Unix File System



UNIX FILE SYSTEM J. Santos

1. Introduction to the UNIX File System: logical vision

S root g
S swap B

AW

S e

—- <

AN

Silberschatz, Galvin and Gagne ©2005
Operating System Concepts — 7" Edition,
Feb 6, 2005

b g
|

.

logical file system file systems logical devices physical devices

Logical structure in each FS (System V):

BOOT SUPERBLOCK INODE LIST DATA AREA

ssions  Opciones  Ayuda

[root@cuervo /rootl]# fdisk /dev/hda Related CommandS' du
df, mount, umount, mkfs

The number of

There is nothing g s lary

and could in certain setups cause problems with:

1) software that runs at boot time (e.g., LILO)

2) booting and partitioning software from other 0Ss
(e.g., DOS FDISK, 0S/2 FDISK)

jlinders for this disk is set to
wro with that but thi 1

’

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 1583 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Id System
‘dev/hdal + 1 - | 82 Linux swap
/dev/hda2 32 1583 85 Linux extended
/dev/hda5S 32 35 32098+ 83 Liru
/dev/hdab 36 Son 4192933+ 83 Linux
/dev/hda? 558 1583 8241313+ 83 Linu

Command (m for help): |}




UNIX FILE SYS1 J. Santos

File System Mounting

» Mount allows two FSes to be merged into one
— For example you insert your floppy into the root FS

mount(“/dev/fd0”, “/mnt”, 0)

|

bin dev lib mnt usr bin dev lib usr

(a) (b)

More examples:

Mounting a second disc:

mount -t ext4 /dev/hdal /home2

Mounting a CD unit:

mount -r -t is09660 /dev/scdO /cdrom

Mounting a pendrive:

mount -w -0 noatime /dev/sdal /memstick

Unmounting that pendrive:

umount /dev/sdal
or

umount /memstick

Related commands: Isblk,

(sudo) blkid, cfdisk, parted

Mount
Option

Description

auto and
noauto

The Linux "auto” mount option allows the the device to be mounted automatically at bootup. The Linux "auto"”
mount option is the default option. You can use the "“noauto” mount option in /etc/fstab, if you don't want the
device to be mounted automatically. With the Linux noauto mount option, the device can be mounted only
explicitly and later you can use "mount -a" command to mount the devices listed in Linux /etc/fstab file.

user and |[The Linux "user" mount option allows normal users to mount the device, whereas the Linux "nouser" mount
nouser option allows only the super user (root) to mount the device. "nouser" is the default mount option.
exec and |'exec" mount option allows you to execute binaries stored on that partition and "noexec" option will prevent it.
noexec ['exec" is the default Linux mount option.
ro The Linux "ro" (Read Only) mount option is used to mount the filesystem read-only.
rw The Linux "rw" (Read Write) mount option is used to mount the filesystem read-write.
The "sync" mount option specifies the input and output to the filesystem is done synchronously. When you copy
sync a file to a removable media (like floppy drive) with "sync" option set, the changes are physically written to the
floppy at the same time you issue the copy command.
The "async" mount option specifies the input and output to the filesystem is done asynchronously. When you
copy a file to a removable media (like floppy drive) with "async" option set, the changes are physically written to
async . o " LI - .
the floppy some time after issuing the copy command. If "async” option is set and if you remove the media
without using the "unmount” command, some changes you made may be lost.
defaults Uses the default options that are rw, suid, dev, exec, auto, nouser, and async. Usually the Linux operating

systems use this option in /etc/fstab file.




UNIX FILE SYSTEM J. Santos

_ vmun@

dev

IefneD

bin

fib

user

tmp

Typical directory structure in an UNIX platform.

Silberschatz, Galvin and Gagne ©2005 Operating System Concepts — 7" Edition, Feb 6, 2005



UNIX FILE SYSTEM J. Santos

Directories and their description

/ : The slash / character alone denotes the root of the filesystem tree.

/bin : Stands for “binaries” and contains certain fundamental utilities, such as Is, cp, rm,
bash, which are generally needed by all users.

/sbin : Binaries related to administration utilities, such as fsck, mkfs and mount.
/boot : Contains all the files that are required for successful booting process.

/dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-
devices.

/etc : Contains system-wide configuration files and system databases. Originally also
contained “dangerous maintenance utilities” such as init, but these have typically been
moved to /sbin or elsewhere.

/home : Contains the home directories for the users.

/lib : Contains system libraries, and some critical files such as kernel modules or device
drivers.

/media : Default mount point for removable devices, such as USB sticks, media players,
etc.

/mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example,
if the system uses multiple hard disks or hard disk partitions. It is also often used for
remote (network) filesystems, CD-ROM/DVD drives, and so on.

/proc : procfs virtual filesystem showing information about processes as files.

/root : The home directory for the superuser “root” — that is, the system administrator. This
account’s home directory is usually on the initial filesystem, and hence not in /home (which
may be a mount point for another filesystem) in case specific maintenance needs to be
performed, during which other filesystems are not available. Such a case could occur, for
example, if a hard disk drive suffers physical failures and cannot be properly mounted.

itmp : A place for temporary files. Many systems clear this directory upon startup; it might
have tmpfs mounted atop it, in which case its contents do not survive a reboot, or it might
be explicitly cleared by a startup script at boot time.

/usr : Originally the directory holding user home directories, its use has changed. It now
holds executables, libraries, and shared resources that are not system critical, like the X
Window System, KDE, Perl, etc. However, on some Unix systems, some user accounts
may still have a home directory that is a direct subdirectory of /usr, such as the default as
in Minix. (on modern systems, these user accounts are often related to server or system
use, and not directly used by a person).

/usr/bin : This directory stores all binary programs distributed with the operating system
not residing in /bin, /sbin or (rarely) /etc.

/usrf/include : Stores the development headers used throughout the system. Header files
are mostly used by the #include directive in C/C++ programming language.

/usr/lib : Stores the required libraries and data files for programs stored within /usr or
elsewhere.

Ivar : A short for “variable.” A place for files that may change often — especially in size, for
example e-mail sent to users on the system, or process-ID lock files.

Ivar/log : Contains system log files.

/var/mail : The place where all the incoming mails are stored. Users (other than root) can
access their own mail only. Often, this directory is a symbolic link to /var/spool/mail.

Ivar/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

Ivaritmp : A place for temporary files which should be preserved between system reboots.



UNIX FILE SYSTEM J. Santos

Directory /usr/include contains C file headers (stdio.h, math.h, string.h, ...), not libraries!
Two clasess of libraries in directory /usr/lib:
e Static libraries (*.a)
e Dynamic libraries (*.s0)
Example: #include <stdio.h>
#include <math.h>
main(){
float x,y;
y=sin(x);
printf(“\nsin (%f)= %f", X, y);
}
Static linking:
When compiling/linking: gcc example.c —Im
X

Specifies the “extra” library required by the
linker
The library is /usr/lib/libm.a

The file a.out is self-sufficient since it has all the code (the
linker inserts the code of function sin() in a.out).

Statically linked files consume more disk and memory as all
the modules are already linked

Dynamic linking:

When compiling/linking: gcc example.c —Im
X

The linker uses the dynamic version of the
library: /usr/lib/libm.so

The code of the sin() function is not incorporated in the file a.out.
That code is searched (shared memory) in run-time of the code.
Dynamically linked files consume less disk and memory, and the
binaries (a.out) do not need to be compiled/linked when new
versions of the libraries are available.

Last question: Where is the code of C function printf()?

The answeriis ........ the standard C library: /usr/lib/libC.a
{usr/lib/libC.so



UNIX FILE SYSTEM

J. Santos

2. Introduction to the UNIX File System: physical vision of disk

Partitions of the disk in a PC

| Partitions within an extended |

partitions
Boot code
1
‘ Primary partition table
j \
/
MER Bootable
N
Y |

| | I
[<—Partition 1—m-a—Partition 2— -4

|

I:l MBR

per storage device

3

D Boot sector

MNtldr: per system

partition

I-ﬂ

=

Partition 3
(Extended)

| |
-4 Partition 4—
[ |

l:l Extended partition boot record

Offset Tamano | Descripcion

0x000 | 446 bytes | reservado Master Boot Record structure

Ox1BE | 16 bytes | Entrada particion 1

OxICE | 16 bytes | Entrada particién 2

O0x1DE | 16 bytes | Entrada particién 3

Ox1EE | 16 bytes | Entrada particién 4

O0x1FE 2 bytes | OXAASS

Tipos de particion Offset Tamano Descripcion

Tipodeparticn ___{Valor Tipo de particiin Valor | 0x0 1 byte 0x80 particién activa; 0x0 inactiva

Vacio 00 Novell Netware 386 65 B

FATde 12bits deDOS |01 PIeme | | 0x1 1 byte Cabeza del primer sector de la particién
XENIX (root) (i3 MINEX antigua 80 |
XENIX (usr) il L /MINUX 81 | 0x2 2 bytes Cilindro primer sector particién (10 bytes)
[DOS 16Dl <=32M o Linux (suag) L— Numero de sector del primer sector (6 bytes)
Extendida 05 Linux (nasiva) s
DOSI6bis>=32 |06 Linux (extendida) Ox4 1 byte Tipo de particién
[OSZHPES . Amoba 0x1 DOS primario con FAT12
AX 8 jAvotaBRT 0x4 DOS primario con FAT16
e —— e 0x5 DOS extendido
FATR de Windows 5|00 NexsTER 0x6 DOS mayor 32M

oy e Windows33 - 0¢ — __ 0x5 1 byte Cabeza dltimo sector de la particién
'FATI deWindows 95 |0c BSDI sw s - -

BA ,_:I e 0x6 2 bytes Cilindro/sector dltimo sector (como off 0x2)
Win95 (Extendida, LBA) | OF Syrinx ;:7 1 K

Venix 80286 ) lcemd | 0x8 4 bytes Sector inicial (relativo al comienzo disco)
Nowllr |5t IDoSaccess el

,;E;',EL‘,;["—"-" - It j'smss - !6‘3 — 0xC 4 bytes Nimero de sectores de la particién
'GNU HURD | ~Je8 [se mdarinder DOS i -

_l_ﬂovcll Netware 286 64 | BEC i

Information in each partition




UNIX FILE SYSTEM

Basic MBR Disk

Basic GPT Disk

J. Santos

Master Boot Code Master Boot Code |
1st Partition Table 1st Partition Table
Entry Entry
2nd Partition Table 2nd Partition Table
Master —={ Partition — E!-”_:W E!-”_:W — Protective
Boot Table 3rd Partition Table Srd Partition Table MER
Recaord Entry Entry
4th Partition Table 4th Partition Table
Entry Entry
0x55 A4 0x55 A4
Primnary GUID
Prirmary Partition (C:) Partition Table
Header
) . GUID Partition Entry 1
Primary Partition {E:) =
GUID Partition Entry 2 _
GUID Partition Entry o EUTDEW
Frimary Partition (F:) GUID Partition Ertry Partition
1zg Entry &rray
Logical Drive (G Prirmary Partition (iC:
Extended — Logical Drive (H:) Prirmary Partition (E:)
Partition
Lagical Drive n Primary Partition n
GUID Partition Entry 1
GUID Partition Entry 2
GUID Partition Entry o gﬁ;—m
GUID Partition Entry Partition
1z8 Entry Array
Backup GUID
Partition Table Header

The widespread MBR partitioning scheme, dating from the early 1980s, imposed limitations which
affected the use of modern hardware. Intel therefore developed a new partition-table format in the late
1990s, GPT, which most current OSs support.


http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Intel

UNIX FILE SYSTEM J. Santos

2.1 System V vs. BSD (Fast File System)

Logical structure in each FS (System V):

BOOT SUPERBLOCK INODE LIST DATA AREA

Logical structure in each FS (BSD):

CILINDER CILINDER | .. CILINDER
BOOT SUPERBLOCK GROUP 0 GROUP1 GROUP N
CGi
SUPERBLOCK INODE LIST of DATA AREA of

CILINDER GROUP i HEAD

(replicated) CILINDER GROUP i CILINDER GROUP i

Grupo de cilindros 1

Grupo de cilindros 2

Grupo de cilindros 4

Peine de cabezas de L/E

Organization of the disk in cylinder
groups [marquez, 2004] B

b !

BSD: Blocks and fragments. BSD uses blocks and a possible last “fragment” to assign data
space for a file in the data area.
Example:

All the blocks of a file are of a large block size (such as 8K), except the last.

The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill out the
file.

Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment (which
would not be filled completely).



UNIX FILE SYSTEM

3. Internal representation of files

3.1 Inodes

e The operating system associates an inode to
each file.

« We have to differentiate between:
o Inodes in disk, in the Inode List.
o In memory, in the Inode Table, with a

similar structure to the Buffer Cache.

10

J. Santos

Inode in disk

OWNER

GROUP

FILE TYPE

ACCESS PERMISSIONS

FILE DATES: access, data
modification, inode

modification

Number of LINKS

SIZE

DISK ADDRESSES




UNIX FILE SYSTEM

3.1.1 File types & file permissions

Cambiar el UID al ejecutar

Cambiar el GID al ejecutar

001 ejecucién

Stiky Bit
15 "8 7k 0
Ll 1 [ Julefs|rfu|x[r]u[x|r]w]x]
\‘-‘_—T-—_‘/ N N s
(1000 Ordinario
0100 Directorio
0010 Modocargeter T
Tipofichero § 0110 Modopioque -.grupo{ 010" et
0001 Tubera
1010 Enlace simbdlico
1100 Conector

Tabla 3.1: Constantes definidas en <sys/stat.h> para el modo de un fichero.

100 lectura
Le usuarios 010 escritura
001 ejecucién

Figura 3.1: Mascara de modo de un fichero.

Bits Constante Valor Significado
15-12 S_IFMT 0170000 Tipo de fichero:
S_IFREG 0100000 Ordinario
S_IFDIR 040000 Directorio
S_IFCHR 020000 Especial modo caracter
S_IFBLK 060000 Especial modo bloque
S_IFIFO 010000 Tuberia
S_IFSOCK 0140000 Conector
11 S_ISUID 04000 Activar ID del usuario al ejecutar
10 S_ISGID 02000 Activar ID del grupo al ejecutar
9 S_ISVTX 01000 Stiky bit
8-0 Bits de permisos

Related command (and system call) to the file mode: chmod
Related command (and system call) to the file owner chown

J. Santos

100 lectura
otros{ 010 escritura

001 ejecucién

11



UNIX FILE SYSTEM

type

owner

group

permission
e \

others

AN

d
I

b
C
M
S

Changing the file permissions: command chmod.

!
E
(block special file)
(
(
(

file)

directory)
symbolic link)

character special file)
named pipe special file)
local socket special file)

Two syntax possibilities:

----------

o 4

110

100

-----------

Binary: 999 110 100 000
symbolic: SSt  TWX TWX TWX
Special User Group Other
atiributes {u} i) {o)

12

A
(a)

Changing Permissions: Octal Mode

Permission
Octal Value

r

read
woowrite
¥ execUte

J. Santos

chmod u+rw g-x o+x file_name

chmod a+rx file_name

w X = x r - x
2 i ! 4 - b 4 - o
User Group Others

| chmod 755 file name I




UNIX FILE SYSTEM J. Santos

3.1.2 File dates
Example [Bach, 86]:
accessed Oct 23 1984 1:45 P.M. (last read) st_atime i
modified Oct 22 1984 10:30 A.M. (last data modification) st_mtime in struct stat
inode Oct 23 1984 1:30 P.M. (last inode modification) st_ctime i

struct stat

for obtainingthe information of a file:

struct stat buf;

stat (file_name, &buf);

3.1.2 Links

Two concepts:
- hard links (two directory entries associated with the same inode)

- soft/symbolic links (a file that contains the path that “points to” another file)

Hard link:
Related

Hard Link example: In

Contents ofdei;'I inode table
= 2406
[ % - =->[2407
aa 2407 L} 2408 D\
: i =
! disk blocks
Contents of dir3 : -
1070
I #®
2050 | W \/
v |
bb | 2407
command: In source_file_name target_file_name
dir3
dirl
directory entry / \
" bb, 2407
aa, 2407__|
inode
assigned inode 2407
I
Boot SB Data Area

Inode List 13



UNIX FILE SYSTEM J. Santos

Another example with hard links [Bach, 86]:

System call link. Syntax: link(source_file_name, target_file_name);

link(“/usr/include/realfile.h”, “usr/src/uts/sysi/testfile.h”);

f link(“/usr/src/uts/sys”, “usr/include/sys”);
usr
The following three paths refer to the same file:
sre include “lusr/src/uts/sys/testfile.h”
“lusr/include/sys/testfile.h”

uts sys realfile.h

sys-"'-.

“lusrf/include/realfile.h”

inode.h  testfileh

Soft link:
Same command, In, with option -s:
$ In -s {source-filename} {symbolic-filename}

For example create a softlink for /webroot/home/httpd/test.com/index.php as
/home/vivek/index.php:

$In-s /webroot/home/httpd/test.com/index.php  /homel/vivek/index.php
$In-s /mnt/my_drive/movies ~/my_movies

$ s -l outputs:

Irwxrwxrwx 1 vivek vivek 2007-09-25 22:53 38 index.php ->
/webroot/home/httpd/test.com/index.php

Inwxrwxrwx 1 juan alumnos 2020-09-25 22:53 20 my_movies -> /mnt/my_drive/movies

The “I" character is a file type flag that represents a symbolic link. The -> symbol shows the file the symlink points to.

Note: Unlike a hard link, a symbolic link can point to a file or a directory on a different
filesystem or partition.

14



UNIX FILE SYSTEM J. Santos

3.2 Structure of the block layout in the disk
o Afile has associated:
o Aninode of the Inode List.

o Blocks of the data area. These blocks of the file are information contained in
the inode file, with the following scheme:

Nodo-i
Atributos Bloque
g 1, indirecto
k=] A - "
Direcciones de
ue
g C ir?;?r%cto e bloques de datos
§ doble +v
§ / € b T
Bloque =
y indiracto/ ] C. il
] triple
h\/l” d
. 5 FE g
Disk addresses of the inode \
[Tanenbaum, 2003] %
] 3
file
metadata

single indirect
blocks

|data
double indirect E:: I:
blocks @

triple indirect |data | | data
blocks 1

Leef £ |

I_I Slower access to larger files

15



UNIX FILE SYSTEM J. Santos

Example: Let’s calculate the maximum size of a file using the different possibilities (direct addresses
and indirect addresses), considering blocks of 1Kytes and addresses of 4 bytes.

( 525 — > | 1Kbyjtes
88 block 525
10 direct )
block ! 1Kbytes
addresses ' R I . .
i block 88 Maximum file size using the direct
i : block addresses: 10 Kbytes
\ 224 i
1Kbyftes
block 224
. Dblock
4 525
Boot SB Inode List
— v
~—
Data Area
(
10 direct !
block < | 1Kbyfes
addresses : block 330
Maximum file size using the single
\ 330 indirect block address: 10 Kbytes +
L 256data [, 256 x 1Kbytes = 20 Kbytes + 256
Single indirect__—pf 122 : Yy
block address blocks Kbytes = 266 Kbytes
............... 1Kbytes
............ "
256 indexes
................ block *_block
Ay 4330
Boot SB Inode List

~—
Data Area
16



UNIX FILE SYSTEM J. Santos

[
1 Kbvtes
10 direct data block
block
addresses < ! 256 256 data
: indexes blocks
1 N H
i index block
! second level
' ( ) ™ 1 Kbytes
. - \
Single indirect 256
block address / indexes 256 index data block
\
) i blocks
Double indirect _¥| |(?I0rlg< g,%%(
block address

\ 256
indexes
\ 1 Kbvtes

index blogk
(second level) data block
256 data
blocks
1 Kbyvies
data block

Maximum file size using the double indirect block address: 10 Kbytes + 256 Kbytes + 256 x 256 x 1Kbytes =

266 Kbytes + 28 x 28 x 1Kbytes = 266 Khytes + 26 Kbytes = 266 Kbytes + 26 x 21 Kbytes = 266 Kbytes + 64 Mbytes

1 Mbyte

17



UNIX FILE SYSTEM

10 direct

block

addresses <

Single indirect

block address —|

Double indirect Y

%

block address

Triple indirect
block address

256

indexes
\

index block
(first level)

\

J. Santos

1 Kbvies
/ data block
256 256 data
/ indexes\( blocks
index block \ i
256 256§index 1 Kbytes
indexes blocks
~
index block ; data block
(second level) g | 256
indeXes
index block
256iindex (third level)
blocks
256
index block indexgs
(second level) index block
256 index
E data block
256
indexes_ 256 data
index block bloc:ks
1 Kbytes
data block

Maximum file size using the triple indirect block address: 10 Kbytes + 256 Kbytes + 64 Mbytes +
256 x 256 x 256 x 1Kbytes =
10 Kbytes + 256 Khbytes + 64 Mbytes + 28 x 28 x 28 x 1Kbytes =

10 Kbytes + 256 Kbytes + 64 Mbytes + 22* Kbytes =

10 Kbytes + 256 Kbytes + 64 Mbytes + 24 x 220 Kbytes = 10 Kbytes + 256 Kbytes + 64 Mbytes + 16 Ghytes

18

1 Ghyte



UNIX FILE SYSTEM

4. Directories

e Adirectory is a file whose content is interpreted as “directory entries”.

e Directory entry format:

System V directory entry:

Inode number
(2 bytes)

Name (14 bytes)

BSD directory entry:

J. Santos

Inode number
(4 bytes)

Length of the
entry
(2 bytes)

Length of the file
name (2 bytes)

Name ('\O-ended until a length multiple of
4) (variable)

Related system calls: opendir, readdir, closedir (defined in <dirent.h>)

19



UNIX FILE SYSTEM J. Santos

El bloque 132 El nodo-i 26 El bloque 406
El nodo-i 6 es el es para esel
Directorio raiz es para /usr directorio /usr fusr/ast directorio /usr/ast
L 6 |- 26 | -
Modo Modo
1] tamano 1] e tamano 6| ==
4 | bin Nmpos 19 | dick npos 64 | becas
7 | dev 132 30 | erik 406 92 | libros
14 | lib 51 | jim 60 | correo
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | fuentes
8 | tmp ) :
El nodo-i 6 El nodo-i 26
La busqueda indica que /usr lusr/ast indica que /usr/ast  /usr/ast/correo
de usr da el esta en esel esta en esel
nodo-i 6 el bloque 132 nodo-i 26 el bloque 406 nodo-i 60

Example of the necessary steps in the search of the inode of the file /usr/ast/correo [ranenbaum, 2003]

Typical question: Calculate the minimum number of disk accesses (supposing the caches are
empthy) to complete the open of the previous file:

open (/usr/ast/correo, O_RDWR);

Necessary steps: parsing the path:

1.
2.

3.

o u

Read inode of “/" (number 1 in the example) in the List of Inodes in disk.

Read content of inode 1 (in the Data Area). Read the first block data of the file “/”. Search
for an entry with name “usr”. If found, pick up its inode number (6 in the example).

Read inode of “/usr” (6) in the List of Inodes in disk.

Read content of inode 6. Read the first block data of the file “/usr” (number 132 in the
example). Search for an entry with name “ast”. If found, pick up its inode number (26 in the
example).

Read inode of “/usr/ast” (26) in the List of Inodes in disk.

Read content of inode 26. Read the first block data of the file “/usr” (number 406 in the
example). Search for an entry with name “correo”. If found, pick up its inode number (60 in
the example).

Read the inode of “correo” to the in-core list of inodes (Inode Cache). (Note that open() does
not read the content of the file).

Number of disk accesses?

3 blocks were read in the Data Area: first block with the data (directory entries) of “/”, blocks 132
and 406. Note that the optimal case was present in the example, since the required entry was
always in the first block of the directory.

4 inodes were read to the in-core list of inodes. But, how many blocks in the disk were read?

In the optimal case, supposing the four inodes are in the same block, then the first read of the block
that contains inode “1”, brings all the inodes to memory (Buffer Cache). Therefore, the required
number of blocks to be read in the disk is 1. Note that the example does not give all the
necessary information to know if the different inodes are in the same block.

First block of LI block  block block

— ap 132 406

Boot SB

List of Inodes Data Area

20



UNIX FILE SYSTEM J. Santos

5. Brief description of the kernel structures related to the file
system

PROGRAMAS DE USUARIO

| LIBRERIAS I

Nivel de usuario
Nivel del nicleo v
s INTERFAZ DE LLAMADAS AL SISTEMA 4 |

Block diagram of the
system kernel.

E' A
SUBSISTEMA DE OMUNCACION
-
FICHEROS | sussisTemA
DE CONTROL PLANIFICADOR
DE PROCESOS
v MANEJO DE
BUFFER CACHE himtieuee

v
CARACTER BLOQUES

MANEJADOR DE DISPOSITIVO
)

¥

| CONTROL DEL HARDWARE |
Nivel del nicleo

Nivel del hardware

| HARDWARE |

write (fd, ptr, n_bytes)

read (fd, ptr, n_bytes)

The buffering mechanism of
the Buffer Cache regulates
data flow between secondary
storage block devices and the

SUBSISTEMA

kernel, decreasing the number DE FICHEROS
of accesses to the disk. There
is a similar mechanism
) ) Escritura
associated to virtual memory de bloques

with a Page Cache.

l 2 - BUFFER CACHE

YO using
read( ) and write( )

memory-mapped I/O

buffer cache

MANEJADOR
DE DISPOSITIVQ

file system

21



22

UNIX FILE SYSTEM

D data

|__,D blocks

namei

iget iput ialloc ifree

alloc free bmap

buffer allocation algorithms

getblk

brelse bread breada

bwrite

read (4, ...) :
1 r I _ |sync
tables of file-structure in-core inode
open files table inode list
{per process) list
user space system space disk space
Scheme of the main kernel structures related to the file system
(Silberschatz, Galvin and Gagne ©2005 Operating System Concepts — 7" Edition, Feb 6, 2005)
SYSTEM CALLS FOR THE FILE SYSTEM
File System Calls
;‘i;'e’“ Useof |Assign| File |File | FileSys| Tree
gt namei inodes| Attributes | I/O |[Structure Manipulation
open stat
OPeN | o eat link | creat
creat . . chown read :
chdir unlink|{ mknod : mount chdir
dup : chmod | write
; chroot mknod| link umount chown
pipe | 4 2 stat Iseek
close | Chown  mount unlink
chmod umount
Lower Level File System Algorithms

J. Santos



UNIX FILE SYSTEM

6. System calls for the file system

J. Santos

int open (char *name, int mode, int permissions);

open mode:

mode 0: read
mode 1: write
mode 2: read-write

Or using the constatnts defined in the header <fcntl.h>

O_RDONLY  onlyread
O_RDWR read-write
O_WRONLY  only write
O_APPEND  append
create

O_CREAT

Example of openings from two processes:

Proc A:

fdl=open(“/etc/passwd”, O_RDONLY);
fd2=open(“local”’, O_RDWR);
fd3=open(“/etc/passwd”’, O_WRONLY);

int read (int df, char *buff, int n);

int write (int df, char *buff, int n);

df — file descriptor open returns

buff — address, in the user space,
where the data are transferred
n — number of bytes to be read

Proc B:

fdl=open(“/etc/passwd”’, O_RDONLY);

fd2=open(“private”, O_RDONLY);

user file
descriptor table file table inode table user file
0 descriptor tables
1 (proc A) file table inode table
2 0
3 “'\‘_ " ;
B kN wunt(fctcﬁpmwd) 3
p \ A count Tl 8 4 count,
g \\ Py Read s \\ 3 (/ete/passwd)
3\ =
N .m';"t Read
(proc B)
b 1™ Rd-wrg g
2 count
ount P— 3 1 Rd-Wrt
1 oca 4 : p
5 N ot Gocal
n 7
: \ cmlmt Read
 count T
1 Write
: ootfnl Writef count (pri
/ 1 private)
O Read”
Data structures after the openings of Proc A

Data structures after the two processes opened the files

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.



UNIX FILE SYSTEM J. Santos

int newfd= dup (int df);

df — file descriptor of an open file
newfd — new file descriptor that
references the same file

dup2(fd, newfd);

Example:

fdl=open(“/etc/passwd”, O_RDONLY);
fd2=open(“local”’, O_RDWR);
fd3=open(“/etc/passwd”’, O_WRONLY);
dup(fd3);

user file
It returns the first free descriptor table file table inode table

file descriptor, number 6 i

in this case —
i count
(/etc/passwd)
. count // 2

~ U b~ O

2

\Eﬁm—-—'
"
| count /

Data structures after dup

I/

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

24



UNIX FILE SYSTEM J. Santos

7. SETUID executables

The kernel associates two user IDs to a UNIX process:
1. The real user ID: user who runs the process.

2. The effective user ID: used to check file access permissions, to assign ownership of
newly created files and to check permission to send signals.

The kernel allows a process to change its effective used ID when it execs a “setuid program” or
when it invokes the setuid() system call explicitly.

A SETUID program is an executable file that has the SETUID bit set in its permission model
field. When a setuid program is executed, the kernel sets the effective user ID to the
owner of the executable file.

Example of application: command passwd

Files in /etc:

rw-r-- r-- root root passwd users defined in the system

usemame user id group id home directary

l \ / |

fflintstone:2Ux9znoiuSpL:531:962:Fred Flintstone:/home/flintstone:/bin/ksh

T | |

encrypted password user text field startup app

Currently in filefshadow
rw- r-- --- root shadow shadow encrypted passwords
rw- r-- r-- root root group groups defined and their users

Permissions of the executable command:

lusr/bin/passwd root rWS r-X r-x

It means that the SETUID bit is ON

/jonsequently

The effective user ID is set to the
owner of the executable file: root

The passwd process can access the
passwd file to change (“w” permission) 25
the encrypted password



UNIX FILE SYSTEM J. Santos

salt password
Password File

12 bits 20 bits Userid sult Epwalsalt, 0]

'y .

l.:r}"[]t (3) Load b’ .

11 characters

{a) Loading a new password

Password File

Userid Userid  salt Epwdlsalt, 0]
salt
I
Select —— password
——
Y
crypt (3)
encrypted password
p compare

(h) Verifying a password

Notes:

In addition to the classic Data Encryption Standard (DES), there is an advanced symmetric-key
encryption algorithm AES (Advanced Encryption Standard). The AES-128, AES-192 and AES-256 use
a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively

Most linux systems use Hash Functions for authentication: Common message-digest functions include
MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash.

26



http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Key_%28cryptography%29

UNIX FILE SYSTEM J. Santos

SETUID system call

Syntax: setuid (uid)
uid is the new user ID. Its result depends on the current value of the effective used ID

The system call succeeds in the following cases:

1. If the effective user ID of the calling process is the superuser (root), the kernel sets as
real and effective user ID the input parameter uid.

2. If the effective user ID of the calling process is not the superuser:
2.1 If uid = real user ID, the effective user ID is set to uid (success).
2.2 Else if uid = saved effective user ID, the effective user ID is set to uid (success).

2.3 Else return error.

Example of case 1: login process

process getty _—

login: filemon

password; **x**

If authentication

succeeds \
setuid (ID of filemon);

exec (bash, ..... )
/

AS the user ID of the calling
process (login) is root, then the
launched shell has as real and
effective user IDs those of the user
who logs in the system.

27



UNIX FILE SYSTEM

Example of case 2:

J. Santos

#include <fcntl.h>
main()

{

uid = getuid();
euid = geteuid();

setuid (uid);

setuid (euid);

int uid, euid, fdmjb, fdmaury;

/* get real UID */
/* get effective UID */
printf(*‘uid %d euid %d\n”, uid, euid);

fdmjb = open(“mjb”, O_RDONLY);

fdmaury = open(“maury”, O_RDONLY);

printf(“fdmijb %d fdmaury %d\n", fdmjb, fdmaury);

printf(“after setuid(%d): uid %d euid %d\n", uid, getuid(), geteuid);
fdmjb = open(“mjb”, O_RDONLY);

fdmaury = open(“maury”, O_RDONLY);
printf(“fdmjb %d fdmaury %d\n", fdmjb, fdmaury);

printf(“after setuid(%d): uid %d euid %d\n", euid, getuid(), geteuid0);

Example of Execution of Setuid Program

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

Users: maury (ID 8319)
mjb (ID 5088)

Files: maury maury r----- ---
Mjb mjb [
a.out maury rws —x--x

When “mjb” executes the file:

uid 5088 euid 8319
fdmjb -1 fdmaury 3
after setuid(5088): uid 5088 euid 5088
fdmjb 4 fdmaury -1

after setuid(8319): uid 5088 euid 8319

When “maury” executes the file:

uid 8319 euid 8319
fdmjb -1 fdmaury 3
after setuid(8319): uid 5088 euid 8319
fdmjb -1 fdmaury 4

after setuid(8319): uid 8319 euid 8319

28




UNIX FILE SYSTEM J. Santos

8. The Linux Ext2fs File System Silberschatz, Galvin and Gagne ©2005
Operating System Concepts — 7t Edition,
Feb 6, 2005

B Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for locating data
blocks belonging to a specific file

B The main differences between ext2fs and ffs concern their disk allocation policies.

® In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being subdivided into
fragments of 1Kb to store small files or partially filled blocks at the end of a file.

® Ext2fs does not use fragments; it performs its allocations in smaller units:

The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks are also
supported.

® Ext2fs uses allocation policies designed to place logically adjacent blocks of a file
into physically adjacent blocks on disk, so that it can submit an 1/O request for
several disk blocks as a single operation.

Ext2fs Block-Allocation Policies

allocating scattered free blocks

. 11114

allocating continuous free blocks

block in use block selected bit boundary
by allocator

free block — bitmap search byte boundary

29



UNIX FILE SYSTEM J. Santos

9. Journaling File Systems

30

The system maintains a catching of file data and metadata (Buffer Cache).

There can be inconsistencies in the file system due to a system crash of electric outage
before the modified data in the cache (dirty buffers) have been written to disk.

Related command: fsck (file system check)

A journaling file system is a fault-resilient file system in which data integrity is ensured
because updates to files' metadata are written to a serial log on disk before the original
disk blocks are updated. The file system will write the actual data to the disk only after
the write of the metadata to the log is complete. When a system crash occurs, the
system recovery code will analyze the metadata log and try to clean up only those
inconsistent files by replaying the log file.

Linux file systems with journal: ext3, ext4, ReiserFS, XFS from SGI, JFS from IBM.



UNIX FILE SYSTEM J. Santos

Bibliography:
[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

[Carretero y col., 2001] Carretero Pérez, J., de Miguel Anasagasti, P., Garcia Carballeira, F.,
Pérez Costoya, F., Sistemas Operativos: Una Vision Aplicada, McGraw-Hill, 2001.

[Marquez, 2004] Marquez, F.M., UNIX. Programacion Avanzada, Ra-Ma, 2004.

[Sanchez Prieto, 2005] Sanchez Prieto, S., Sistemas Operativos, Servicio Public. Univ. Alcala,
2005.

[Silberschatz y col. 2005] Silberschatz, A., Galvin, P. and Gagne, G., Operating System
Concepts — 7th Edition, Feb 6, 2005.

[Stallings 2005] Stallings, W. Operating Systems (5t Edition), Prentice-Hall, 2005.

[Tanenbaum 2003] Tanenmaum, A., Sistemas Operativos Modernos, Prentice-Hall, 2003.

31



