit architectures

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 114 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

Real examples: Intel’s 32 bit and 64 bit architectures

Intel’s 32 bit PC architecture
Intel/amd 64 bit PC architecture

Operating Systems. Memory Management 115 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

Memory management in the 32 bit PC architecture

As an example of actual memory management scheme we’ll look at
the 32 bit PC architecture: segmentation with two levels of paging

Each addres is comprised of

selector (16 bits) 13 bits for the segment number, 1 bit to select
table(GDT-Global Decriptor Table or LDT-Local Descriptor Table) and
2 bits for the privilege level
offset 32 bits

The 13 bits of the segment number (selector) serve as an index in a
segment table (descriptor table) where we get, among other things,

a 32 bits base address
20 bits limit (which represents a 32 bit addressing if page granularity is
selected)

Operating Systems. Memory Management 116 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

Memory management in the 32 bit PC architecture

Operating Systems. Memory Management 117 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

32 bit PC: Segment selector

Operating Systems. Memory Management 118 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

32 bit PC: Segment selector

Operating Systems. Memory Management 119 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

Memory management in the 32 bit PC architecture

the 32 bit base address is added to the 32 bit offset yielding a 32 bit
linear address

The first 10 bits correspond to an entry in the page directory table,
where we get, among othe things, the address of a page table
The next 10 bits represent an index in the page table we got in the
previous step, where we get the physical address of a page frame
The next 12 bits represent an offset in the aforementioned page frame

The pages are sized 4K

Each page table has 1024 four bytes entries (its format can be seen in
one of the following figures). Each page table occupies one page

Operating Systems. Memory Management 120 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

32 bit PC: linear address

Operating Systems. Memory Management 121 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel’s 32 bit PC architecture

32 bit PC: page table entry

Operating Systems. Memory Management 122 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Real examples: Intel’s 32 bit and 64 bit architectures

Intel’s 32 bit PC architecture
Intel/amd 64 bit PC architecture

Operating Systems. Memory Management 123 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Memory management in the 64 bit PC architecture

We will take the intel’s core i7 as the example of this architecture. As
of now it is not really 64 bit. Actually for the core i7 it is 48 bit
logical and 52 bit physical.

What happents with the remaining bits?

The 16 most significant bits of a virtual address (remember, only 48
bits are meaningful) are either all 0’s o all 1’s. They are equal to the
most significant bit of the 48 bit virtual address

Operating Systems. Memory Management 124 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Memory management in the 64 bit PC architecture

This means that the 48 virtual address space is divided into two
halves of 64bit addresses

lower half addresses: 0x000000000000 to 0x7fffffffffff, which go
from (in 64 bit form) 0x0000000000000000 to 0x00007fffffffffff

upper half addresses: 0x800000000000 to 0xffffffffffff, which go
from (in 64 bit form) 0xffff800000000000 to 0xffffffffffffffff

addresses between 0x00007fffffffffff and 0xffff800000000000

are deemed not valid

Operating Systems. Memory Management 125 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Memory management in the 64 bit PC architecture

The 48 bit virtual address space is organized as a four level page,

12 bits offset (Virtual Page Offset), making page size 4k
36 bits Virtual Page Number with four level of pages, each of which
has 9 bits

This 9 bits allow for 29 (512) entries in each table. As entries are 64
bits (8 bytes), each table is 512x8=4096 bytes (which is exactly one
page!!)

Operating Systems. Memory Management 126 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Memory management in the 64 bit PC architecture

To speed up things, the 36 bits Virtual Page Number is fed to the
TLB (32bit tag, 4bit index) that would yield (should there be a TLB
hit) the 40 bit Physical Page Number.

This PPN together with the Physical Page Offset (which is the same
as the Virtual Page Offset) constitutes the 52 bits Physical Address

The 52 Physical Address is searched in a L1 cache (40 bit tag, 6 bit
index, 6 bit offset)

The schematics can be seen in the following figures

Operating Systems. Memory Management 127 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Core i7 Address Translation

Carnegie Mellon

14

End-‐to-‐end	 Core	 i7	 Address	 TranslaZon	
CPU	

VPN	 VPO	
36	 12	

TLBT	 TLBI	
4	 32	

...	

L1	 TLB	 (16	 sets,	 4	 entries/set)	

VPN1	 VPN2	
9	 9	

PTE	

CR3	

PPN	 PPO	
40	 12	

Page	 tables	

TLB	
miss	

TLB	
hit	

Physical	
address	 	

(PA)	

Result	
32/64	

...	

CT	 CO	
40	 6	

CI	
6	

L2,	 L3,	 and	 	
main	 memory	

L1	 d-‐cache	 	
(64	 sets,	 8	 lines/set)	

L1	
hit	

L1	
miss	

Virtual	 address	 (VA)	

VPN3	 VPN4	
9	 9	

PTE	 PTE	 PTE	

Operating Systems. Memory Management 128 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Core i7 Page Table Entries

Carnegie Mellon

15

Core	 i7	 Level	 1-‐3	 Page	 Table	 Entries	

Page	 table	 physical	 base	 address	 Unused	 G	 PS	 A	 CD	 WT	 U/S	 R/W	 P=1	

Each	 entry	 references	 a	 4K	 child	 page	 table	

P:	 Child	 page	 table	 present	 in	 physical	 memory	 (1)	 or	 not	 (0).	

R/W:	 Read-‐only	 or	 read-‐write	 access	 access	 permission	 for	 all	 reachable	 pages.	

U/S:	 user	 or	 supervisor	 (kernel)	 mode	 access	 permission	 for	 all	 reachable	 pages.	

WT:	 Write-‐through	 or	 write-‐back	 cache	 policy	 for	 the	 child	 page	 table.	 	

CD:	 Caching	 disabled	 or	 enabled	 for	 the	 child	 page	 table.	 	

A:	 	 Reference	 bit	 (set	 by	 MMU	 on	 reads	 and	 writes,	 cleared	 by	 so`ware).	

PS:	 	 Page	 size	 either	 4	 KB	 or	 4	 MB	 (defined	 for	 Level	 1	 PTEs	 only).	

G:	 Global	 page	 (don’t	 evict	 from	 TLB	 on	 task	 switch)	

Page	 table	 physical	 base	 address:	 40	 most	 significant	 bits	 of	 physical	 page	 table	
address	 (forces	 page	 tables	 to	 be	 4KB	 aligned)	

51	 12	 11	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

Unused	 XD	

Available	 for	 OS	 (page	 table	 locaZon	 on	 disk)	 P=0	

52	 62	 63	

Operating Systems. Memory Management 129 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Core i7 Page Table Entries

Carnegie Mellon

16

Core	 i7	 Level	 4	 Page	 Table	 Entries	

Page	 physical	 base	 address	 Unused	 G	 D A	 CD	 WT	 U/S	 R/W	 P=1	

Each	 entry	 references	 a	 4K	 child	 page	

P:	 Child	 page	 is	 present	 in	 memory	 (1)	 or	 not	 (0)	

R/W:	 Read-‐only	 or	 read-‐write	 access	 permission	 for	 child	 page	

U/S:	 User	 or	 supervisor	 mode	 access	

WT:	 Write-‐through	 or	 write-‐back	 cache	 policy	 for	 this	 page	

CD:	 Cache	 disabled	 (1)	 or	 enabled	 (0)	

A:	 Reference	 bit	 (set	 by	 MMU	 on	 reads	 and	 writes,	 cleared	 by	 so`ware)	 	

D:	 Dirty	 bit	 (set	 by	 MMU	 on	 writes,	 cleared	 by	 so`ware)	

G:	 Global	 page	 (don’t	 evict	 from	 TLB	 on	 task	 switch)	

Page	 physical	 base	 address:	 40	 most	 significant	 bits	 of	 physical	 page	 address	
(forces	 pages	 to	 be	 4KB	 aligned)	

51	 12	 11	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

Unused	 XD	

Available	 for	 OS	 (page	 locaZon	 on	 disk)	 P=0	

52	 62	 63	

Operating Systems. Memory Management 130 / 264

Real examples: Intel’s 32 bit and 64 bit architectures Intel/amd 64 bit PC architecture

Core i7 Page Table Translation

Carnegie Mellon

17

Core	 i7	 Page	 Table	 TranslaZon	

CR3	

Physical	 	 	
address	
of	 page	

Physical	 	
address	
of	 L1	 PT	

9	

VPO	
9	 12	 Virtual	 	

address	

L4	 PT	
Page	 	
table	

L4	 PTE	

PPN	 PPO	
40	 12	 Physical	 	

address	

Offset	 into	 	
physical	 and	 	
virtual	 page	

VPN	 3	 VPN	 4	 VPN	 2	 VPN	 1	

L3	 PT	
Page	 middle	
directory	

L3	 PTE	

L2	 PT	
Page	 upper	
directory	

L2	 PTE	

L1	 PT	
Page	 global	
directory	

L1	 PTE	

9	 9	

40	
/	

40	
/	

40	
/	

40	
/	

40	
/	

12	 /	

512	 GB	 	
region	 	
per	 entry	

1	 GB	 	
region	 	
per	 entry	

2	 MB	 	
region	 	
per	 entry	

4	 KB	
region	 	
per	 entry	

Operating Systems. Memory Management 131 / 264

Introduction to Virtual Memory

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 132 / 264

Introduction to Virtual Memory

Remembering paging

Addresses spaces are not necessarily contiguous. Lets think of a
HYPOTHETICAL 16 bit system with 4K pages (OVERSIMPLIED
EXAMPLE)

lets think of a process with a small address space (like the one

previously seen)

Physical Memory

Page Table

ONE LEVEL PAGE TABLE FOR PROCESS WITH A SMALL ADDRESS SPACE

Page 1
Page 0

Page F
Page E

F Frame 1

E Frame 0

D

C

B

A

9

8

7

6

5

4

3

2

1 Frame 4

0 Frame 3

Operating Systems. Memory Management 133 / 264

Introduction to Virtual Memory

Remembering paging

If the process were to reference address 0x12ff, the MMU would
translate that reference to 0x42ff PHYSICAL memory address (as we
can see in the figure that page 1 of the process is at frame 4)

But what happens if the proccess were to reference address 0x542a?

We can see from the figure that the proccess DOES NOT HAVE page
5 in its address space.
The MMU would produce an exception and transfer the control to the
Operating System
The Operating System would have the proccess killed because it has
referenced and invalid address

How does the MMU know that that is not a valid address??

The page table entry has one bit (typically called presence bit) that
states whether the page is in memory or not

Operating Systems. Memory Management 134 / 264

Introduction to Virtual Memory

Taking advantage of paging

Now we can take advantage of the working of the paging system:

We do not load a process completely into memory
The pages not loaded are marked with their presence bit to 0 (as are
the pages not part of its address space)
When a page with its presence bit 0 is referenced, an exception is
produced and control goes the operating system

Operating Systems. Memory Management 135 / 264

Introduction to Virtual Memory

Taking advantage of paging

When the O.S. gets control, called as the result of a MMU exception
it checks why the exception has happened

The referenced page is in fact an invalid address? Then the O.S. has
the process killed (as seen before)
The referenced page is a valid address that the O.S. did not load when
loading the process? The the S.O. loads it now, updates the page table
and returns control to the process

The process retries the last instruction: its state was saved when
control was transfered to the O.S. as the result of the exception

Now the page is IN MEMORY (presence bit 1) and execution
continues normally

This is the most common implementation of VM, called demand
paging

Operating Systems. Memory Management 136 / 264

Introduction to Virtual Memory

Where are the pages?

This poses another question. If a page is not in memory..where is it?
Where does the operating system take it from?

That deppends on whether it is a page of code, data or stack and
whether it has been modified

code Code pages, which are read only, are taken from the executable file
data New (unmodified) data pages are taken from the executable file when

the data in them have been given initial values. If the data they
contain do not have initial values then those pages are newlly allocated
and zeroed (explaining why in C external and static variables without
explicit initialization are in fact initialized to 0). Already used
(modified) data pages are taken from the swap device

stack New (unmodified) stack pages are newlly allocated and zeroed.
Already used (modified) stack pages are taken from the swap device.

So to have virtual memory we need some storage device called swap
device to store the modified data and stack pages

Operating Systems. Memory Management 137 / 264

Introduction to Virtual Memory

What do we need to have VM?

The most common implementation is demand paging. This requires

1) a paging addressing scheme with the presence bit, so that when a
page is referenced and its presence bit is 0, the MMU produces an
exception

2) some storage device configured to hold pages of processes, called
swap device

this swap device can be either a file or a disk partition
Windows O.S.s typically use a file, unix O.S.s typically use a partition
Advantages of using a file: flexibility (the file size can change)
Advantages of using a dedicated partiition: speed (no need to use file
system indirections)

Operating Systems. Memory Management 138 / 264

Introduction to Virtual Memory

What do we need to have VM?

3) an Operating System capable of dealing with the aforementioned
exception in the following way

Save the process state
If the address is in fact an illegal address: take the appropiate action to
deal with illegal addresses (typically killing the process)
If the address is a valid address but the page is not in memory

Locate the page in the swap device
Read the page into memory.
Update the page table for the process. (that very page is now IN
memory)
Restore the process state and continue execution

Operating Systems. Memory Management 139 / 264

Introduction to Virtual Memory

VM is not that simple

In the previous slide we made VM look quite simple but there are a
lot of things to consider. Lets think of the simple sentence “read the
page into memory”. Several considerations con be made here

Do we schedule another process to run in the meantime? (probably
yes, as the reading implies waiting on a device)
Do we have a free frame?. Would it be convenient to have a pool of
free frames?
If we do not, we’ll have to make some frame free by replacing the page
contained in it. Would it be a page of the very same process? (that’s
what we will call replacement scope)
How do we decide which page to replace? (that’s what we will call
replacement policy)
What if the page to be replaced has been modified? Shouldn’t it be
written to the swap first? (we call this cleaning policy)
Do we bring into memory just one page or maybe we try to anticipate
the needs of the process and bring several pages (we call this fetching
policy)

Operating Systems. Memory Management 140 / 264

Software segments

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 141 / 264

Software segments

Segmentation vs paging

we’ve seen what (hardware) segmentation and paging were

we even have seen paged segmentation real examples of a (two level)
paged segmentation system (intel’s 32 bit PC architecture)

sgementation, on one hand, is closer to the logical structure of a
program (separate regions for code, data, heap, libraries stack . . .)

paging, on the other hand, is much more memory efficient, as pages
are all the same size. Each page can be replaced with anothe page.

so, most O.S. implement virtual memory with demand paging (still
there were some O.S. which didn’t, such as IBM’s OS/2 1.x, which
implemented it with demand segentation)

most present hardware provides only paging, and for hardware that
provides also hardware segmentation such segmentation is rarery used
(for example unix’es in the intel 32bit PC architecture do not use the
hardware segmentation)

Operating Systems. Memory Management 142 / 264

Software segments

So..what is a software segment?

Lets think of an (again!!) OVERSIMPLIFIED example

Let us consider an 16 bit paged system : 6 bits page number, 10 bits
page offset (1k pages).

Now we consider a (really simple) process that has

code page0, page1, page2
data page4, page5, page6, page7, page8
stack page38, page39

Operating Systems. Memory Management 143 / 264

Software segments

So..what is a software segment?

If we translate that to logical address, we have that this process has

code starts at address 0x0000, size 3k (0xC00). Ends at adress 0x0BFF
data starts at address 0x1000, size 5k (0x1400). Ends at address 0x23FF
stack starts at address 0xE000, size 2k (0x800). Ends at address 0x 0xE7FF

Let’s now imagine that the O.S. keeps the address space of the
process, as a list of items, describing the different “zones” of the
address space

Each item has the starting virtual address, the size, the permissions
. . .

Operating Systems. Memory Management 144 / 264

Software segments

Address space of the process as a list

Operating Systems. Memory Management 145 / 264

Software segments

Page faults and segmentation faults

Lets now imagine that all of the process pages, execpt page5 and
page6 are in memory. This means that presence bits for page0, page1,
page2, page4, page7, page8, page38 and page39 are 1. The rest of
the presence bits are 0.

If the process now references address 0x124A, which is in page4, the
MMU would translate that to the correspondig real address

If the process references address 0x14f2, which is in page5, as the
presence bit is 0, the MMU would produce and execption. The O.S.,
upon being given control would check that that address is the range
0x1000-0x23ff, so its a valid address. This is a page fault, and the
O.S. will serve the page fault.

Operating Systems. Memory Management 146 / 264

Software segments

Page faults and segmentation faults

If the process were to reference address 0x4f06, which is at page 0x13
(19), as the presence bit is 0, the MMU would produce and execption.
The O.S., upon being given control would find that that address is
not in any of the segments. That is in fact an invalid address,
prodducing a segmentation fault kind of error. typically resulting in
the process being killed.

We can see that we can have segments when there is not hardware
segmentation

Linux calls these entities segments, while other O.S. call them
regions. The command pmap shows the segments for a process (with
their starting address, size and permissions)

Operating Systems. Memory Management 147 / 264

Software segments

Memory map for a process in Linux

Carnegie Mellon

19

Virtual	 Memory	 of	 a	 Linux	 Process	

Kernel	 code	 and	 data	

Memory	 mapped	 region	 	
for	 shared	 libraries	

RunZme	 heap	 (malloc)	

Program	 text	 (.text)	
IniZalized	 data	 (.data)	
UniniZalized	 data	 (.bss)	

User	 stack	

0	

%esp

Process	
virtual	
memory	

brk

Physical	 memory	 IdenJcal	 	 for	
each	 process	

Process-‐specific	 data	
	 structs	 	 (ptables,	

task	 and	 mm	 structs,	
kernel	 stack)	 Kernel	

virtual	 	
memory	

0x08048000 (32)
0x00400000 (64)

Different	 for	
each	 process	

Operating Systems. Memory Management 148 / 264

Software segments

Address space of the process as a list

Carnegie Mellon

20

vm_next	

vm_next	

Linux	 Organizes	 VM	 as	 CollecZon	 of	 “Areas”	 	

task_struct
mm_struct

pgd	 mm	

mmap	

vm_area_struct

vm_end	

vm_prot	
vm_start	

vm_end	

vm_prot	
vm_start	

vm_end	

vm_prot	

vm_next	

vm_start	

Process	 virtual	 memory	

Text	

Data	

Shared	 libraries	

0	

  pgd:	 	
  Page	 global	 directory	 address	
  Points	 to	 L1	 page	 table	

  vm_prot:	
  Read/write	 permissions	 for	 	

this	 area	

  vm_flags	
  Pages	 shared	 with	 other	

processes	 or	 private	 to	 this	
process	

vm_flags	

vm_flags	

vm_flags	

Operating Systems. Memory Management 149 / 264

Software segments

Page fault vs Segmentation fault

Carnegie Mellon

21

Linux	 Page	 Fault	 Handling	 	

read	
1	

write	

2	

read	

3	

vm_next	

vm_next	

vm_area_struct	

vm_end	

vm_prot	
vm_start	

vm_end	

vm_prot	
vm_start	

vm_end	

vm_prot	

vm_next	

vm_start	

Process	 virtual	 memory	

text	

data	

shared	 libraries	

vm_flags	

vm_flags	

vm_flags	

Segmentation fault:	
accessing	 a	 non-‐exisZng	 page	

Normal	 page	 fault	

ProtecZon	 excepZon:	
e.g.,	 violaZng	 permission	 by	
wriZng	 to	 a	 read-‐only	 page	 (Linux	
reports	 as	 SegmentaZon	 fault)	

Operating Systems. Memory Management 150 / 264

Software segments

Types of segments

There are two types of segments

vnode segments. They are segments associated to a file, such as the
code segments, mapped files. . . . Pages from these segments get initial
values from the file they are associated to.
anonymous segments. They are not associated to a file. Examples of
this are the data, and stack segments. They are ultimately associated
to the swap device. Pages from these segments get initial values of 0s.
(They are zeroed when they first fault)

In linux (and Solaris) the command pmap shows the segments in the
address space of a process, together with their starting address and
size, and in the case of a vnode segment, the file it is associated to

In FreeBSD the command procstat vm shows the segments in the
address space of a process, together with they starting and ending
virtual addresses, and in the case of an vnode segment the file it is
associated to

Operating Systems. Memory Management 151 / 264

Software segments

Copy on write

There are situations when segments need to be duplicated (for
example during the fork() system call)

If the segments are readonly they are simply shared

If the segments are writable, the following procedure is applied (called
copy-on-write)

The segment is shared and marked read only
An attempt to write to that segment will result in an exception
As a consequence of the exception control goes to the O.S.
Upon checking that the exception is produced by trying to modified a
originally marked writable segment now readonly, the O.S. will
duplicate the page producing the exception, and update the page
composition for one of the segments.
This avoids dupplicating the whole segments. Only the pages actually
modified are duplicated.

Operating Systems. Memory Management 152 / 264

Software segments

Duplicating a Segment: original mapping

Carnegie Mellon

25

Sharing	 Revisited:	 Shared	 Objects	

  Process	 1	 	 maps	
the	 shared	
object.	 	

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Operating Systems. Memory Management 153 / 264

Software segments

Duplicating a Segment: sharing the segment

Carnegie Mellon

26

Sharing	 Revisited:	 Shared	 Objects	

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

  Process	 2	 maps	
the	 shared	
object.	 	

  NoZce	 how	 the	
virtual	
addresses	 can	
be	 different.	

Operating Systems. Memory Management 154 / 264

Software segments

Duplicating a Segment: copy on write

Carnegie Mellon

27

Sharing	 Revisited:	 	
Private	 Copy-‐on-‐write	 (COW)	 Objects	

  Two	 processes	
mapping	 a	 private	
copy-‐on-‐write	
(COW)	 	 object.	 	

  Area	 flagged	 as	
private	 copy-‐on-‐
write	

  PTEs	 in	 private	
areas	 are	 flagged	
as	 read-‐only	

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Operating Systems. Memory Management 155 / 264

Software segments

Duplicating a Segment: COW, duplicating modified page

Carnegie Mellon

28

Sharing	 Revisited:	 	
Private	 Copy-‐on-‐write	 (COW)	 Objects	

  InstrucZon	 wriZng	
to	 private	 page	
triggers	
protecZon	 fault.	 	

  Handler	 creates	
new	 R/W	 page.	 	

  InstrucZon	
restarts	 upon	
handler	 return.	 	

  Copying	 deferred	
as	 long	 as	
possible!	

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Operating Systems. Memory Management 156 / 264

What is Virtual Memory exactly and why does it work?

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 157 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

What is Virtual Memory exactly and why does it work?

Virtual Memory
Why does VM work? Principle of locality
Thrashing

Operating Systems. Memory Management 158 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Virtual Memory

VM is the ability to execute programs that are not completely loaded
into memory

It makes sense because some portions of the program may be not
used at all

very rare error conditions
options that never get used
oversized variables

Operating Systems. Memory Management 159 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Advantages of virtual Memory

Having the ability to execute a program that is not completely loaded
has these advantages

Progtams can be bigger than the physical RAM installed on the
machine
The degree of multiprogramming can be increased
Swapping programs uses less i/o

The most usual way of implementing VM is with demand paging

It can be implemented with demand segmentation but it is not as
efficient as compactations need to be made (IBM OS/2 v1.3)

Operating Systems. Memory Management 160 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Demand paging

We saw previously the operation of demand paging

Programs larger than physical memory can be executed at the cost of
a reduction in speed

Since pages often have to be brought into memory, the problem of
which page to replace arises.

In addition to the different algorithms, it is necessary to consider
whether local or global replacement is used.

Another aspect to take into account is the criteria for assigning
frames to the processes

Operating Systems. Memory Management 161 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Performance of demand paging

The page fault service includes the following tasks
a) Serve page fault exception

Transfer control to the O.S.
Save process state
Determine that the exception is a page fault
Locate the page in the swap device
Allocate a new frame

b) Transfer the page

Wait in device queue
Wait for seek and latency times
Transfer page into frame
Update page table

c) Resume process

Restore process state
Resume execution

Operating Systems. Memory Management 162 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Demand paging performance: example

Let’s assume a system that operates at 2GHz, where the memory
access time is in the order of 5 ns (typical value of a DDR2 memory),
and where the swap device has a average search time of 9.5 ms and a
transfer speed of 40Mb/second

In this case we can estimate an upper bound of 10ms to serve the
page fault (9.5ms for the seek time, 0.1 ms for the transfer of a 4K
page and an additional 0.4ms which are more than enough for latency
and the rest of the tasks.

If the probability of a page fault is 10−6 (one page fault each million
of memory refferences), the mean effective access time would be
t.a.e. = (1− 10−6)x5ns + 10−610ms ≈ 5ns + 10ns = 15ns

Operating Systems. Memory Management 163 / 264

What is Virtual Memory exactly and why does it work? Virtual Memory

Demand paging performance: considerations

Increasing the physical memory of the machine decreases the
probability of a page fault

As the probability of a page fault decreases, the effective access time
decreases and therefore the apparent execution speed increases.

Virtual memory allows running a process that does not fully reside in
memory at the cost of a decrease in execution speed

In order for a system with virtual memory to function optimally, the
number of page faults must be minimal

Operating Systems. Memory Management 164 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

What is Virtual Memory exactly and why does it work?

Virtual Memory
Why does VM work? Principle of locality
Thrashing

Operating Systems. Memory Management 165 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Principle of Locality

This principle states that as a program executes it moves from one
location to another

A location is a set of pages that are referenced actively and together

A program in general is made up of several locations, which can
overlap

In other words: the sets of pages referenced by a process during its
execution are grouped in space (spatial locality) and in time
(temporal locality)

Operating Systems. Memory Management 166 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Spatial and temporal location

Temporary location: Recently referenced memory addresses are
likely to be referenced again in the near future

loops
functions, procedures, subroutines . . .
stacks
counters, accumulators. . .

Spatial location: If a memory address is referenced it is likely that a
nearby location is referenced

arrays and structures
sequential execution
related variables are often declared together

Operating Systems. Memory Management 167 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Locality of a program

Operating Systems. Memory Management 168 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

How does principle of locality benefit VM?

The program goes through differente localities (depending on which
stage of its execution it is)

The O.S. must adapt its Resident Set

If the Resident Set is equal to the locality of the process, no page
faulst will happen until the next change in locality

Page faults will increase when the program is switching localities

Operating Systems. Memory Management 169 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Example of various localities in a program

Consider the oversimplified example in the next page.

We have declared the variables as external, so they are stored in the
data segment, and we can limit our reasoning to pages in the
data segment, making it clearer.

Asuming 4 byte floats and a page size of 4k (reasonable
assumptions), each row of matrixes a, b and c occupies 8 pages
(matrixes in C are stored by rows). Each of those matrixes uses up to
256 Mb (64 K pages).

If we allocate 3x64 K pages to our process data , we get one fault to
load each page and no more page faults one they are loaded. Process
data would use 192 K pages, which we will have allocate to the
process all of its execution (remember, in this oversimplified example
we only consider the data pages, nor the code neither the stack pages)

Operating Systems. Memory Management 170 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Sample program with diferent localities

#define MAX 8192

float a[MAX][MAX],b[MAX[MAX],c[MAX]MAX];

......

void MultiplyMatrix (float x[MAX][MAX], float y[MAX][MAX], float z[MAX]MAX])

{

int i, j, k;

for (i=0; i<MAX; i++)

for (j=0; j<MAX; j++){

x[i][j]=0;

for (k=0; k<MAX; k++)

x[i][j]=x[i][j]+y[i][k]*z[k][j];

}

}

main()

{

ReadMatrix(a); /*locality one*/

ReadMatrix(b); /*locality two*/

MultiplyMatrix(c,a,b); /*locality three*/

PrintMatrix(c); /*locality four*)

}

Operating Systems. Memory Management 171 / 264

What is Virtual Memory exactly and why does it work? Why does VM work? Principle of locality

Example of several localities

The process goes, however, through four different localities.

During localities one, two and four the process acesses only one
matrix at a time. If fact, as it acceses it secuentially by rows,
allocating ONLY ONE frame to the process during that locality will
produce as many page faults as allocating 192K frames (remember we
are considering only data pages)

During locality three , the process would need (again considering only
data pages): One page for the element of matrix c (parameter x), 8
pages for the row of matrix a (parameter y) and 8192 pages for the
column of matrix b (parameter z).
The progam can do with (oversimplified example, plus considering
only data pages)

Locality one: one frame, 64 K page faults
Locality two: one frame, 64 K page faults
Locality three: 8201 frame 192K page faults
Locality four: one frame, 64 K page faults

Operating Systems. Memory Management 172 / 264

What is Virtual Memory exactly and why does it work? Thrashing

What is Virtual Memory exactly and why does it work?

Virtual Memory
Why does VM work? Principle of locality
Thrashing

Operating Systems. Memory Management 173 / 264

What is Virtual Memory exactly and why does it work? Thrashing

Thrashing

Thrashing occurs when a system spends more time paging than
executing

A process that has fewer frames allocated to it than it is actively
using, will continuously produce page faults since each failure will
replace a page which is also used

If the replacement is global (one process can replace pages of others)
it can spread the problem two other processes

To avoid thrashing, an attempt is made to assign a sufficient number
of frames for each process to execute smoothly. As we will see later ,
there are two ways for the O.S. to determine the correct number of
frames to allocate to a process

the working set model
page fault frequency model

Operating Systems. Memory Management 174 / 264

Page placement, fetching and replacement

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 175 / 264

Page placement, fetching and replacement

Virtual memory considerations

When designing a Virtual Memory system, there are a lot of things to
take into acount, each with its own considerations

Where in memory is the newly referenced page going to be placed?:
page placement policy
Is the page causing the page fault the only one brought into memory?:
page fetching policy
Is the allocation of frames to a process fixed or variable in time?:
frame allocation policy
Does the page causing the fault replace one of the very same process?:
replacement scope
How does the page to be replaced get chosen?: replacement
algorithms

Operating Systems. Memory Management 176 / 264

Page placement, fetching and replacement

Virtual memory considerations

Policies for Virtual MemoryPolicies for Virtual Memory
n Key issue: Performance

§ minimize page faults

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 177 / 264

Page placement, fetching and replacement

Page placement

With page placement policy we refer to the decission of where to put
the new page in memory

This is not a concern in paging systems as all the memory frames are
equal.

It world be a concern in segmented system

Not a concern in a paged segmentation system as the memory is
ultimately allocated in pages

It would be a design issue in NUMA (Non Uniform Memory Access)
systems

Operating Systems. Memory Management 178 / 264

Page placement, fetching and replacement

Page fetching

When a page produces a page fault a choice can be made

bring ONLY that page into memory: pure demand paging. (this also
implies that the O.S. does not load any page of a process until it is
referenced)
bring that page and some others into memory: prefetching

prefetching exploits the characteristics of most swap devices: it is
faster to bring four pages at one time than bringing four pages one at
a time. There’s no warranty that all the pages will be referenced: it
might be inefficient

pure demand paging produces a lot of page faults when the process is
started, although as more pages are brought in, the probability of a
page fault decreases

Operating Systems. Memory Management 179 / 264

Page placement, fetching and replacement

Page replacement

In the management of virtual memory, what is called replacement
policy takes great importance. It is what decides which page of those
present in memory is the one that goes to be replaced

In this policy several concepts are involved, which although different,
are strongly interrelated

a) The amount of physical memory (number of frames) allocated to each
process on the system (frame allocation)

b) If the set of pages to be taken into account when being replaced
includes only those of the process that caused the page fault or all
those residing in memory of the different processes (replacement scope)

c) Among the pages considered, which one should be selected to be
replaced (replacement algorithm)

Operating Systems. Memory Management 180 / 264

Page placement, fetching and replacement

Frame assignment and page replacement

Point a) raises what is known as the frame assignment problem. The
solutions to this problem are to try to assign to each process a
variable number of frames that adapts to the locality of the process.
(that is, it adapts to the process’ memory needs in the different
phases of its execution)

The point b) raises what is known as local replacement or global
replacement

The point c) is what is usually referred to as replacement policy or
page replacement algorithms

Operating Systems. Memory Management 181 / 264

Page placement, fetching and replacement

Frame allocation

When allocating frames for the execution of a process there are two
approaches

Fixed allocation: The number of frames allocated to a process is fixed
Variable allocation: The number of frames allocated to a process
evolves in time with the memory needs of the process

The case of fixed allocation rises the question of how can the amount
of frames allocated to a process be determined

The same for all processes
Proportional to the process size
Other considerations: process priority, cpu time. . .

Operating Systems. Memory Management 182 / 264

Page placement, fetching and replacement

Variable frame allocation

In the case of variable frame allocation the O.S. must guess the size
of the optimal allocation, the one that better adapts to the process
needs at each time.

If the allocation is smaller than the actual needs of the process, it will
produce a lot of page faults

If the allocation is too large: memory is wasted.

We’ll see two methods of determining the needs of the process

The working set model
The page fault frequency algorithm

Operating Systems. Memory Management 183 / 264

Page placement, fetching and replacement

Replacement scope

As replacement scope is concerned, two approaches can be thought of

Local Replacement: A page fault of a process can only replace a page
of that process
Global Replacement: A page fault from one process can replace a page
from another process

Not all combinations are possible: for example there can be no global
replacement with a fixed frame allocation technique

Operating Systems. Memory Management 184 / 264

Page placement, fetching and replacement

Virtual memory considerations

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 185 / 264

Page placement, fetching and replacement

Replacement and assignment

At present, most Operating Systems (linux, BSD . . .), use variable
assignment with global replacement

Very easy to implement
Combines with the existence of ”pool” of free frames

Operating Systems. Memory Management 186 / 264

Page placement, fetching and replacement

Page cache: pool of free frames

Most systems have a pool) of free frames

If a replacement needs to be made

Bring the new page to one of the free frames in the pool)
The replaced page is now marked as free and added to the ”pool” of
free frames

No waitting is needed to bring the new page into memory

In the event of a new page fault, it is possible that the page that
caused this new failure is in memory in the pool of free frames and
there is no need to bring it from disk

This technique is called page buffering and we call this pool the page
cache

Operating Systems. Memory Management 187 / 264

Page placement, fetching and replacement

Page cache: pool of free frames

As as extension to the page cache seen before, pages stealed from the
processes, are classified in to lists

Free page list. Pages stealed from the processes, that are replaceable.
Modified page list. Pages stealed from the processes. As they are
modified they are not directly replaceable. They are writen in clusters
to the swap device as the workload of the paging device allows. After
they are written to disk the go to the Free Page List

When one page is referenced the O.S. checks whether it is already in
the page cache, in which case it gets used and the page fault is
extemely fast (no need to read from disk)

If the page producing the page fault is not in the page cache, one of
the pages in the cache gets replaced

Operating Systems. Memory Management 188 / 264

Page placement, fetching and replacement

Frame locking

The O.S. can lock frames in memory by associating that frame a lock
bit

By frame locking we reffer to the ability to protect the page stored in
that frame from being replaced

Pages involved in i/o, and key structures are locked in memory. The
kernel is usually in locked pages too

As all i/o is done through system buffers, this is usually not a concern
for process pages

Operating Systems. Memory Management 189 / 264

Page Replacement Algorithms

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 190 / 264

Page Replacement Algorithms

Replacement algorithms

Whether we have local or global replacement, we still have a decission
to make: once a page fault happens whch one of the resident pages
gets replaced

This choice is done by what we call the replacement algorithm

The same algorithms can apply to both local and global replacement,
and they work exactly the same, considering

In a local replacement scope only the pages of the faulting process are
considered
In a global replacement scope ALL the processes pages are considered

Operating Systems. Memory Management 191 / 264

Page Replacement Algorithms

Classical replacement algorithms

The classical page replacement algorithms are

óptimal
LRU
FIFO

As we will see, only the FIFO algorithm can be implemented. The
Optimal cannot be implemented and the LRU would need special
hardware to be implemented efficiently

Operating Systems. Memory Management 192 / 264

Page Replacement Algorithms

Other replacement algorithms

The most usual thing is that the hardware provides a reference bit
and a modified one (dirty bit) for each page. With this help, the most
common algorithms are

FIFO with second chance (sometimes refered as clock algorithm)
Not Used Recently
Neither Used nor Recently Modified
Other LRU approximations . . .

Operating Systems. Memory Management 193 / 264

Page Replacement Algorithms Optimal algorithm

Page Replacement Algorithms

Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

Operating Systems. Memory Management 194 / 264

Page Replacement Algorithms Optimal algorithm

Óptimal Algorithm

It is the one that produces the fewest page faults for any number of
frames

The page that will take the longest to be referenced again is the one
replaced

It cannot be implemented as it would imply knowing in advance
which pages will be referenced in the future

Although it cannot be implemented, it is used as a comparison
reference for the other algorithms

Operating Systems. Memory Management 195 / 264

Page Replacement Algorithms Optimal algorithm

Optimal algorithm: example

Reference chain 2 3 2 1 5 2 4 5 3 2 5 2 with three frames produces 3
failures

Operating Systems. Memory Management 196 / 264

Page Replacement Algorithms LRU algorithm

Page Replacement Algorithms

Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

Operating Systems. Memory Management 197 / 264

Page Replacement Algorithms LRU algorithm

LRU algorithm

Replaces the least recently used page

It is like the optimum but with the chain of references reversed in time

Produces good results due to the principle of temporal locality,
recently referenced pages are likely to be referenced soon

It adapts very well to the location of the program

Operating Systems. Memory Management 198 / 264

Page Replacement Algorithms LRU algorithm

LRU algorithm

Two possible implementations

Counters A counter that represents the moment in which it was
referenced is associated with each page. The one that has not been
referenced for the longest time can be determined by the value of the
counter
List Each referenced page is placed at the end of a list, the first in the
list is the one that has not been referenced for the longest time

None of the implementations is feasible due to the burden that would
be involved in managing the counters (or the list) with each
memory reference

Operating Systems. Memory Management 199 / 264

Page Replacement Algorithms LRU algorithm

LRU algorithm: example

Reference chain 2 3 2 1 5 2 4 5 3 2 5 2 with three frames produces 4
failures

Operating Systems. Memory Management 200 / 264

Page Replacement Algorithms LRU algorithm

LRU approximations

The LRU algorithm produces reasonably good results but cannot be
implemented.

On systems with on-demand paging the hardware typically provides a
reference bit and a dirty bit

With these aids, algorithms that approximate the LRU are usually
implemented with the idea of adapting to the locality of the process

The most common are second chance (clock), use of additional
reference bits . . .

Operating Systems. Memory Management 201 / 264

Page Replacement Algorithms FIFO algorithm

Page Replacement Algorithms

Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

Operating Systems. Memory Management 202 / 264

Page Replacement Algorithms FIFO algorithm

FIFO algorithm

The first page to enter is replaced (FIRST IN FIRST OUT)

Very simple implementation.

It suffers from the Belady anomaly: for certain specific examples of
memory reference chains it is possible that increasing the number of
frames increases the number of page faults

Example: test the reference chain 1 2 3 4 1 2 5 1 2 3 4 5 for three and
four frames

Operating Systems. Memory Management 203 / 264

Page Replacement Algorithms FIFO algorithm

FIFO algorithm: example

Reference chain 2 3 2 1 5 2 4 5 3 2 5 2 with three frames produces 5
failures

Operating Systems. Memory Management 204 / 264

Page Replacement Algorithms FIFO algorithm

Belady anomaly

In the previous algorithm (FIFO) we saw that for specific strings of
reference, increasing the number of allocated frames might increase
the number of page faults

This is called the Belady anomaly

stack algorithms do not suffer from Belady anomaly

A replacement algorithm is said to be a stack algorithm if the resident
set with N frames allocated is a subset of the resident set with N+1
frames allocated

Operating Systems. Memory Management 205 / 264

Page Replacement Algorithms Second chance algorithm (clock)

Page Replacement Algorithms

Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

Operating Systems. Memory Management 206 / 264

Page Replacement Algorithms Second chance algorithm (clock)

Second Chance Algorithm

It is basically a FIFO in which the reference bit is also taken into
account

Very simple implementation: circular queue with the pages in which
the reference bit is also used

When you have to replace, look at the ı́ndex that indicates the next
page to replace

If the reference bit is at 0, it is replaced
If the reference bit is at 1, it is set to 0 and the ı́ndex is advanced to
the next (the page gets a second chance). . .

It is often refered to as the clock algorithm as the index going
through the circular queue “resembles” a clock

Operating Systems. Memory Management 207 / 264

Page Replacement Algorithms Second chance algorithm (clock)

Second Chance algorithm: example

Reference chain 2 3 2 1 5 2 4 5 3 2 5 2 with three frames produces 5
failures

The symbol * represents the reference bit set

Operating Systems. Memory Management 208 / 264

Page Replacement Algorithms Second chance algorithm (clock)

Algorithhm comparison

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 209 / 264

Page Replacement Algorithms Second chance algorithm (clock)

Alhgorithm comparison

Combined ExamplesCombined Examples

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 210 / 264

Page Replacement Algorithms Variations of the Second Chance (clock) algorithm

Page Replacement Algorithms

Optimal algorithm
LRU algorithm
FIFO algorithm
Second chance algorithm (clock)
Variations of the Second Chance (clock) algorithm

Operating Systems. Memory Management 211 / 264

Page Replacement Algorithms Variations of the Second Chance (clock) algorithm

Variations of the Second Chance algorithm

Using the circular page queue but with the (reference,modification)
bit pair

1 From the current index the first page is searched with (0,0) and
replaced

2 If none are found, the queue is traversed again, looking for a page with
(0,1). The first found is the one that is replaced. At the same time
that the search is being carried out, the reference bits of the pages
through which it is passed are cleaned

3 If none are found, go back to step 1

Operating Systems. Memory Management 212 / 264

Page Replacement Algorithms Variations of the Second Chance (clock) algorithm

Variations of the Second Chance algorithm

Using two ı́ndices to traverse the list.

Pages that are examined with the first index have the reference bit
cleared.
The pages that when examined with the second index have the
reference bit set to 0 are marked as free
The algorithm is executed at regular time intervals (depending on the
amount of free memory) and the pages that are kept in memory are the
ones that have been referenced from the time they were examined with
the first index until they are examined with the second index
The page stealing process in UNIX uses this algorithm, also called the
two handed clock algorithm

Operating Systems. Memory Management 213 / 264

Page Replacement Algorithms Variations of the Second Chance (clock) algorithm

Use of additional reference bits

The OS saves a counter for each page

The OS periodically it checks the reference bits of each page, and
saves it in its counter, introducing it to the left and shifting the other
bits to the right

The page with the smallest counter value is an approximation of the
least recently used

Is not actually the least recently used because bits are checked at
certain time intervals, not every memory access
For example, if we have 3 pages A, B and C whose counters are
1110000000000000, 1110000000000000, 000000001000000,
respectively,

The page that has not been referenced for the longest time is C (the
last 8 times that the OS checked the bits, it had not been referenced
Pages A AND B have both been referenced during the last three time
intervals in which S.O. checked the bits, however we don’t know which
one has been referenced more recently

Operating Systems. Memory Management 214 / 264

Adapting the Resident Set Size

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 215 / 264

Adapting the Resident Set Size

Scope and allocation combined

As we have seen, attending to the scope, replacement can be

Global replacement
Local Replacement

And as for the allocation of frames to a process we have

Fixed allocation
Variable allocation

This yields, in principle, four scenarios

a) Global replacement with fixed allocation
b) Global replacement with variable allocation
c) Local Replacement with fixed allocation
d) Local Replacememt with variable allocation

Option a) is clearly not possible. The others have their own
particularities

Operating Systems. Memory Management 216 / 264

Adapting the Resident Set Size

Global replacement with variable allocation

It is the approach adopted on modern operating systems (Linux,
FreeBSD, Solaris . . .)

Quite easy to implement

In theory, when a process produces a page fault a new frame is added
to the resident set of that process. The page to be replaced is
selected from all the pages in the system using one of the
aforementioned algorithms.

Modern operating systems work with a pool of free pages and the
new page is simply added to the resdent set of the process. On the
other hand the page stealer process tries to free (steal) pages from
the processes, typically using the two handed clock algorithm

Operating Systems. Memory Management 217 / 264

Adapting the Resident Set Size

Local Replacement with fixed allocation

In this approach, the Resident Set Size of a process remains the same
through its execution

Not used in modern systems

It makes necessary to decide the amount of allocation to give a
process when the process is loaded

It it is too small, the process will produce a lot of page faults
If it is too large, the system is wasting memory and probably
under-multiprogrammed

Operating Systems. Memory Management 218 / 264

Adapting the Resident Set Size

Local Replacement with variable allocation

The process is allocated a number of frames

When it produces a page fault, one of the pages is replaced (with one
of the algorithms seen)

The system tries to determine whether the Resident Set Size is
adecuate for the process execution

If it is too small (many page faults) the system will allocate more
frames to the process
If it is too large, the system will try to allocate less frames to the
process

How does the system find out whether the Resident Set Size is
adecuate for the process execution?. Two solutions

Working Set model
Page Fault Frequency algorithm

Operating Systems. Memory Management 219 / 264

Adapting the Resident Set Size Working Set Model

Adapting the Resident Set Size

Working Set Model
Page Fault Frequency

Operating Systems. Memory Management 220 / 264

Adapting the Resident Set Size Working Set Model

Working Set

It is based on the principle of locality

For a process, the working set of window ∆ at an instant t, W (t,∆)
is defined as the set of pages referenced between instants (t −∆) and
t

These are the pages referenced in the last ∆ moments

If ∆ is chosen appropriately it can be adapted to the locality of the
program. If ∆ is too small, it will not cover the entire locality; if ∆ is
too large, it may overlap several localities

The idea is to assign each process the necessary number of frames so
that it can contain its working set

Operating Systems. Memory Management 221 / 264

Adapting the Resident Set Size Working Set Model

Working Set with different windows sizes

Figure 8.19Figure 8.19

Working Set Working Set

of Process as of Process as of Process as of Process as

Defined by Defined by

Window SizeWindow Size

Figure: William Stallings. Operating Systems. Internals and Design Principles, seventh edition, Pearson Education 2012

Operating Systems. Memory Management 222 / 264

Adapting the Resident Set Size Working Set Model

Working Set

The Working Set of a process changes throughout its execution

During some stages of the execution of a process it remains stable

Between stable stages there are transitory periods

The OS: must keep account of the WS of all processes so that the
physical memory used corresponds to the sum of the WS of the
running processes

If a process cannot cannot be allocated its Working Set, the system
will suspend its execution until more memory is available

Operating Systems. Memory Management 223 / 264

Adapting the Resident Set Size Working Set Model

Working Set Ideal

Operating Systems. Memory Management 224 / 264

Adapting the Resident Set Size Working Set Model

Working Set Real

Operating Systems. Memory Management 225 / 264

Adapting the Resident Set Size Working Set Model

Working Set

A Working set of window ∆ at an instant t, W (t,∆) is not the same
as the Resindent Set of algorithm LRU with ∆ frames

W (t,∆) Is the set of pages referenced in the last ∆ references
LRU with ∆ frames is the last ∆ pages referenced.

Example. Consider the following string of references
ABCDEABABABABABAB

the Worrking Set with window 4 at time 15 would be { A, B}
a LRU algorithm with 4 frames at time 15 would yield the resident set
{D, E, A, B }

Approximations are implemented since the ideal model would involve
evaluating the WS on each memory reference an thus it cannot be
implemented efficiently.

Operating Systems. Memory Management 226 / 264

Adapting the Resident Set Size Working Set Model

Working Set Model

9.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Working-Set Model
 ∆ ≡ working-set window ≡ a fixed number of page references

Example: 10,000 instructions
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent ∆ (varies in time)
 if ∆ too small will not encompass entire locality
 if ∆ too large will encompass several localities
 if ∆ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames
 Approximation of locality

 if D > m ⇒ Thrashing

 Policy if D > m, then suspend or swap out one of the processes

Operating Systems. Memory Management 227 / 264

Adapting the Resident Set Size Working Set Model

Working Set Approximation

9.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit
 Example: ∆ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

Operating Systems. Memory Management 228 / 264

Adapting the Resident Set Size Page Fault Frequency

Adapting the Resident Set Size

Working Set Model
Page Fault Frequency

Operating Systems. Memory Management 229 / 264

Adapting the Resident Set Size Page Fault Frequency

Page fault frequency

It is an effective method to control thrashing

A time (number of references) limit is established,

When a page fault occurs, the number of references elapsed since the
last fault is compared with the limit

If it is less than the limit, the new page is ADDED to the set of
resident pages of the process (the number of frames assigned to the
process is increased)
Otherwise, all pages that have not been referenced since the last page
fault are discarded, thus decreasing the number of frames allocated to
the process

It is sufficient that the hardware provide a reference bit

Operating Systems. Memory Management 230 / 264

Adapting the Resident Set Size Page Fault Frequency

Page fault frequency example

a b c a a d a b a b a b a b f g a f g

a a a a a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b b b b

c c c c c c c c c c c c f f f f f

d d d d d d d d d g g f g

F F F F F F

Operating Systems. Memory Management 231 / 264

Adapting the Resident Set Size Page Fault Frequency

Page fault frequency example

Let’s asume the limit is 4.

The first page faults happen in consecutime memory references (< 4),
so new pages are incorporated and the resident set size increases

The first reference to page d happents a time 5, las page fault was at
time 2, (5− 2 = 3 < 4) so page d si brought to memory without
taking any one out

The first reference to page f is at time 14, as last page fault was at
time 5, all pages not referenced since the las page fault are discarded,
and the new page is brought in

REMEMBER: this example is OVERSIMPLIFIED, 4 as the limit is
really unrealistic, as is the number of frames involved

Operating Systems. Memory Management 232 / 264

Adapting the Resident Set Size Page Fault Frequency

Page fault frequency. Alternate Implementation

It can also be implemented with two limits, in this case, if the number
of references elapsed since the last page fault

is smaller than the lower limit, the new page is ADDED to the set of
resident pages of the process (the number of frames assigned to the
process is increased)
is greater than the upper limit, all pages that have not been referenced
since the last page fault are discarded, thus decreasing the number of
frames assigned to the process
is between the two limits, a page of the process is replaced

Operating Systems. Memory Management 233 / 264

Adapting the Resident Set Size Page Fault Frequency

Page Fault Frequency

9.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency (PFF) rate

and use local replacement policy
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

Operating Systems. Memory Management 234 / 264

Adapting the Resident Set Size Page Fault Frequency

PFF and WS

9.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its

page-fault rate
 Working set changes over time
 Peaks and valleys over time

Operating Systems. Memory Management 235 / 264

Demand segmentation

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 236 / 264

Demand segmentation

Demand segmentation

If paging hardware is not available, it is possible to implement virtual
memory with demand segmentation

For this it is necessary

A swap device
Segmentation hardware with presence bit that indicates whether the
segment is present in memory so that:

A segment that is in memory is referenced: it is accessed normally
A segment that is not in memory is referenced: an exception is thrown

The Intel 286 processor had segmentation hardware but not paging:
IBM OS/2, until version 1.3, provided virtual memory with
on-demand segmentation

Operating Systems. Memory Management 237 / 264

Demand segmentation

Demand segmentation: replacement algorithm

The replacement algorithms are similar to those for on-demand
paging. Let’s see how OS/2 did it

The system maintained a list of segments in memory. Periodically the
system

Placed the accessed segments at the end of the list
Cleared access bits

When a segment had to be replaced, the first (or firsts, as all segmets
do not have the same size) of the list was (were) replaced. This is an
approximation to LRU since the list is “sorted“ by access time

Operating Systems. Memory Management 238 / 264

Demand segmentation

On-demand segmentation: segment replacement

The replacement mechanism is a little different from that of
on-demand paging, since the different segments have different sizes.
Let’s see how OS/2 did it

When a segment fault occurs

1 It is checked if there is enough space in memory, and if there is, a
compaction is done

2 If there is no space in memory, the first segment of the list is taken
and, if necessary, written in the swap device

If there is enough space, the segment is loaded into memory, the
segment table is updated and the segment is placed at the end of the
list
If there is no space, return to step 1

Operating Systems. Memory Management 239 / 264

Other considerations

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 240 / 264

Other considerations

Other considerations

So far we have seen the following elements that influence the
performance of demand paging

The page replacement algorithm
The type of replacement: local or global
The type of allocation of frames to a process: fixed or variable

The page size can also have influence

small pages: better adapted to the locality of the program
large pages: simplify accounting and optimize transfers

Operating Systems. Memory Management 241 / 264

Other considerations

Other considerations: data placement in memory

Demand paging is transparent to the user and the programmer, so
that, in principle, they do not have to be aware of its existence

However, if we take into account that matrixes are stored by rows in
C, the two programs shown below show very different results on the
same machine due to the different way of traversing memory and
therefore the different number of page faults they cause.

$time ./p1

actual 0m1.897s

user 0m1.236s

sys 0m0.644s

$time ./p2

actual 0m17.966s

user 0m16.905s

sys 0m0.912s

Operating Systems. Memory Management 242 / 264

Other considerations

code of p1

#include <stdlib.h>

#define NCOLS 1024*16

#define NFILAS 1024*16

main()

{

int **a;

unsigned i, j;

a=(int**) malloc (NFILAS * sizeof (int*));

for (i=0; i<NFILAS;i++)

a[i]=(int *) malloc (NCOLS*sizeof(int));

for (i=0; i<NFILAS; i++)

for (j=0; j<NCOLS; j++)

a[i][j]=23;

}

Operating Systems. Memory Management 243 / 264

Other considerations

code of p2

#include <stdlib.h>

#define NCOLS 1024*16

#define NFILAS 1024*16

main()

{

int **a;

unsigned i, j;

a=(int**) malloc (NFILAS * sizeof (int*));

for (i=0; i<NFILAS;i++)

a[i]=(int *) malloc (NCOLS*sizeof(int));

for (j=0; j<NCOLS; j++)

for (i=0; i<NFILAS; i++)

a[i][j]=23;

}

Operating Systems. Memory Management 244 / 264

APPENDIX: Unix system calls related to memory management

Introduction
Address Space F.A.Q.
Swap
Relocation and protection
Simple schemes (obsolete)
Segmentation (obsolete)
Paging
Mixed systems
Real examples: Intel’s 32 bit and 64 bit architectures
Introduction to Virtual Memory
Software segments
What is Virtual Memory exactly and why does it work?
Page placement, fetching and replacement
Page Replacement Algorithms
Adapting the Resident Set Size
Demand segmentation
Other considerations
APPENDIX: Unix system calls related to memory management

Operating Systems. Memory Management 245 / 264

APPENDIX: Unix system calls related to memory management system calls

APPENDIX: Unix system calls related to memory
management

system calls
malloc() C package
mapping files in memory
shared memory

Operating Systems. Memory Management 246 / 264

APPENDIX: Unix system calls related to memory management system calls

Unix system calls to memory management

The main system calls related to memory are

brk and sbrk to set the program ”break“ (end of the data segment)
mmap and munmap to map and unmap files in memory
shmget, shmat, shmddt and shmctl for shared memory management

the malloc library function (and free) is the prefered way to allocate
(or deallocate) memory, instead the brk and sbrk system calls.

(sbrk is sometimes implemented as a library function)

Operating Systems. Memory Management 247 / 264

APPENDIX: Unix system calls related to memory management system calls

brk() and sbrk() System calls

Sets the end of the data segment, which is the end of the heap.
Increasing the program “break” has the effect of allocating memory
to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the addr specified as the
argument, and returns 0 on success.

sbrk() C function. Increments the program’s data space by increment
bytes. Calling sbrk() with an increment of 0 can be used to find the
current location of the program “break”. On success, sbrk() returns
the previous program break. (If the “break” was increased, then this
value is a pointer to the start of the newly allocated memory)

Operating Systems. Memory Management 248 / 264

APPENDIX: Unix system calls related to memory management malloc() C package

APPENDIX: Unix system calls related to memory
management

system calls
malloc() C package
mapping files in memory
shared memory

Operating Systems. Memory Management 249 / 264

APPENDIX: Unix system calls related to memory management malloc() C package

C malloc() package

Allows manual memory management for dynamic memory allocation
via a group of library functions.

The library functions are responsible for heap management.

Package for explicit assignment and releasing memory.

In C, the programmer is responsible for the porgram’s memory
management: There are not Garbage Collectors or other aids

Operating Systems. Memory Management 250 / 264

APPENDIX: Unix system calls related to memory management malloc() C package

malloc() C package

malloc() allocates the requested bytes of memory and returns a
pointer to it. Writing more bytes than allocated has an undefined
behaviour (segmentation fault, heap corruption . . .)

malloc() has granularity (16, 32 . . . depending on the implementation)
which means that if you allocate 3 bytes with malloc() you probably
are being actually allocated at least 8 or 16

free(ptr) releases the memory allocated with malloc(). ptr must
be an address obtained with malloc.

Should ptr not be an address allocated with malloc (calloc, realloc
. . .), the behaviour is undefined.

Operating Systems. Memory Management 251 / 264

APPENDIX: Unix system calls related to memory management malloc() C package

malloc() C package

calloc() assigns an initializes (to 0’s)memory for n elements of size
bytes each, realloc resizes a block of allocated memory

These functions invoke the syscalls brk() and sbrk() to manage the
heap.

the mmap() system call maps a file into a process address space.

In present versions of linux, allocating less than 128 Kbytes with
malloc grows the heap segment. Allocating a bigger amount than
128K creates a new segment of anonymous (non associated to a file)
memory in the process virtual address space

Operating Systems. Memory Management 252 / 264

APPENDIX: Unix system calls related to memory management mapping files in memory

APPENDIX: Unix system calls related to memory
management

system calls
malloc() C package
mapping files in memory
shared memory

Operating Systems. Memory Management 253 / 264

APPENDIX: Unix system calls related to memory management mapping files in memory

mmap system call

mmap maps a file into memory

the contents of the file appear to be in memory starting at some
address

The mapping need not be complete neither need it be from the start
of the file

Protection (read, write . . .) also applies

mmap creates a new “segment” in the process virtual address space

Operating Systems. Memory Management 254 / 264

APPENDIX: Unix system calls related to memory management mapping files in memory

the mmap system call

Carnegie Mellon

31

User-‐Level	 Memory	 Mapping	
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)	

  Map	 len	 bytes	 starZng	 at	 offset	 offset of	 the	 file	 specified	
by	 file	 descripZon	 fd,	 preferably	 at	 address	 start	 	
  start:	 may	 be	 0	 for	 “pick	 an	 address”	

  prot:	 PROT_READ,	 PROT_WRITE,	 ...	

  flags:	 MAP_ANON,	 MAP_PRIVATE,	 MAP_SHARED,	 ...	

  Return	 a	 pointer	 to	 start	 of	 mapped	 area	 (may	 not	 be	 start)	

Operating Systems. Memory Management 255 / 264

APPENDIX: Unix system calls related to memory management mapping files in memory

mapping a file in memory

Carnegie Mellon

32

User-‐Level	 Memory	 Mapping	
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)	

len bytes	

start
(or	 address	 	

chosen	 by	 kernel)	

Process	 virtual	 memory	 Disk	 file	 specified	 by	 	
file	 descriptor	 fd

len bytes	

offset
(bytes)	

0 0

Operating Systems. Memory Management 256 / 264

APPENDIX: Unix system calls related to memory management shared memory

APPENDIX: Unix system calls related to memory
management

system calls
malloc() C package
mapping files in memory
shared memory

Operating Systems. Memory Management 257 / 264

APPENDIX: Unix system calls related to memory management shared memory

Creating shared memory

Shared memory is part of the IPC (Inter Process Communication)
resources. As IPC resources are shared by several processes, it becomes
necessary that different processes can refer to the same resource: every
IPC resource in the system is identified by a number (its key).

1) First it is necessary to get a memory block (creating it or using one
already created)

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

key: number identifying the resource on the system
size: size of the shared memory region (must not be greater than the
actual size if the segment already exists)
shmflg: Bitwise OR of the permissions and one or more flags

Operating Systems. Memory Management 258 / 264

APPENDIX: Unix system calls related to memory management shared memory

flags on IPC resources get system calls

Available flags (to be bitwise OR’ed with the permissions) are:

IPC CREAT

IPC EXCL

Used as follows

0 If the resource already exists, shmget will return a valid identifier,
otherwise error is returned.
IPC CREAT If the resource already exists, shmget will return a valid
identifier, otherwise the resource is created and an identifier for the
created resource is returned.
IPC CREAT | IPC EXCL If the resource already exists an error is
returned, otherwise the resource is created and an identifier for it is
returned.

Operating Systems. Memory Management 259 / 264

APPENDIX: Unix system calls related to memory management shared memory

Accessing shared memory

2) Once created, to be accessible, shared memory must be placed in the
process’s address space, and then it can be accessed as normal
memory. shmat “attaches” the shared memory segment to the
process address space

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int flg);

shmid: id returned by shmget()
shmaddr: virtual address to place the shared memory segment onto
(NULL to get it assigned by the system)
flg: usually 0, but can be a bitwise OR of the following: SHM RND,
IPC RDONLY, SHM SHARE MMU (Solaris) SHM REMAP (linux)

shmat() returns the virtual address where the shared memory can be
accessed

Operating Systems. Memory Management 260 / 264

APPENDIX: Unix system calls related to memory management shared memory

Accessing shared memory

3) when it is no longer needed shared memory can be detached from the
process address space

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmdt(char *shmaddr);

shmdt detaches the block of shared memory at the address supplied
from the process address space
If the shared memory is “attached” several times to the process address
space(which is a possibility), it is only detached from the address
supplied
shmdt DOES NOT remove the shared memory segment from the
system

Operating Systems. Memory Management 261 / 264

APPENDIX: Unix system calls related to memory management shared memory

Controlling shared memory

4) There also exists a control system call, that allows, among other
things, to remove a shared memory region from the system, check its
size, change its permissions . . .

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

shmid: id returned by shmget()
cmd: action to perform: IPC RMID, SHM LOCK, SHM UNLOCK,

IPC STAT, IPC SET . . .
buf: information

Operating Systems. Memory Management 262 / 264

APPENDIX: Unix system calls related to memory management shared memory

Controlling shared memory

IPC STAT can be used to get the status of the shared memory region

Specially useful to get the size when using a shared memory segment
already created (in tha case we can pass 0 to shmget as the size)

IPC RMID Deletes the shared memory identifier from the system

It does not detach the shared memory from any of the processes using
it
Should no process have this shared memory region attached, it will get
removed
If any process has it attached it can continue to use it. The shared
memory segment will get removed when it is no longer attached to any
process
After this call (shmctl(id, IPC RMID . . .) any call to shmget with that
key will consider that shared memory as non existant

Operating Systems. Memory Management 263 / 264

APPENDIX: Unix system calls related to memory management shared memory

Shared memory example

The following function obtains a shared memory address given the key
and the size (NULL in case of some error). If the option to create is
specified the memory will be created unless it already exists, in which
case in returns an error

void * ObtenerMemoria (key_t clave, off_t tam, int crear)

{

int id;

void * p;

int flags=0666;

if (crear)

flags=flags | IPC_CREAT | IPC_EXCL;

if ((id=shmget(clave, tam, flags))==-1)

return (NULL);

if ((p=shmat(id,NULL,0))==(void*) -1){

if (crear)

shmctl(id,IPC_RMID,NULL);

return (NULL);

}

return (p);

}

Operating Systems. Memory Management 264 / 264

	Introduction
	Address Space F.A.Q.
	Swap
	Relocation and protection
	Simple schemes (obsolete)
	No multiprogramming systems
	Multiprogramming Systems

	Segmentation (obsolete)
	Paging
	Mixed systems
	Advantages of multilevel paging

	Real examples: Intel's 32 bit and 64 bit architectures
	Intel's 32 bit PC architecture
	Intel/amd 64 bit PC architecture

	Introduction to Virtual Memory
	Software segments
	What is Virtual Memory exactly and why does it work?
	Virtual Memory
	Why does VM work? Principle of locality
	Thrashing

	Page placement, fetching and replacement
	Page Replacement Algorithms
	Optimal algorithm
	LRU algorithm
	FIFO algorithm
	Second chance algorithm (clock)
	Variations of the Second Chance (clock) algorithm

	Adapting the Resident Set Size
	Working Set Model
	Page Fault Frequency

	Demand segmentation
	Other considerations
	APPENDIX: Unix system calls related to memory management
	system calls
	malloc() C package
	mapping files in memory
	shared memory

