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Processes

What is a process?

I A key concept in an operating system is the idea of process.

I A program is a set of instructions. For example: the command ls
is an executable file in some system directory. typically /bin or
/usr/bin.

Definition
A process is an abstraction that refers to each execution of a program.

I IMPORTANT: a process has not got to be always executing.
A process life cycle has several stages, execution is one of them.
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Processes

Concept of process

I We can think of a process as
I each instance of an executing program
I the entity the O.S. creates to execute a program

I A process consists of
I Address space: the set of addresses the process may reference
I Control point: next instruction to be executed

I Some systems allow for a process to have more than one control
point: this process is executing concurrently at various places within
itself, this is what we call threads.
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Processes

Concept of process

I Example: open two terminals and execute ls -lR / in one and
ls -lR /usr in the other. We have two processes executing the
same program /bin/ls.

I In this process execution is sequential.

I Concurrency: these two processes seem to be executing
simoultaneously. Actually, the CPU keeps changing between them
(just like our cheff does). This is what we call multitasking.

I At any given instant ONLY ONE OF THEM is actually executing

I Should we have serveral CPUs, we could have real parallel
execution. But each CPU can only be executing one process at a
time. Usually, number of processes > number of CPUs.

I There are processes that are also internally concurrent. They use
threads of execution.
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Processes

Concept of process

I In its simplest form, a process address space has three regions
code Code of all functions in the program that the process is running
data Golbal variables of the program. Dynamically assigned memory

(heap) in usually a part of this region.
stack Used for parameter passing and to store the return address once a

function is called. It is also used by the function being called to
store its local variables.

I Actually there are more regions: shared memory regions,
dynamically linked libraries, mapped files . . .

I Unix command pmap shows us the address space of a process.
This space has holes in it and the addresses shown are virtual
(logical addresses of the process, not real physical addresses)
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Processes in UNIX

What is UNIX?

I The term UNIX is a generic term that refers to many different
O.S.s

I There are many flavours of unix: some commercial and some free
(linux, solaris, aix, freeBSD . . . )

I Each of them may, or may not, comply to different standards,
which apply to the funcionality, implentation or interface with the
O,S.

I The main standards are
I System V
I BSD
I POSIX
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Processes in UNIX
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Processes in UNIX

What is the kernel?

I The kernel is the term with which we usually refer to the Operating
System itself

I The kernel resides in a file (/unix, /vmunix, /vmlinuz, /bsd,
/vmlinuz, /kernel.GENERIC..) which gets loaded by the boot
loader during the machine bootstrap procedure

I The kernel, initializes the system and creates the environment to
execute processes. It creates some processes, which, in turn, will
create the rest of the processes in the system

I INIT (pid 1) is the first user process and the ancestor of every user
process in the system

I UNIX (kernel) interacts with the hardware
I User processes interact with the kernel using the system call

interface
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Processes in UNIX

freebsd 4.9

USER PID PPID PGID SESS JOBC STAT TT COMMAND
root 0 0 0 c0326e60 0 DLs ?? (swapper)
root 1 0 1 c08058c0 0 ILs ?? /sbin/init --
root 2 0 0 c0326e60 0 DL ?? (taskqueue)
root 3 0 0 c0326e60 0 DL ?? (pagedaemon)
root 4 0 0 c0326e60 0 DL ?? (vmdaemon)
root 5 0 0 c0326e60 0 DL ?? (bufdaemon)
root 6 0 0 c0326e60 0 DL ?? (syncer)
root 7 0 0 c0326e60 0 DL ?? (vnlru)
root 90 1 90 c08509c0 0 Ss ?? /sbin/natd -n ed0
root 107 1 107 c085cd80 0 Is ?? /usr/sbin/syslogd -s
root 112 1 112 c0874500 0 Is ?? mountd -r
root 115 1 115 c0874600 0 Is ?? nfsd: master (nfsd)
root 117 115 115 c0874600 0 I ?? nfsd: server (nfsd)
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Processes in UNIX

linux 2.4

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY CMD
4 S 0 1 0 0 68 0 - 373 select ? init
1 S 0 2 1 0 69 0 - 0 contex ? keventd
1 S 0 3 1 0 79 19 - 0 ksofti ? ksoftirqd_CPU0
1 S 0 4 1 0 69 0 - 0 kswapd ? kswapd
1 S 0 5 1 0 69 0 - 0 bdflus ? bdflush
1 S 0 6 1 0 69 0 - 0 kupdat ? kupdated
4 S 0 229 1 0 67 -4 - 369 select ? udevd
1 S 0 375 1 0 69 0 - 0 down_i ? knodemgrd_0
1 S 0 492 1 0 69 0 - 0 ? ? khubd
1 S 0 1571 1 0 69 0 - 561 select ? syslogd
5 S 0 1574 1 0 69 0 - 547 syslog ? klogd
1 S 0 1592 1 0 69 0 - 637 select ? dirmngr
5 S 0 1604 1 0 69 0 - 555 select ? inetd
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Processes in UNIX

solaris 7 sparc

F S UID PID PPID C PRI NI SZ TTY CMD
19 T 0 0 0 0 0 SY 0 ? sched
8 S 0 1 0 0 41 20 98 ? init

19 S 0 2 0 0 0 SY 0 ? pageout
19 S 0 3 0 0 0 SY 0 ? fsflush
8 S 0 282 279 0 40 20 2115 ? Xsun
8 S 0 123 1 0 41 20 278 ? rpcbind
8 S 0 262 1 0 41 20 212 ? sac
8 S 0 47 1 0 45 20 162 ? devfseve
8 S 0 49 1 0 57 20 288 ? devfsadm
8 S 0 183 1 0 41 20 313 ? automoun
8 S 0 174 1 0 40 20 230 ? lockd
8 S 0 197 1 0 41 20 444 ? syslogd
8 S 0 182 1 0 41 20 3071 ? in.named
8 S 0 215 1 0 41 20 387 ? lpsched
8 S 0 198 1 0 51 20 227 ? cron
8 S 0 179 1 0 41 20 224 ? inetd
8 S 0 283 279 0 46 20 627 ? dtlogin
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Processes in UNIX

What does the kernel do?

I Unix kernel is the only program to run directly on the system
hardware

I User processes do not interact directly with the hardware but use
the system call interface instead

I Unix kernel also receives requests from de external devices via
interrupts
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Processes in UNIX Execution modes

kernel mode and user mode

Operating systems need more than one running mode to operate:
kernel mode and user mode
I user mode user code runs in this mode
I kernel mode kernel runs in this mode

1. system call: A user process explicitly requests some service from
the kernel via the system call interface

2. Exceptions: Exceptional situations (division by 0, addressing
errors . . . ) cause hardware traps that require kernel intevention

3. Interrrupts: Devices use interrupts to notify the kernel of certain
events (i/o completion, change in the state of a device . . . )

I Some processor instructions can only be executed when running
in kernel mode
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I The time command shows CPU times (in both user and kernel
mode)

I Let’s consider the following program
main()
{
while (1);

}

I When running for 25 seconds, time shows
real 0m25.417s
user 0m25.360s
sys 0m0.010s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I With the following getpid loop
main()
{
while (1)
getpid();

}

I When running for 25 seconds, time shows
real 0m24.362s
user 0m16.954s
sys 0m7.380s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I Porcess sending a signal to itself
main()
{
pid_t pid=getpid();

while (1)
kill (pid, 0);

}

I When running for 25 seconds, time shows
real 0m25.434s
user 0m11.486s
sys 0m13.941s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I Sending SIGINT to the init process
main()

{
while (1)

kill (1, SIGINT);
}

I After executing for 25 seconds time shows
real 0m25.221s
user 0m9.199s
sys 0m16.014s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I We produce an addressing exception (by dereferencing a NULL
pointer) (we have installed a handler for SIGSEGV)
void vacio(int sig)
{
}
main()
{
int *p;

sigset(SIGSEGV,vacio);
p=NULL;

*p=3;
}
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I After executing for 25 seconds time shows
real 0m25.853s
user 0m10.331s
sys 0m15.509s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I We repeat the first example but we move the mouse and press the
keyboard at the same time
main()
{
while (1);

}

I After executing for 25 seconds time shows
real 0m25.453s
user 0m25.326s
sys 0m0.039s
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Processes in UNIX Execution modes

Executing in kernel mode: examples

I Let’s consider now the following program
main()
{
struct timespec t;
t.tv_sec=0;t.tv_nsec=1000; /*1 milisegundo*/

while (1)
nanosleep (&t, NULL);

}

I After running for 25 seconds, time shows
real 0m25.897s
user 0m0.006s
sys 0m0.022s
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Processes in UNIX Threads and processes

Threads and processes

I In a traditional Unix system a process is defined by
I address space: Set of memory addresses the process can

reference
I control point: Indicates which is the next istruction to execute

(Program Counter)
I In a modern Unix system a process can have several control

points (threads)
I threads share address space
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Processes in UNIX Address space

Address space

I Processes use virtual addresses. A part of their virtual address
space corresponds to the kernel code and data. It is called system
space or kernel space

I system space can only be reached when in kernel mode
I The kernel keeps

I Global data structures
I Per process data structures

I Currently running process address space is directly accesible
because the MMU registers point to it
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Processes in UNIX Address space

Linux 32 but memory map

0xc0000000 the invisible kernel
initial stack
room for stack grouth

0x60000000 shared libraries
brk unused

malloc memory
end_data uninitialized data
end_code initialized data
0x00000000 text
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Processes in UNIX Address space

Sparc Solaris memory map
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Processes in UNIX Reentrant kernel

kernel unix

I Unix kernel is a C program, and as such, it has
I kernel code: what is run when the system is executing in kernel

mode: system calls code, interrupt and execption handlers
I kernal data: global variables of the kernel, accesible for all the

pocesses in the system (process table, inode table, open file table
. . . )

I kernel stack: part of memory used as stack when executing in
kernel mode: parameter passing inside the kernel, local variables of
kernel functions . . .
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Processes in UNIX Reentrant kernel

Reentrant kernel

I unix kernel is reentrant
I Several processes can be running simoultaneously several kernel

functions
I Several processes can be running simoultaneously the same kernel

function
I For the kernel to be reentrant:

I kernel code must be read only
I kernal data (global kernel variables) must be protected from

concurrent access
I Each process has its own kernel stack
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Processes in UNIX Reentrant kernel

Reentrant kernel: Kernel data protection

I Traditional approach (non preemptible kernel)
I A process running in kernel mode can not be preempted, it only

leaves the CPU if it ends, blocks or returns to user mode
I Only certain kernel data structures need to be protected (the ones

that might be used by processes that block)
I Protecting these structures is simple, just a flag in use/not in use

I Modern approach (preemptible kernel)
I A process running in kernel mode can be preempted if a higher

priority process apears ready
I ALL kernel data structures must be protected by more

sophisticated means (for example, semaphores)
I More complex mechanisms are needed in multiprocessor systems
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Data structures

Data structures

What does the O.S. need to manage processes?
I First of all it has to assign memory for the program to be loaded

I As several processes can run the same program, the O.S. has to
identify them: Process Descriptor or Process Identifier

I When the process is not being executed, the O.S. needs to keep
execution information: registers, memory, resources.
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Data structures

Data Structures

I The O.S. needs to know the list of processes in the system and
the state in which each of them is. Usually, it uses lists of Process
Descriptors, one for each state or even one for each i/o device.

Let’s see some typical O.S. structures. . .
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Data structures

System Control Block

Some data common for all the processes in the system

Definition (System Control Block)

(SCB) is a set of data structures used by the O.S. to control the
execution of processes in the system.

It usually includes:
I List of all Proccess Descriptors.

I Pointer to the process currently in CPU (its Process Descriptor).

I Pointer to lists of processes in different states: list of runnable
processes, list of i/o blocked processes...

I Pointer to a list of resource descriptors.

I References to the hardware and software interrupt routines and to
the error handling routines.
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Data structures

System Control Block

The O.S. runs when
I An (exception) ocurs. (Some process tries to do something it

can’t: divide by 0, illegal reference to memory...)

I Some process asks the O.S. to do something (system call)
(Example: open a file, create a process...)

I Some externat device requires atention (interrupt) (Example: a
disks finishes a pending write request)

I Periodically (clock interrupt)
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Data structures

Process Control Block

I Th O.S. has a table of processes where it keeps information of
each process in the system.

I Each entry in this table has information on ONE PROCCESS

I The Process Control Block keeps the data relevant to one process
that the OS. uses to manage it (PCB)
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Data structures

Process control block

The PCB usually includes:
I Identification:

I Process identifier
I Parent process identifier (if the O.S supports process hierarchy)
I user and group identifiers

I Scheduling:
I state of the process
I If the process is blocked, event the process is waiting for
I Scheduling parameters: process priority and other information

relevant to the scheduling algorithm
...
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Data structures

Process Control Block

...
I References to the assigned memory regions:

I data region
I code region
I stack region

I assigned resources:
I open files: file descriptor table or “file handlers” table.
I assigned communication ports

I Pointers to arrange the processes in lists.

I Inter-process communication information: message queues,
semaphores, signals . . . .
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Data structures

Process Control Block
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Data structures in UNIX

Implementing a process I

I To implement the concept of process, unix uses some concepts
and structures that allow a program to execute
I User address space. Consists of code, data, stack, shared

memory regions, mapped files . . .
I Control information.

I proc structure
I u_area
I kernel stack
I address translation maps

I credentials. Indicate which user is behind the execution of that
process.

I environment variables. An alternate method to pass information
to the process

I hardware context. The contents of the hardware registers (PC,
PSW, SP, FPU and MMU registers . . . ). When a context switch
happens these are stored in a part of the u_area called PCB
(Process Control Block)
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Data structures in UNIX

Implementing a process II

I Some of these entities, although conceptually different share
implementation: for example, the kernel stack of a process is
usually implemented as part of the u_area, and the credentials
go in the proc structure

I In linux, instead of u_area and proc structure, there exists the
task_struct struct
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Data structures in UNIX proc structure

proc structure

I The kernel keeps an array of proc structures called process table
I It is in the kernel space
I The proc structure of a process is always directly accesible, even

when the process is not in CPU
I It contains the information on the process that the kernel needs at

all times
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Data structures in UNIX proc structure

Some relevant information in the proc structure

I Process IDentifier
I Location of the u_area (address maps)
I Process state
I Pointers to ready queues, wait queues . . .
I Priority and related information
I sleep channel
I Information on signals (masks)
I Information on memory management
I Pointers to keep the proc sturcture into avaliable queues, zombie

queues . . .
I Pointers to hash queues based on PID
I Hierarchy information
I flags
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Data structures in UNIX u_area

u_area

I It is in user space but it is only accesible when in kernel mode and
when the process is in CPU

I Always at the same virtual address
I Contains information only needed when the process is running
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Data structures in UNIX u_area

Some relevant information in theu_area

I PCB
I pointer to proc structure
I Parameters to, and return values from system calls
I Information on signals: handlers
I UFDT (User File Descriptor Table)
I Pointers to vnodes of root directory, current working directory

and associated terminal
I Kernel stack for the process
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Data structures in UNIX Credentials

Credencials

I Credentials of a process allow the system to determine what
privileges a process has relating to files and to other processes in
the system
I Each user in the system is identified by a number: user id or uid
I Each group in the system is identified by a number: group id or gid
I There’s a special user in the system: root (uid=0)

I Can access all files
I Can send signals to every process
I Can make privileged system calls
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Data structures in UNIX Credentials

Accessing to file

I Access to a file is conditioned by:
I Owner: (file uid)
I Group: (file gid)
I Permissions: (file mode)
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Data structures in UNIX Credentials

Credencials

I A process has its credentials, which specify what files it can
access (and how) and what processes it can send signals to (and
from what processes it can get signals sent)
I User credential (process uid )
I Group credential (process gid)

I When a process tries to access to a file, the following procedure
applies
I If the process uid matches the file uid: owner premissions apply
I If the process gid matches the file gid: group permissions apply
I Otherwise rest of the world permissions apply
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Data structures in UNIX Credentials

Credentials

I A process has actually three pairs of credentials: real, effective
and saved
I effective: rule access to files
I real and effective: rule sending and receiving signals: a signal is

received if the real or effective uid of the sending process matches
the real uid of the receiving process

I real and saved: rule what changes to the effective credential can be
done via the setuid and setgid system calls
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Data structures in UNIX Credentials

Change of credentials

I Only three system calls can change a process credentials
I setuid() Changes the uid of the calling process
I setgid() Changes the gid of the calling process
I exec(): Executes a program
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Data structures in UNIX Credentials

Change of credentials

I setuid() Changes the effective credential of the calling process.
I The only changes allowed are effective:=real or effective:=saved.
I If the process has the effective credential of root, setuid changes

the three credentials
I setgid() Analogous to setuid() but for the group credentials
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Data structures in UNIX Credentials

Change of credentials

I The exec system calls (execl, execv, execlp, execve. . . )
can change the credentials of the calling process if the file to be
executed has the adecuate premissions

1. exec() on an executable file with mode **s******, changes the
effective and saved uid of the calling process to that of the file being
executed

2. exec() on an executable file with mode *****s***, changes the
effective and saved gid of the calling process to that of the file being
executed
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Data structures in UNIX Credentials

Credentials: example

I The following example uses the setuid() system call to allow
copying of files (and directories) betweenn two different unix
acounts, both having only rwx—— (0700) permisions

I For that executable to work properly it must
I be owned by the user we are copying files from
I have the setuid bit set (rwsr-xr-x, 04755)
I be executed by the user copying the files
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Data structures in UNIX Credentials

Credentials: example I

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <dirent.h>
#include <string.h>
#include <libgen.h>
#include <pwd.h>

/***************ReaglaFicheros.c**************************/
/*Copia ficheros y/o directorios de una cuenta a a otra*/
/*usando ambas credenciales*/
/*el ejecutable debe ser setuid del que deja copiar de su cuenta*/

#define MAXNAME 1024 /*longitud maxima de un nombre*/
#define BASEDIR "/" /*por si queremos limitar la parte del arbol de directorios a la que acceder*/

int EsDirectorio (char * dir)
{

struct stat s;
if (lstat(dir,&s)==-1)

return 0;
return (S_ISDIR(s.st_mode));

}
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Data structures in UNIX Credentials

Credentials: example II

int EsFichero (char * dir)
{

struct stat s;
if (lstat(dir,&s)==-1)

return 0;
return (S_ISREG(s.st_mode));

}

ssize_t TamanoFichero(char * f)
{

struct stat s;
if (lstat(f,&s)==-1)

return -1;
return (ssize_t) s.st_size;

}

ssize_t CopyFile (char * source, char *dest, pid_t euid, pid_t ruid, int verb)
{

void * buff;
ssize_t siz,n1,n2;
int err, df1, df2;

if (verb)
printf (" ------------------Copiando fichero %s -> %s\n", source,dest);

/*se supone que se llama con credencial efectiva la del origen, euid*/
if ((siz=TamanoFichero(source))==-1 || (df1=open(source, O_RDONLY))==-1)
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Data structures in UNIX Credentials

Credentials: example III

return -1;

setuid (ruid); /*cambiamos a la real, destino*/
if ((df2=open(dest,O_WRONLY |O_CREAT |O_EXCL,0777))==-1){

err=errno; close (df1); errno=err;
return -1;

}
if ((buff=malloc (siz))==NULL){ /*una vez abierto, la credencial no influye en la lectura o escritura*/

err=errno; close(df1); close(df2); errno=err;
return -1;

}
if ((n1=read(df1,buff,siz))==-1 || (n2=write (df2,buff,n1))==-1){

err=errno; close (df1);close(df2); free(buff); errno=err;
return -1;

}
close (df1);close(df2); free(buff);
setuid (euid); /*volvemos a la credencial efectiva origen*/
return n2;

}

char * CheckValidAccess (char * dir) /*comprueba que no hay .. en el path*/
{

static char aux[MAXNAME];
char *tr[MAXNAME/2];
int i=1;

if (dir==NULL)
return NULL;
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Data structures in UNIX Credentials

Credentials: example IV

strncpy (aux,dir, MAXNAME);
if ((tr[0]=strtok(aux,"/"))==NULL)

return 0;
while ((tr[i]=strtok(NULL,"/"))!=NULL)

i++;
for (i=0; tr[i]!=NULL; i++)

if (!strcmp(tr[i],"..")) /*algun componente es ".." */
return NULL;

if (!strcmp(BASEDIR,"/"))
strncpy (aux,dir,MAXNAME);

else
snprintf (aux,MAXNAME,"%s/%s",BASEDIR,dir);

return aux;
}

int CopyDirectory (char * source, char *dest, pid_t euid, pid_t ruid,int rec, int verb)
{

DIR *p;
struct dirent *d;
int res,err;
char aux[MAXNAME], aux2[MAXNAME];

if (verb)
printf ("****************Copiando directorio %s -> %s\n", source,dest);

if ((p=opendir(source))==NULL) /*se supone que se llama con credencial efectiva la del origen, euid*/
return -1;
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Data structures in UNIX Credentials

Credentials: example V

if (setuid (ruid)==-1 || mkdir (dest,0777)){ /*cambiamos a la real, destino*/
err=errno; closedir (p); errno=err;
return -1;

}
setuid (euid); /*volvemos a la credencial efectiva origen*/
while ((d=readdir(p))!=NULL){

if (!strcmp(d->d_name,".") || !strcmp(d->d_name,".."))
continue;

snprintf (aux,MAXNAME,"%s/%s",source,d->d_name);snprintf(aux2,MAXNAME,"%s/%s",dest,d->d_name);

if (EsFichero (aux)) /*los enlaces simbolicos no se siguen*/
res=CopyFile(aux,aux2,euid,ruid,verb);

if (rec && EsDirectorio(aux)) /*solo se copia los ficheors y los directorios si es recursivo*/
res=CopyDirectory(aux,aux2,euid,ruid,rec,verb); /*no los dispositivos ni los fifos...*/

if (res==-1)
printf("Error copiando %s->%s:%s\n", aux,aux2,strerror(errno));

}
setuid (euid); /*volvemos a la credencial efectiva origen*/
return closedir(p);

}

void Usage(char *ejec){
printf ("uso: %s [-r] [-v] origen destino\n",ejec);
printf (" copia origen en destino, -r para recursivo, -v para verboso \n");
printf (" si no se especifica destino, copia en directorio actual\n");
printf (" destino especificado a partir de (y limitado por) %s\n",BASEDIR);
printf (" directorio destino no debe existir previamente\n");
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}

void CheckCredentials (pid_t euid, pid_t ruid)
{
if (euid==ruid){

printf ("Para copiar con la misma credenciar real y efectiva usar el comando cp\n");
exit (1);

}
if (euid==0 || ruid==0){

printf ("Este programa no funciona con el root\n");
exit (1);

}
}

char * Nombre(uid_t u)
{

struct passwd *p=getpwuid(u);

if (p!=NULL)
return p->pw_name;

return "???????";
}

int main (int argc, char *argv[])
{

int i,pos=1,res=-1,recurse=0,verbose=0;
char *source=NULL, dest[MAXNAME];
uid_t ruid=getuid(), euid=geteuid();
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for (i=1; argv[i]!=NULL; i++)
if (!strcmp(argv[i],"-r")) {recurse=1; pos++;} /*copia recursiva */
else if (!strcmp(argv[i],"-v")) {verbose=1;pos++;} /*imprime info*/
else break; /*ni -r ni -v, i contienen el directorio origen */

if ((source=CheckValidAccess(argv[pos]))==NULL){ /*no se especifica que copiar o no es válido*/
Usage(argv[0]);
exit (1);

}
CheckCredentials (euid, ruid);

if (argv[pos+1]!=NULL)
strcpy(dest,argv[pos+1]);

else
snprintf(dest,MAXNAME,"%s/%s",".",basename(source));

if (verbose){
printf ("Copiando %s -> %s\n", source,dest);
printf (" con credencial efectiva %d (%s) ", euid,Nombre(euid));
printf (" real %d (%s)\n",ruid, Nombre(ruid));

}
if (EsDirectorio(source))

res=CopyDirectory(source,dest,euid,ruid,recurse,verbose); /*no los dispositivos ni los fifos...*/
if (EsFichero (source)) /*los enlaces simbolicos no se siguen*/

res=CopyFile(source,dest,euid,ruid,verbose);
if (res==-1)

printf("Error al intentar copiar %s -> %s: %s\n", source,dest,strerror(errno));
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return 0;
}
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Environment variables

I Strings of characters
I Usually in the form "VARIABLENAME=value"
I At the bottom of the user stack
I Several ways to access them

I Third argument to main(): NULL terminated array of the
environment variables

I extern char ** environ: NULL terminated array of the
environment variables

I Library functions. putenv(), getenv(), setenv(), unsetenv()
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Environment variables

The following examples show both the code and output of several
programs
I Example 1

1. Shows the command line arguments
2. Shows the enviroment variables reached through main third

argument
3. Shows both the value and the storing address for main’s third

argument and the external variable environ
4. Shows the enviroment variables reached through environ
5. Shows both the value and the storing address for main’s third

argument and the external variable environ
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Environment variables: example 1
/**entorno.c**/
#include <stdio.h>

extern char ** environ;

void MuestraEntorno (char **entorno, char * nombre_entorno)
{
int i=0;

while (entorno[i]!=NULL) {
printf ("%p->%s[%d]=(%p) %s\n", &entorno[i],

nombre_entorno, i,entorno[i],entorno[i]);
i++;

}
}
main (int argc, char * argv[], char *env[])

{
int i;

for (i=0; i<argc; i++)
printf ("%p->argv[%d]=(%p) %s\n",

&argv[i], i, argv[i], argv[i]);
printf ("%p->argv[%d]=(%p) ---------\n",

&argv[argc], argc, argv[argc]);
printf ("%p->argv=%p\n%p->argc=%d \n", &argv, argv, &argc, argc);

MuestraEntorno(env,"env");
printf("%p->environ=%p\n%p->env=%p \n", &environ, environ, &env, env);

MuestraEntorno(environ,"environ");
printf("%p->environ=%p\n%p->env=%p \n", &environ, environ, &env, env);

}
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Environment variables: example 1
%./entorno.out uno dos tres
0xbfbffba0->argv[0]=(0xbfbffc8c) ./entorno.out
0xbfbffba4->argv[1]=(0xbfbffc9a) uno
0xbfbffba8->argv[2]=(0xbfbffc9e) dos
0xbfbffbac->argv[3]=(0xbfbffca2) tres
0xbfbffbb0->argv[4]=(0x0) ---------
0xbfbffb5c->argv=0xbfbffba0
0xbfbffb58->argc=4
0xbfbffbb4->env[0]=(0xbfbffca7) USER=visita
0xbfbffbb8->env[1]=(0xbfbffcb4) LOGNAME=visita
0xbfbffbbc->env[2]=(0xbfbffcc4) HOME=/home/visita
0xbfbffbc0->env[3]=(0xbfbffcd7) MAIL=/var/mail/visita
0xbfbffbc4->env[4]=(0xbfbffcee) PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/home/visita/bin
0xbfbffbc8->env[5]=(0xbfbffd5c) TERM=xterm
0xbfbffbcc->env[6]=(0xbfbffd67) BLOCKSIZE=K
0xbfbffbd0->env[7]=(0xbfbffd73) FTP_PASSIVE_MODE=YES
0xbfbffbd4->env[8]=(0xbfbffd88) SHELL=/bin/csh
0xbfbffbd8->env[9]=(0xbfbffd97) SSH_CLIENT=192.168.0.99 33208 22
0xbfbffbdc->env[10]=(0xbfbffdb8) SSH_CONNECTION=192.168.0.99 33208 193.144.51.154 22
0xbfbffbe0->env[11]=(0xbfbffdec) SSH_TTY=/dev/ttyp0
0xbfbffbe4->env[12]=(0xbfbffdff) HOSTTYPE=FreeBSD
0xbfbffbe8->env[13]=(0xbfbffe10) VENDOR=intel
0xbfbffbec->env[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0xbfbffbf0->env[15]=(0xbfbffe2c) MACHTYPE=i386
0xbfbffbf4->env[16]=(0xbfbffe3a) SHLVL=1
0xbfbffbf8->env[17]=(0xbfbffe42) PWD=/home/visita/c
0xbfbffbfc->env[18]=(0xbfbffe56) GROUP=users
0xbfbffc00->env[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0xbfbffc04->env[20]=(0xbfbffe7e) REMOTEHOST=portatil
0xbfbffc08->env[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc0c->env[22]=(0xbfbffe9c) PAGER=more
0x80497fc->environ=0xbfbffbb4
0xbfbffb60->env=0xbfbffbb4

Processes 71 / 292



Data structures in UNIX Environment variables

Environment variables: example 1

0xbfbffbb4->environ[0]=(0xbfbffca7) USER=visita
0xbfbffbb8->environ[1]=(0xbfbffcb4) LOGNAME=visita
0xbfbffbbc->environ[2]=(0xbfbffcc4) HOME=/home/visita
0xbfbffbc0->environ[3]=(0xbfbffcd7) MAIL=/var/mail/visita
0xbfbffbc4->environ[4]=(0xbfbffcee) PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/home/visita/bin
0xbfbffbc8->environ[5]=(0xbfbffd5c) TERM=xterm
0xbfbffbcc->environ[6]=(0xbfbffd67) BLOCKSIZE=K
0xbfbffbd0->environ[7]=(0xbfbffd73) FTP_PASSIVE_MODE=YES
0xbfbffbd4->environ[8]=(0xbfbffd88) SHELL=/bin/csh
0xbfbffbd8->environ[9]=(0xbfbffd97) SSH_CLIENT=192.168.0.99 33208 22
0xbfbffbdc->environ[10]=(0xbfbffdb8) SSH_CONNECTION=192.168.0.99 33208 193.144.51.154 22
0xbfbffbe0->environ[11]=(0xbfbffdec) SSH_TTY=/dev/ttyp0
0xbfbffbe4->environ[12]=(0xbfbffdff) HOSTTYPE=FreeBSD
0xbfbffbe8->environ[13]=(0xbfbffe10) VENDOR=intel
0xbfbffbec->environ[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0xbfbffbf0->environ[15]=(0xbfbffe2c) MACHTYPE=i386
0xbfbffbf4->environ[16]=(0xbfbffe3a) SHLVL=1
0xbfbffbf8->environ[17]=(0xbfbffe42) PWD=/home/visita/c
0xbfbffbfc->environ[18]=(0xbfbffe56) GROUP=users
0xbfbffc00->environ[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0xbfbffc04->environ[20]=(0xbfbffe7e) REMOTEHOST=portatil
0xbfbffc08->environ[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc0c->environ[22]=(0xbfbffe9c) PAGER=more
0x80497fc->environ=0xbfbffbb4
0xbfbffb60->env=0xbfbffbb4
%
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Environment variables: example 2

I Example 2
1. Shows the command line arguments
2. Shows the enviroment variables reached through main third

argument
3. Shows the enviroment variables reached through environ
4. Shows both the value and the storing address for main’s third

argument and the external variable environ
5. Creates a new variable using the library function putenv:

putenv("NUEVAVARIABLE=XXXXXXXXXXX")
6. Repeats steps 2, 3 and 4
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Environment variables: example 2
/**entorno2.c**/
#include <stdio.h>
#include <stdlib.h>

extern char ** environ;

void MuestraEntorno (char **entorno, char * nombre_entorno)
{
...........

}
main (int argc, char * argv[], char *env[])

{
int i;

for (i=0; i<argc; i++)
printf ("%p->argv[%d]=(%p) %s\n",

&argv[i], i, argv[i], argv[i]);
printf ("%p->argv[%d]=(%p) ---------\n",

&argv[argc], argc, argv[argc]);
printf ("%p->argv=%p\n%p->argc=%d \n", &argv, argv, &argc, argc);

MuestraEntorno(env,"env");
MuestraEntorno(environ,"environ");
printf("%p->environ=%p\n%p->env=%p \n\n\n", &environ, environ, &env, env);

putenv ("NUEVAVARIABLE=XXXXXXXXXXX");

MuestraEntorno(env,"env");
MuestraEntorno(environ,"environ");
printf("%p->environ=%p\n%p->env=%p \n", &environ, environ, &env, env);
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%./entorno2.out
0xbfbffbb8->argv[0]=(0xbfbffc98) ./entorno2.out
0xbfbffbbc->argv[1]=(0x0) ---------
0xbfbffb6c->argv=0xbfbffbb8
0xbfbffb68->argc=1
0xbfbffbc0->env[0]=(0xbfbffca7) USER=visita
............
0xbfbffbf8->env[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0xbfbffbfc->env[15]=(0xbfbffe2c) MACHTYPE=i386
0xbfbffc00->env[16]=(0xbfbffe3a) SHLVL=1
0xbfbffc04->env[17]=(0xbfbffe42) PWD=/home/visita/c
0xbfbffc08->env[18]=(0xbfbffe56) GROUP=users
0xbfbffc0c->env[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0xbfbffc10->env[20]=(0xbfbffe7e) REMOTEHOST=portatil
0xbfbffc14->env[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc18->env[22]=(0xbfbffe9c) PAGER=more
0xbfbffbc0->environ[0]=(0xbfbffca7) USER=visita
.............
0xbfbffbf8->environ[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0xbfbffbfc->environ[15]=(0xbfbffe2c) MACHTYPE=i386
0xbfbffc00->environ[16]=(0xbfbffe3a) SHLVL=1
0xbfbffc04->environ[17]=(0xbfbffe42) PWD=/home/visita/c
0xbfbffc08->environ[18]=(0xbfbffe56) GROUP=users
0xbfbffc0c->environ[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0xbfbffc10->environ[20]=(0xbfbffe7e) REMOTEHOST=portatil
0xbfbffc14->environ[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc18->environ[22]=(0xbfbffe9c) PAGER=more
0x80498d8->environ=0xbfbffbc0
0xbfbffb70->env=0xbfbffbc0
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0xbfbffbc0->env[0]=(0xbfbffca7) USER=visita
..............
0xbfbffbf8->env[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0xbfbffbfc->env[15]=(0xbfbffe2c) MACHTYPE=i386
0xbfbffc00->env[16]=(0xbfbffe3a) SHLVL=1
0xbfbffc04->env[17]=(0xbfbffe42) PWD=/home/visita/c
0xbfbffc08->env[18]=(0xbfbffe56) GROUP=users
0xbfbffc0c->env[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0xbfbffc10->env[20]=(0xbfbffe7e) REMOTEHOST=portatil
0xbfbffc14->env[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc18->env[22]=(0xbfbffe9c) PAGER=more
0x804c000->environ[0]=(0xbfbffca7) USER=visita
..............
0x804c038->environ[14]=(0xbfbffe1d) OSTYPE=FreeBSD
0x804c03c->environ[15]=(0xbfbffe2c) MACHTYPE=i386
0x804c040->environ[16]=(0xbfbffe3a) SHLVL=1
0x804c044->environ[17]=(0xbfbffe42) PWD=/home/visita/c
0x804c048->environ[18]=(0xbfbffe56) GROUP=users
0x804c04c->environ[19]=(0xbfbffe62) HOST=gallaecia.dc.fi.udc.es
0x804c050->environ[20]=(0xbfbffe7e) REMOTEHOST=portatil
0x804c054->environ[21]=(0xbfbffe92) EDITOR=vi
0x804c058->environ[22]=(0xbfbffe9c) PAGER=more
0x804c05c->environ[23]=(0x804a080) NUEVAVARIABLE=XXXXXXXXXXX
0x80498d8->environ=0x804c000
0xbfbffb70->env=0xbfbffbc0
%
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Environment variables

I Example 3
1. Shows the command line arguments
2. Shows the enviroment variables reached through main third

argument
3. Shows the enviroment variables reached through environ
4. Shows both the value and the storing address for main’s third

argument and the external variable environ
5. Creates a new variable using the library function putenv:

putenv("NUEVAVARIABLE=XXXXXXXXXXX")
6. Repeats steps 2, 3 and 4
7. Makes an exec system call on the program in example 1
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Environment variables: example 3
/**entorno3.c**/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

extern char ** environ;
void MuestraEntorno (char **entorno, char * nombre_entorno)
{
. .............
}
main (int argc, char * argv[], char *env[])

{
int i;

for (i=0; i<argc; i++)
printf ("%p->argv[%d]=(%p) %s\n",

&argv[i], i, argv[i], argv[i]);
printf ("%p->argv[%d]=(%p) ---------\n",

&argv[argc], argc, argv[argc]);
printf ("%p->argv=%p\n%p->argc=%d \n", &argv, argv, &argc, argc);

MuestraEntorno(env,"env");
MuestraEntorno(environ,"environ");
printf("%p->environ=%p\n%p->env=%p \n\n\n", &environ, environ, &env, env);

putenv ("NUEVAVARIABLE=XXXXXXXXXXX");

MuestraEntorno(env,"env");
MuestraEntorno(environ,"environ");
printf("%p->environ=%p\n%p->env=%p \n", &environ, environ, &env, env);

execl("./entorno.out","entorno.out", NULL);
}
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Environment variables: example 3

%./entorno3.out
0xbfbffbb8->argv[0]=(0xbfbffc98) ./entorno3.out
0xbfbffbbc->argv[1]=(0x0) ---------
0xbfbffb6c->argv=0xbfbffbb8
0xbfbffb68->argc=1
0xbfbffbc0->env[0]=(0xbfbffca7) USER=visita
0xbfbffbc4->env[1]=(0xbfbffcb4) LOGNAME=visita
............
0xbfbffc14->environ[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc18->environ[22]=(0xbfbffe9c) PAGER=more
0x8049944->environ=0xbfbffbc0
0xbfbffb70->env=0xbfbffbc0

0xbfbffbc0->env[0]=(0xbfbffca7) USER=visita
..............
0xbfbffc14->env[21]=(0xbfbffe92) EDITOR=vi
0xbfbffc18->env[22]=(0xbfbffe9c) PAGER=more
0x804c000->environ[0]=(0xbfbffca7) USER=visita
0x804c004->environ[1]=(0xbfbffcb4) LOGNAME=visita
...............
0x804c054->environ[21]=(0xbfbffe92) EDITOR=vi
0x804c058->environ[22]=(0xbfbffe9c) PAGER=more
0x804c05c->environ[23]=(0x804a080) NUEVAVARIABLE=XXXXXXXXXXX
0x8049944->environ=0x804c000
0xbfbffb70->env=0xbfbffbc0
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0xbfbffb9c->argv[0]=(0xbfbffc80) entorno.out
0xbfbffba0->argv[1]=(0x0) ---------
0xbfbffb4c->argv=0xbfbffb9c
0xbfbffb48->argc=1
0xbfbffba4->env[0]=(0xbfbffc8c) USER=visita
0xbfbffba8->env[1]=(0xbfbffc99) LOGNAME=visita
0xbfbffbac->env[2]=(0xbfbffca9) HOME=/home/visita
0xbfbffbb0->env[3]=(0xbfbffcbc) MAIL=/var/mail/visita
0xbfbffbb4->env[4]=(0xbfbffcd3) PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/home/visita/bin
0xbfbffbb8->env[5]=(0xbfbffd41) TERM=xterm
0xbfbffbbc->env[6]=(0xbfbffd4c) BLOCKSIZE=K
0xbfbffbc0->env[7]=(0xbfbffd58) FTP_PASSIVE_MODE=YES
0xbfbffbc4->env[8]=(0xbfbffd6d) SHELL=/bin/csh
0xbfbffbc8->env[9]=(0xbfbffd7c) SSH_CLIENT=192.168.0.99 33208 22
0xbfbffbcc->env[10]=(0xbfbffd9d) SSH_CONNECTION=192.168.0.99 33208 193.144.51.154 22
0xbfbffbd0->env[11]=(0xbfbffdd1) SSH_TTY=/dev/ttyp0
0xbfbffbd4->env[12]=(0xbfbffde4) HOSTTYPE=FreeBSD
0xbfbffbd8->env[13]=(0xbfbffdf5) VENDOR=intel
0xbfbffbdc->env[14]=(0xbfbffe02) OSTYPE=FreeBSD
0xbfbffbe0->env[15]=(0xbfbffe11) MACHTYPE=i386
0xbfbffbe4->env[16]=(0xbfbffe1f) SHLVL=1
0xbfbffbe8->env[17]=(0xbfbffe27) PWD=/home/visita/c
0xbfbffbec->env[18]=(0xbfbffe3b) GROUP=users
0xbfbffbf0->env[19]=(0xbfbffe47) HOST=gallaecia.dc.fi.udc.es
0xbfbffbf4->env[20]=(0xbfbffe63) REMOTEHOST=portatil
0xbfbffbf8->env[21]=(0xbfbffe77) EDITOR=vi
0xbfbffbfc->env[22]=(0xbfbffe81) PAGER=more
0xbfbffc00->env[23]=(0xbfbffe8c) NUEVAVARIABLE=XXXXXXXXXXX
0x80497fc->environ=0xbfbffba4
0xbfbffb50->env=0xbfbffba4
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Environment variables: example 3

0xbfbffba4->environ[0]=(0xbfbffc8c) USER=visita
0xbfbffba8->environ[1]=(0xbfbffc99) LOGNAME=visita
0xbfbffbac->environ[2]=(0xbfbffca9) HOME=/home/visita
0xbfbffbb0->environ[3]=(0xbfbffcbc) MAIL=/var/mail/visita
0xbfbffbb4->environ[4]=(0xbfbffcd3) PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/home/visita/bin
0xbfbffbb8->environ[5]=(0xbfbffd41) TERM=xterm
0xbfbffbbc->environ[6]=(0xbfbffd4c) BLOCKSIZE=K
0xbfbffbc0->environ[7]=(0xbfbffd58) FTP_PASSIVE_MODE=YES
0xbfbffbc4->environ[8]=(0xbfbffd6d) SHELL=/bin/csh
0xbfbffbc8->environ[9]=(0xbfbffd7c) SSH_CLIENT=192.168.0.99 33208 22
0xbfbffbcc->environ[10]=(0xbfbffd9d) SSH_CONNECTION=192.168.0.99 33208 193.144.51.154 22
0xbfbffbd0->environ[11]=(0xbfbffdd1) SSH_TTY=/dev/ttyp0
0xbfbffbd4->environ[12]=(0xbfbffde4) HOSTTYPE=FreeBSD
0xbfbffbd8->environ[13]=(0xbfbffdf5) VENDOR=intel
0xbfbffbdc->environ[14]=(0xbfbffe02) OSTYPE=FreeBSD
0xbfbffbe0->environ[15]=(0xbfbffe11) MACHTYPE=i386
0xbfbffbe4->environ[16]=(0xbfbffe1f) SHLVL=1
0xbfbffbe8->environ[17]=(0xbfbffe27) PWD=/home/visita/c
0xbfbffbec->environ[18]=(0xbfbffe3b) GROUP=users
0xbfbffbf0->environ[19]=(0xbfbffe47) HOST=gallaecia.dc.fi.udc.es
0xbfbffbf4->environ[20]=(0xbfbffe63) REMOTEHOST=portatil
0xbfbffbf8->environ[21]=(0xbfbffe77) EDITOR=vi
0xbfbffbfc->environ[22]=(0xbfbffe81) PAGER=more
0xbfbffc00->environ[23]=(0xbfbffe8c) NUEVAVARIABLE=XXXXXXXXXXX
0x80497fc->environ=0xbfbffba4
0xbfbffb50->env=0xbfbffba4
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Process life cycle

Process life cycle

I Every process in the system starts its life with a create process
system call. (create process is an O.S. service). The process that
makes that system call is called parent process of the created
process
I In some O.S., (Windows) we must provide the system call to create

process with the executable file we want the created process to run.
In unix-like system we get different system calls to create process
and to execute program

I During its life cicle a process goes throught different states:
running, ready to run, blocked . . .

I Every process in the system ends with the terminate process
system call. (terminate process is an O.S. service)
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Process life cycle

Process life cycle

I On older systems, some part of the secondary memory (disk) was
used to swap out processes from the primary memory so that the
degree of multiprogramming could be increased
I whole processes were swapped out
I This part of secondary memory si called swap
I Now we have a new process state: swapped out or swapped.

Sometimes refered to as suspended
I The transitions associated with this new state are swap in and swap

out
I These systems are refered to as swapping systems
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Process life cycle

Process life cycle

I On modern systems, some part of the secondary memory (disk) is
used to swap out PIECES of processes from the primary memory
so that the degree of multiprogramming can be increased. This
also allows for a process that is not loaded completely into
memory to be executed
I PIECES of processes (typically pages) are swapped out
I This part of secondary memory si called swap. It can be ether a

partition or a file on a filesystem
I Processes can be executed without being completely loaded into

memory. This also allows for executing processes larger than the
physical memory installed in the system

I This is what we call virtual memory
I This systems are often refered to as paging systems
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Process life cycle

Process states

Terminology:
I CPU, running or executing

I ready to run or runnable (ready)

I blocked, asleep or waiting.

I swapped out, suspended (a process in this state can either be
runnable or blocked)
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Process life cycle

State transitions

I Entering the running state: the first in the ready to run queue is
scheduled to run

I Entering the ready to run state: there are 4 different scenarios
I A new process has been created and it enters the runnable queue
I From CPU: Another process is scheduled to run via a context

switch. We say the process has been preempted.
I From blocked: The event the process was waiting for (some i/o

operation or whatever) has ocurred. We call this transition unblock
or wake up. The transition is the same if the process is also
swapped out

I From ready to run/swapped out: The O.S. decides to bring it to
primary memory. This transition is called swap in.
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Process life cycle

State transitions

I Entering the blocked state: two different scenaios
I From CPU: The process makes some system call (for example

asks for some i/o to be done) that cannot be complete at the time
so it blocks

I From blocked/swapped out: The O.S. swaps in a blocked/swapped
process. (Not every O.S. accepts this transition)

I The blocked/swapped out and ready to run/swapped out states
can be entered when the O.S. decides to swap out a process
(ready or blocked) to free some primary memory
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Process life cycle

Process creation

I create process is an O.S: service
I When a process makes a create process system call, the O.S.

must:
1. Assign an Identifier to the new process
2. Create and initialize its PCB
3. Update the SCB to include the new process
4. Assign memory to it and, if needed, load the program the new

process is going to execute
5. Put it into the ready to run queue.
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Process life cycle

Process creation
I It may seem that a process can be created in different ways

I System initialization: a lot of processes are created when a system
boots:

I Processes that interact directly with the user (graphical environment,
shells).

I Processes that DO NOT interact directly with the user. They are in
charge of maintaining some system services (mail reception, printer
management . . . ). They are usually called daemons,

I system call inside some process to create anew process. Example:
we make a program that creates new process to fill a buffer with
data.

I explicit user request. Example: the user explicitly creates a new
process from the shell or by clicking (once or twice) in the
appropiate graphic menu. (in this case it is the shell code or the
code from the graphical enviroment that creates the new process)

I As part of a batch processing

I In all these scenarios, the proceses are actually created the same
way: by a system call

I The UNIX ps comand or windows task manager can show us the
processes in a system
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Process life cycle

Termination of a process

I Terminate process: is an O.S. service.

I When a process is terminated its PCB is deleted. The O.S.
reclaims all the resources assigned to that process.

I If the process has some children processes: it may wait for them
to end, terminate them or leave them be

I Two ways of termination
1) normal termination: The process calls voluntarily the terminate

process system call

2) abnormal termination: Not provided for in the process code. The
process is forced to make the terminate process system call
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Process life cycle in UNIX

Process life cycle in UNIX

I process: instance of a program executing
I process: entity that the O.S. creates to execute a program and

that provides an environment for the program to execute: address
space and one (or several) control point

I A process has a specific life span
I It is created by the fork() (or vfork()) system call
I Ends with the exit() system call
I Can execute a program with one of the exec() system calls
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Process life cycle in UNIX

I Every process has a parent process
I Can have one (or more than one) child processes
I Tree like structure with init the common ancestor to (almost) all

processes in the system
I When a process ends its children processes are inherited by init

Processes 96 / 292



Process life cycle in UNIX

Process tree shown by the command pstree
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Process life cycle in UNIX The states of a process

Process states in System V R2

I idle: The process is being created but it is not yet ready to run
I runnable, ready to run
I blocked, asleep. In this state, as with the runnable state, the

process can be either in main memory or in the swap area
(swapped)

I user running
I kernel running
I zombie: The process has terminated but the parent process has

not yet performed one of the wait system calls on it: its proc
structure has not been emptied so, for the system, the process still
exists.
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Process life cycle in UNIX The states of a process

I From 4.2BSD on there’s a new state: stopped
I It can be either runnable stoped or blocked stopped
I It can be reached by receiving one of these signals

I SIGSTOP
I SIGTSTP ctrl-Z
I SIGTTIN
I SIGTTOU

I SIGCONT takes a process out of this state
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Process life cycle in UNIX The states of a process

I Execution starts in kernel mode
I Transition to blocked is from kernel mode running
I Transitions to and from runnable are from kernel mode running
I Execution ends in kernel mode
I When a process ends it goes into zombie state until its parent

process performs one of the wait system calls on it
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Process life cycle in UNIX The states of a process

fork() and exec() system calls

I unix system calls to create processes and execute programs are:
fork() Creates a process. The created process is a "klon" of the parent

process, its address space is a replica of the parent process’
address space. The only difference is the value returned by fork():
0 to the child process and the child’s pid to the parent process

exec() (execl(), execv(), execle(), execve(), execlp(), execvp()) Makes an
already created process execute a program: it replaces the calling
process address space (code, data, stack . . . ) with that of the
program to execute

exit() Ends a process
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Process life cycle in UNIX The states of a process

fork() and exec() calls: example

if ((pid=fork())==0){ /*hijo*/
if (execv("./programilla",args)==-1){

perror("fallo en exec");
exit(1);
}

}
else
if (pid<0)

perror("fallo en fork")
else /*el padre sigue*/
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Process life cycle in UNIX fork()

Tasks performed by fork()

1. Allocate swap space
2. Assign pid and allocate proc structure
3. Initialize proc structure
4. Assign address translation maps for child process
5. Allocate child process’s u_area and copy data from parent

process
6. Update fields in u_area

7. Add child process to set of processes sharing code region of
parent process

8. Duplicate data and stack segments from parent process and
update tables

9. Initialize hardware context
10. Change state of chiuld process to ready to run
11. Return 0 to child process
12. Return child’s pid to parent process

Processes 105 / 292



Process life cycle in UNIX fork()

Optimizing fork()

I Among the tasks preformed by fork(), ’duplicate data and stack
segments from parent process and update tables’ implies
I allocate memory for child’s process data and stack
I copy parent process’s data and stack

I It often happens that a process just created by fork() executes
another program
if ((pid=fork())==0){ /*hijo*/
if (execv("./programilla",args)==-1){

perror("fallo en exec");
exit(1);
}

}

I The exec() calls discard current address space and allocate a new
one

I In this case, we have allocated memory, copied data on it and
then ended up discarding all that memory

Processes 106 / 292



Process life cycle in UNIX fork()

Optimizing fork()

I Two optimizations: copy on write and vfork() system call
I copy on write

I Data and stack are not copied: they are shared between parent and
child processes

I Data and stack are marked read only
I When an attempt is made to modify any them, as thay are marked

read only, an exception is produced
I The execption handler copies ONLY THE PAGE that is being

modified. Only modified pages of data and stack are copied
I vfork() system call

I used only if a call to exec exec() is to be made in a short time
I Child process borrows parent process’ space address until a call to

exec() or exit() is made. At this moment the parent process is
awaken and returned its address space

I Nothing gets copied
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Process life cycle in UNIX exec

Executing programs: exec()
I An already created process executes a program; its address

space is replaced by that of the program to be executed
I If the program was created by vfork(), exec() returns the address

space to the parent process
I If the program was created by fork(), exec() releases the address

space
I A new address space is created and loaded with the new

programs
I When exec() ends, execution starts and the new program’s first

instruction
I exec() DOES NOT CREATE a new process. The process is the

same: same pid, same proc structure, same u_area, . . .
I If the program to be executed has the adequate mode (setuid

and/or setgid bits), exec() changes the efective and saved user
and/or group credentials of the process calling exec to that of the
executable file uid and/or gid
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Process life cycle in UNIX exec

Executingprograms: exec()

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execv(const char *path, char *const argv[]);

int execlp(const char *file, const char *arg, ...);

int execvp(const char *file, char *const argv[])

int execle(const char *path, const char *arg, ...
char *const envp[])

int execve(const char *path, char *const argv[],
char *const envp[]);
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Process life cycle in UNIX exec

Tasks performed by exec() I

1. Get executable file from path (namei)

2. Check for execute access

3. Inspect file header an check it is a valid executable

I If its a text file starting with !#, call the interpreter and pass the file
as argument

4. If the bits setuid and/or setgid are set (–s—— or —–s—) change the
efecctive (and saved) uid or gid of the process

5. Save environment and arguments to exec() in kernel space (user space
is being discarded)

6. Allocate new swap space (data and stack)

7. Release address space (if the process was created by vfork() return it to
the parent process)
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Process life cycle in UNIX exec

Tasks performed by exec() II

8. Allocate a new address space. If the code is already in use, share it, if
not, load it from the executable file.

9. Copy environment variables and arguments to exec() into new user stack

10. Restore signal handlers to the default action

11. Initialize hardware context, all registers to 0, except Program Counter, to
entry point of program
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Process life cycle in UNIX exit()

Terminating a process: exit()

I A process can end using the exit() system call
I exit() performs the following tasks

I Deactivate all signals
I close all process’s open files
I free from Vnode Table vnodes of the code file, control terminal, root

directory and current working directory (iput)
I Save resource usage statistics and exit state into proc structure
I Change process state to SZOMB and place proc structure into

zombie list
I Make init inherit all of process’s children processes
I Deallocate address space, u_area, and swap space . . .
I Send SIGCHLD to parent process (usually ignored)
I If parent is waiting for child process then awake parent process
I Call swtch to initiate context switch

I IMPORTANT: as proc structure is not deallocated, the process
still sxists, although in zombie state
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Process life cycle in UNIX Waiting for a child to end

Waiting for a child process to end: wait() system calls

I If a process needs to know how a child process has terminated, it
can use one of wait() system calls
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *stat_loc);

/*POSIX.1*/
pid_t waitpid(pid_t pid, int *stat_loc, int options);

/*BSD*/
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
pid_t wait3(int *statusp, int options,

struct rusage *rusage);
pid_t wait4(pid_t pid, int *statusp, int options,

struct rusage *rusage);

/*System VR4*/
#include <wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
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Process life cycle in UNIX Waiting for a child to end

Waiting for a child process to end: wait() system calls

I wait() Checks whether a child process has ended
I If it has, wait() returns inmediately
I If it has not, the process calling wait() waits until any of its children

processes has ended
I The exit value that the child process passed to exit() is transfered

to the variable wait uses as parameter
I Deallocates child processes’s proc structure
I Reurns pid of the child process that has ended
I waitpid(), waitid(), wait3 y wait4() do admit options

I WNOHANG Does not wait for the child process to end
I WUNTRACED In addition to reporting ending processes, stopping

of a child process is also reported
I WCONTINUED In addition to reporting ending processes,

continuing of a stopped child process is also reported (in linux, only
from kernel 2.6.10 on)

I WNOWAIT Does not deallocate child process’sproc structure
(solaris)
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Process life cycle in UNIX Waiting for a child to end

Waiting for a child process to end: wait() system calls

I proc structure is not deallocated until one of the wait() system
calls is used

I Creation of zombie processes can be avoided using flag
SA_NOCLDWAIT in sigaction for the SIGCHLD signal.

I Should that be the case wait() would return -1 setting errno to
ECHILD
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Process life cycle in UNIX Waiting for a child to end

Waiting for a child process to end: wait() system calls

I Value obtained with stat_loc in wait (int * stat_loc) is interpreted
as follows
I If child process terminated normally calling exit()

I 8 least significative bits are 0
I 8 more significative bits are the 8 less significative bits of argument

passed to exit()
I If child process was terminated by a signal

I 8 more significative bits are 0
I 8 least significative bits contain the signal number

I If the process was stopped
I 8 least significative bits contain WSTOPFLG
I 8 more significative bits contain the number of the signal that stopped

the processs

Processes 116 / 292



Process life cycle in UNIX Waiting for a child to end

Waiting for a child process to end: wait() system calls

To determine the meaning of the value obtained with wait(), there exist
the following macros:

#include <sys/types.h>
#include <sys/wait.h>

WIFEXITED(status)
WEXITSTATUS(status)

WIFSIGNALED(status)
WTERMSIG(status)

WIFSTOPPED(status)
WSTOPSIG(status)

WIFCONTINUED(status)
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CPU Scheduling

CPU Scheduling
I In a multiprogrammed O.S. several processes and/or threads

compete for CPU.

I Each process is formed by a sucession of CPU ad I/O bursts.

I Each process starts and ends with a CPU burst
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CPU Scheduling

CPU Scheduling

I The (scheduler) es the part of the O.S. which decides which
process (among the runnable processes) obtains the CPU.

I There are two kinds of scheduling algorithms.
I non-preemptive algorithms: The currently running process stays in

the CPU until it ends its CPU burst (voluntarily relinquishing the
CPU: start of an I/O operation, wait for a child to terminate,
terminating . . . )

I preemptive algorithms: The scheduler can move out from the CPU
the currently running process before it ends its CPU burst
(preemption)
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CPU Scheduling

Types of scheduler

I short term scheduler: Decides which process enters the CPU
among the runnable processes

I medium term scheduler: In swapping systems: decides which
swapped out processes will be swapped in

I long term scheduler: in batch systems. Decides which
process(es) in the spool device will be loaded into main memory.
It controls the degree of multiprogramming
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CPU Scheduling

Scheduler goals

I the goals of a scheduler will vary depending on the environment it
is used:
I Batch environments: Typically non-preemptive scheduling. long

term scheduler sometimes refered to as job scheduler. It decides
the order in which the jobs are processed and the degree of
multiprogramming. It’s main goal is to be efficient and have great
throughput

I Interactive environments such as graphical systems, servers.
Preemptive scheduling, usually time sharing is used. Its main goal
is to give at least some CPU to all processes in a timely manner

I Real time environments: Some processes in the system have very
specific time constraints that need to be met. Typically priority
based scheduling is used and those processes with special needs
are assigned the greatest priorities in the system
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CPU Scheduling

Typical scheduler goals

I In every system the scheduler has to provide
I fairness: every process has to get a fair (or reasonable) share of

the CPU.

I Policy: meet a certain criteria previously stablished.

I Balance: Different parts of the system share similar workloads.

I Batch Systems:
I Throughput: Number of jobs per time unit. We try to maximize it

I Turnaround time: Time elapsed since the submitting of a job and its
ending. We try to minimize it.

I CPU usage rate: We try to keep the CPU busy all the time.
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CPU Scheduling

Typical scheduler goals

I Time Sharing:
I Response time: Time elapsed since the user submits something for

execution until it produces some response.

I Proportionality: Keep user expectations (simple tasks=small
response time).

I Maximize the number of active interactive clients.

I Real Time:
I Reliability: avoid data loss; react before time limit, etc.

I Predictability
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

I Try to determine which scheduling algorithm works best on a
given system

I Goals vary depending on the type of system.
I There are three methods to evaluate how an algorithm behaves

on a given system
I Analytical methods (both deterministic and non deterministic)
I Simulation
I Implantation
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CPU Scheduling Scheduling Evaluation

Time measurement

I Turnaround time (tR) = time elapsed since the process is initiated
(Ti) until it ends (Tf ).

tR
def
= Tf − Ti

It includes:
I Time to be loaded into main memory
I Time in the ready to run queue
I Time executing in CPU tCPU
I Time blocked on I/O tI/O

I Waiting time (tW ) is the time obtained substracting from the
turnaround time the time in CPU and the time in i/o,
tE

def
= tR − tCPU − tI/O.
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CPU Scheduling Scheduling Evaluation

Time measurement

I Service time (tS) = Is the time the process would need if it were
the only process in the system and it didn’t need to be loaded into
main memory. That’s to say the turnaround time minus the waiting
time.

tS
def
= tR − tE = tCPU + tI/O

I Service index (i)

iS
def
= tS/tR
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CPU Scheduling Scheduling Evaluation

Time measurement

An example . . .

I Turnaround time: tR = Tf − Ti = 52− 0 = 52

I CPU time: tCPU = 10 + 5 + 6 = 21

I I/O time: tI/O = 7 + 4 = 11

I Service time: tS = tCPU + tI/O = 32

I Waiting time: tE = tR − tS = 52− 32 = 20

I Service index: iS = 32/52 = 0.615
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

Deterministic Models
I We take a sample workload and evaluate how the system

behaves. Important: the workload must be representative.

I We use some of the time measurements to assess th algorithm’s
peformance (for example. mean turnaround time, throughput, etc).

I Pros: Simple. It yields exact measurements.

I Cons: Misleading results if the workload is not correctly selected.
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

Nondeterministic models (queuing theory)
I On many systems, the arrival time and length of the jobs connot

be predicted, so it is not possible to use a deterministic model.

I We use probability distribution functions to model the CPU bursts
and arrival times for the jobs in the system.

I With those two distributions we can estimate the mean values of
throughput, turaround time, waitting time . . . .
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

Nondeterministic Models (queuing theory)
I The computer system is described as a series of “servers”. Each

server has a queue of waiting jobs. The CPU is a server for its
ready to run processes list. The same stands for each i/o device.

I If we know the rate at which new processes arrive and how long
they are, we can calculate each server usage, mean value for the
length of each of the servers queues . . . .
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

Simulation
I Another option is to simulate the system behaviour.

I Data for processes are either ramdomly generated or sampled
from a real system.

I This method gives a real glimpse on how an scheduling algorithm
actually performs.

I High computing cost (getting the data, simulation times,
meassurements, etc).
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CPU Scheduling Scheduling Evaluation

Scheduling Evaluation

Implantation
I The algorithm is implemented on a running system to be evaluated

I Data obtained correspond to actual processes in a real system.

I The mere implatation of some specific algorithm in a running
system can condition user behaviour so that the results thus
obtained may be not as authentic as they should
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CPU Scheduling Scheduling Algorithms

Non preemptive: FCFS

First-Come-First-Served (FCFS):

Advantages:
I Easy to implement. A FIFO queue is enough
I fair
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CPU Scheduling Scheduling Algorithms

Non preemptive: FCFS

Algorithm First-Come-First-Served (FCFS)
I Drawback: risk of low throughput; “convoy” effect

I Example: one CPU bound process and many i/o bound
processes.
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CPU Scheduling Scheduling Algorithms

Non preemptive: SJF

Algorithm Shortest Job First (SJF).

I Only theoretical usage, it needs to know beforehand the length of
the CPU burts.

I Produces the shortests turnaround times with various processes
arriving simultaneously.

I When two CPU bursts are the same length FCFS is used.
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CPU Scheduling Scheduling Algorithms

Non preemptive: SJF

Algorithm Shortest Job First (SJF): Example.
I We have 4 processes with respective CPU bursts 8, 4, 4 y 4 ms.

Using FCFS: 8 4 4 4

I Turnaroud times are P1: 8, P2: 8 + 4 = 12, P3: 12 + 4 = 16, P4:
16 + 4 = 20.

I Mean value of turnaround time: (8 + 12 + 16 + 20)/4 = 14

Using SJF 4 4 4 8
I Mean value of turnaround time: (4 + 8 + 12 + 20)/4 = 11

I It can be proved that this algotithm produces the best possible
results. Example: with times a,b, c,d , the mean value for the
return time is (4 · a + 3 · b + 2 · c + d)/4. Clearly it improves if a is
the shortest, b is the next shortest . . . .
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CPU Scheduling Scheduling Algorithms

Non preemptive: SJF

Shortest Job First (SJF)
I When processes appear at different times its doesn’t neccessarily

produce the, best results. Check the following example

Proccess CPU burst Arrival time
A 2 0
B 4 0
C 1 3
D 1 3
E 1 3

I Compute mean turnaround time for SJF with processes arriving in
the order: B,C,D,E,A.
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CPU Scheduling Scheduling Algorithms

Non preemptive: SJF

Shortest Process Next
I SJF is usually implemented estimating the next CPU burt from the

previous ones

τn+1 = α · tn + (1− α) · τn

where:

τn+1 = estimated value
tn = last burst
τn = previous estimated value
α ∈ [0,1] adjustement factor
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Non preemptive: Priorities

Prioirity scheduling
I SJF is just an example of prioirity scheduling.

I Priority scheduling can be both preemptive and non preemptive.
In non preemptive priority scheduling, when the process in CPU
voluntarily relinquishes CPU, the scheduler selects the highest
priority process among all ready to run processes

Definition (Priority)

Priority is a numeric value used to decide whether a process gets to
use CPU before other processes.

I Depending on the system, higher numbers may represent higher
or lower priorities

I The range of the numeric values also depends on the system
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Non preemptive; Priorities

Depending on how they are assigned, priorities can be
I Internal: Assigned by the O.S. from information on the processes:

CPU and memory usage, open files, i/o bursts . . . .

I External: Assigned to de processes by the users or de System
Administrator.

I Mixed: Combination of internal and external
Priorities can also be considered
I static: The priority of a process does not change (unless the

system administrator or some user explicitly changes it)

I dynamic: The system recalculates (periodically or not) the
processes’ priorities
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Non preemptive: Priorities

I Main drawback: starvation: A process with low priority waits
forever.

I Usually solved with dynamic priorities. Two examples:
I Use as priority q/tCPU where tCPU was the last CPU burst.
I Aging: Priority of a process increases as time goes by without the

process getting to use the CPU.
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Preemptive: priorities

Preemptive priority scheduling
I Similar to the non preemptive priorities algorithm

I When a process with higher priority than the one in CPU becomes
ready, it takes the CPU from the one using it, which goes into the
preempted state (ready to run).

I Previous classification (internal, external, static . . . ) also applies.

I Performance of this scheduling algorithm depends, as on the
previous case, on how priorities are assigned
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Preemptive: SRTF

Shortest Remaining Time First (SRTF)
I It is the preemptive implementation of SJF.

I Every time new jobs appear ready, their CPU bursts are compared
with the remaining time of the one in CPU.

I If one of the new jobs has a CPU burts shorter than the remaining
time of the one in CPU, the new job gets the CPU.

I Again, we assume we know the CPU bursts beforehand. A real
implementation must estimate them.
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Preemptive: RR

Round-Robin (RR)
I each process has a time limit in its CPU time called quantum (q).

I Ready to run processes are organiced in a FIFO queue.
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Preemptive: RR

Round-Robin (RR)
I If A is executing and reaches the quantum⇒ a context switch

occurs.

I The first process in the ready to run queue gets the CPU and A
entes the queue (last).

I A timer (clock interrupt) takes care of waking up the scheduler.
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Preemptive: RR

Algorithm Round-Robin (RR)
I Advantages: easy to implement. Fairness: every process gets its

slice of CPU time.
I Drawback: finding the right q value

I Smaller q values cause many context switches: loss of time.

I Too larger a q value, and the algorithm degenerates into FCFS.

I It has been found that when ≈ 80% of the CPU bursts are lower
than q, the algorithm yields the best results . Tipycal value
20 ms ≤ q ≤ 50 ms.
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Preemptive: Multilevel Queue

Multilevel Queue
I It’s an evolution from the priority scheduling.

I We have one queue for each priority level. Each queue can have
its own scheduling algorithm.

I Moreover, to avoid starvation, dynamic priorities are used,
allowing for a change of queue.
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Preemtive: Multilevel Queues

Multilevel Queues
Example
I Higher priorities for system processes, interactive foreground

processes, or I/O bound processes. RR.

I Lower priorities for non interactive background processes. FCFS.

I Another example: two queues and we split the time between
queues (ex. 80% for RR y 20% for the FCFS queue).
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Real time scheduling
I On real time systems, time is of critical importance.

I One or more physical devices generates stimuli and the system
must react to them within limited time.

I Example (old): a CD player reads data from the media which must

converted into music within limited time.

I It it is not done properly: quality loss or wierd sounds.
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Real time scheduling

I Hard real time: All time limits MUST be met

I Soft real time: missing one hit, thougt not desirable, is tolerable.

I A program is usually divided into short and predictable bursts
whose duration is known in advance.

I The scheduler must organize the processes so the time limits are
met.

I On a real time system we distinguish between these two kinds of
events
I Periodical: occur at regular intervals
I Non periodical: happen unpredictably.
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Real time scheduling
I A real time system may have to respond to several periodical

event streams. If each event requieres too much processing it can
becomme unmanageable.

I Let’s think of 1, . . . ,m periodical event streams, and for each
stream i :

Pi = period at which the event occurs
Ci = CPU time needed to process the event

Definition (Schedulable real time system)

We define a real time system with m streams to be schedulable if it
satisfies:

m∑
i=1

Ci

Pi
≤ 1

Processes 152 / 292



CPU Scheduling Real time scheduling

Real time scheduling

I Example: 3 streams with periods P1 = 100, P2 = 200 y P3 = 500
and CPU consumptions of C1 = 50, C2 = 30 y C3 = 100
(everything is in ms).

I the sum is 0,5 + 0,15 + 0,2 < 1. which makes the system
schedulable

I If we were to have another stream with period P4 = 1000. What is
the maximum value of its CPU consumption C4 to keep the
system schedulable ?
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Thread scheduling

I A thread can be defined as the basic unit of CPU usage.

I Every process has at least one thread. If it has more than one
thread it con perform several tasks concurrently.

I The difference between a process with several (threads) and
various processes, is that threads in the same process share the
same address space
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Thread scheduling

I Threads inside a process share: code segment, data segment,
resources (open files, signals . . . ).

I For each thread: identifier, program counter, registers, stack.
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Thread scheduling
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Thread scheduling

Advantages
I higher response capability: if one thread blocks, other threads can

continue to execute.

I There may be several threads sharing the same resources
(memory, files . . . ).

I less expensive than creating processes. Context switch is also
lighter.

I Can take advantage of multiprocessor architectures.
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Thread scheduling

I We can think of scheduling at two levels: processes and threads.

I A process scheduler chooses a process. Then a thread scheduler
chooses the thread.

I There’s no preemption among threads. If a thread uses up all the
quantum another process is selected. When it returns to CPU the
same thread will continue.

I If the thread does not use all the quantum, the thread scheduler
can select another thread inside the same process.
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Multiprocessor Scheduling

I Scheduling gets more complicated when we have several
processors .

I Assigning different sized jobs to several processors in a optimal
way is a combinatory problem (NP complexity).

I They are usualy multithreaded as well.

I Asymmetric Multiprocessing: One processor is in charge, the
others just execute the processes they are assigned.

I Symmetric Multiprocessing: Each processor has its own
scheduling. Sometimes they share the ready to run queue, in this
case extra care must be taken that one process doesn’t end up in
more than one processor.
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Multiprocessor Scheduling

I Even when we have several identical cores (or processors), not all
of the are equally convinient for a given thread.

I If thread A has been executing longer in CPU1, its cache will be
filled with data from A. We call this affinity.

I Affinity algorithms work at two levels:
1. First they assign a group of threads to each processor
2. Then they make the internal scheduling for each CPU

I Advantage: greatest cache affinity. Possible drawback: leave
some CPU idle.

Processes 160 / 292



CPU Scheduling Multiprocessor Scheduling

Multiprocessor Scheduling

I Load balancing: we try to keep the activity balanced among the
different CPUs.

I Forced migration: the work load of the processors is checked
periodically and a migration of processes is imposed when there’s
a need to balance the work loads.

I Requested migration: an idle processor extracts a process from
another processor’s queue.
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Unix process scheduling

Processes

Processes in UNIX

Data structures

Data structures in UNIX

Process life cycle

Process life cycle in UNIX

CPU Scheduling

Unix process scheduling
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Traditional unix scheduling

I Preemptive priorities recalculated dynamically
I Always is run the process with the highest priority
I Smaller numbers indicate greater priorities
I Priority of a process decreases as the process uses CPU
I Priority of a process increases as it spends time in the ready to run

queue
I When a process with higher priority than the one in CPU appears

ready, in preempts the one in CPU (which goes into the ready to
run state),unless the one in CPU is running in kernel mode, in
which case it will be preempted when it returns to user mode
(unless it blocks or ends)

I Processes of the same priority share the CPU in round robin.
I user mode priority is recalculated attending to

I nice factor: controlled by the nice() system call
I CPU usage: higher CPU usage (recent) means lower priority

Processes 163 / 292



Unix process scheduling Traditional scheduling

Traditional unix scheduling

I The procstructure has the following members related to priority
recalculation:

p_cpu cpu usage for the purpose of priority recalculation
p_nice nice

p_usrpri user mode priority, recalculated periodically from cpu usage and
nice factor nice

p_pri process priority, this is the one used for scheduling
I When the process runs in user mode p_pri is identical to

p_usrpri
I After a process has blocked, when it is awaken, p_pri is asigned

a value depending on the reason the process was bocked. It is
called a kernel priority or sleep priority
I This kernel priorities are smaller numbers thus higher priorities than

user mode priorities p_usrpri
I The goal is to make processes complete the system calls faster
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Traditional unix scheduling
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Recalulation of user mode priorities

I Every clock tic, the handler increments p_cpu of the currently
running process

I Every second, the routine shedcpu()
1. adjusts p_cpu using

I BSD: p_cpu = 2∗systemload
2∗systemload+1 ∗ p_cpu

I System V R3: p_cpu = p_cpu
2

2. and then it recalculates the user mode priorities
I BSD: p_usrpri = PUSER + p_cpu

4 + 2 ∗ p_nice
I System V R3: p_usrpri = PUSER + p_cpu

2 + p_nice

I PUSER is a number added, so that the user mode priorities are
lower (represented by higher numbers) than the kernel priorities
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Example of scheduling in SVR3
I In this example, the clock tic happens 60 times per second,

PUSER is 40, and the three processes in the example have a
value of 20 as p_nice.
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Traditional unix scheduling: Implementation

I Is implemented as a array of multilevel queues
I Usually 32 queues. Each of them with several adjacent priorities
I After recalculating its priority, a process is moved to the

appropiate queue
I swtch() just loads the first process of the first non empty queue
I Each 100ms the roundrobin() routine changes to the next process

in the same queue
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Traditional unix scheduling: Implementation
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Traditional unix scheduling: Context switch

Theres a context switch when
a Currently running process blocks or ends
b A as result of priority recalculation there appears ready a process

with higher priority than the currently running process
c An interrupt handler (or the currently running process) wakes up

(unblocks) a higher priority process
a voluntary context switch. swtch() is called from sleep() o exit()

b,c involuntary, context switch, it happens in kernel mode: the kernel
uses a flag (runrun) to indicate that a context switch should be done
(by calling swtch()) when returning to user mode
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Traditional unix scheduling: shortcommings

This kind of scheduling has the following shortcommings
I It does not scale well
I There’s no means to guarantee a certain amount of CPU to a

process (or group of processes)
I There’s no guarantee on the response time
I Posibility of priority inversion
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Priority inversion

I priority inversion is an anomaly, present in some scheduling
implementations where a lower priority process prevents a higher
priority from using the CPU. Example
I P1 Very low priority process, has allocated a resource
I P2 Higher priority process, blocked on the resource allocated to P1
I P3 Low priority process, higher than P1 and lower than P2
I As P2 is blocked, the higher runnable process is P3, which gets

CPU before P2, which is a higher priority process, but P2 is blocked
until P1 releases the resource, which dependes on P1 getting the
CPU. But this won’t happen as P1 is lower priority than P3. As a
result: P2 is in fact waiting for P3

I The way to avoid this situation is by priority inheritance. In this
case, as P1 holds a resource that blocks P2, P1 would inherit P2’s
priority while holding that resource.
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System V R4 scheduling

I It includes real time applications
I It separates scheduling policy from implementation mechanisms
I New scheduling policies can be implemented
I It limits applications latency
I Priorities can be "inherited" to avoid priority inversion
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System V R4 scheduling

Some Scheduling classes are defined and they determine the policies
applied to the processes belonging to them
I Class independent routines

I Queue manipulation
I Context switch
I Preemption

I Class dependent routines
I Priority recalculation
I Inheritance
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System V R4 scheduling

I Priorities range from 0 to 159: the higher the number the higher
the priority
I 0-59 time sharing class
I 60-99 system priority
I 100-159 real time

I In the proc structure
p_cid class identifier

p_clfuncs pointer to class functions
p_clproc pointer to class dependent data

I Is implemented as an array of multilevel queues
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System V R4 scheduling: Implementation
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System V R4 scheduling

I Several predefined classes
I clase time sharing
I clase system
I clase real time

Sample listing of classes available on a running system

%dispadmin -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)
IA (Interactive)
RT (Real Time)
%
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System V R4 scheduling: time sharing class

I User mode priorities are recalculated dynamically
I When a process blocks it is assigned a sleep priority depending

on the reason it blocked. When it returns to user mode, its user
mode priority is used

I Quantum depends on priority: higher priority⇒ shorter quantum
I ONLY the process leaving the CPU gets its priority recalculated

I used up all of its quantum: Its user mode priority gets lower
I blocked before using all of its quantum: its priority raises
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System V R4 scheduling: time sharing class

I Class dependent data
I ts_timeleft remaining time of quantum
I ts_cpupri part of the user mode priority imposed by the system

(what gets actually recalculated)
I ts_upri part of the user mode priority assigned by the user (with

the priocntl() system call)
I ts_umdpri user mode priority (ts_cpupri +ts_upri)
I ts_dispwait seconds elapsed since the process started its

quantum
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System V R4 scheduling: time sharing class

I The system has a table that relates quantum, priorities and how
the priorities get recalculated (ts_cpupri)

I items in that table are
quantum time quantum corresponding to each priority level
slpret new ts_cpupri if the quantum is not expired (process blocks

before expiring time quantum)
tqexp new ts_cpupri if quantum expires

maxwait seconds form the quantum start to use lwait as new cpupri
lwait new cpupri if more than maxwait elapsed since the start of its

quantum
pri priority, used both to relate umdpri with the quantum and to

recalculate cpupri
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System V R4 scheduling: time sharing class. TS class scheduling table

bash-2.05$ dispadmin -c TS -g
# Time Sharing Dispatcher Configuration
RES=1000
# ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL

200 0 50 0 50 # 0
200 0 50 0 50 # 1
200 0 50 0 50 # 2
200 0 50 0 50 # 3
200 0 50 0 50 # 4
200 0 50 0 50 # 5
200 0 50 0 50 # 6
200 0 50 0 50 # 7
200 0 50 0 50 # 8
200 0 50 0 50 # 9
160 0 51 0 51 # 10
160 1 51 0 51 # 11
160 2 51 0 51 # 12
160 3 51 0 51 # 13
160 4 51 0 51 # 14
160 5 51 0 51 # 15
160 6 51 0 51 # 16
160 7 51 0 51 # 17
160 8 51 0 51 # 18
160 9 51 0 51 # 19
120 10 52 0 52 # 20
120 11 52 0 52 # 21
120 12 52 0 52 # 22
120 13 52 0 52 # 23
120 14 52 0 52 # 24
120 15 52 0 52 # 25
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System V R4 scheduling: time sharing class. TS class scheduling table

120 16 52 0 52 # 26
120 17 52 0 52 # 27
120 18 52 0 52 # 28
120 19 52 0 52 # 29
80 20 53 0 53 # 30
80 21 53 0 53 # 31
80 22 53 0 53 # 32
80 23 53 0 53 # 33
80 24 53 0 53 # 34
80 25 54 0 54 # 35
80 27 54 0 54 # 37
80 28 54 0 54 # 38
80 29 54 0 54 # 39
40 30 55 0 55 # 40
40 31 55 0 55 # 41
40 32 55 0 55 # 42
40 33 55 0 55 # 43
40 34 55 0 55 # 44
40 35 56 0 56 # 45
40 36 57 0 57 # 46
40 37 58 0 58 # 47
40 38 58 0 58 # 48
40 39 58 0 59 # 49
40 40 58 0 59 # 50
40 41 58 0 59 # 51
40 42 58 0 59 # 52
40 43 58 0 59 # 53
40 44 58 0 59 # 54
40 45 58 0 59 # 55
40 46 58 0 59 # 56
40 47 58 0 59 # 57
40 48 58 0 59 # 58
20 49 59 32000 59 # 59

bash-2.05$
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Example of scheduling in the time sharing class

I Lets consider a process with ts_upri=3 and ts_cpupri=5
I Its user mode priority is ts_umdpri=ts_upri + ts_cpupri= 3+5=8
I When it gets to the CPU it would get a quantum de 200ms
I If the process uses up all of its quantum ts_cpupri would be

assigned a value 0. Its user mode priority would be in this case 3,
which gets a quantum of 200

I If the process does not use all of its quantum, ts_cpupri would be
reevaluated to 50 and its new user mode priority would be 53,
which gets a quantum of 40
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Planificación en System V R4: real time class

I Uses priorities 100-159
I Fixed priorities and quantums. Can only be changed with the

priocntl() system call
I kernel maintains a table with the corresponding time quantums for

each priority (although they can be changed with the priocntl()
system call)

I the higher the priority, the shorter the default quantum
I after using up its quantum, the process returns to the same queue

(at the end)
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Planificación en System V R4: real time class

To make real time processes compatibles with non preemptible
kernels:
I When a process is running in kernel mode, and a real time

process appears ready, it cannot preempt inmediately (kernel
might not be in a consistent state). The real time process will get
the CPU when the current running process
I blocks
I returns to user mode
I reaches a preemption point

I A realtime process ready is indicated by the flag kprunrun
I A preemption point is a point inside kernel code where its safe to

preempt (kernel data are in a consistent state) so the kprunrun is
checked and context switch is initiated if needed

I Solaris uses fully preemptible kernel (all kernel data structures are
protected by semaphores) son no preemption points are
necessary
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System V R4 scheduling: real time class. RT class scheduling table

bash-2.05$ dispadmin -c RT -g
# Real Time Dispatcher Configuration
RES=1000

# TIME QUANTUM PRIORITY
# (rt_quantum) LEVEL

1000 # 0
1000 # 1
1000 # 2
1000 # 3
1000 # 4
1000 # 5
1000 # 6
1000 # 7
1000 # 8
1000 # 9
800 # 10
800 # 11
800 # 12
800 # 13
800 # 14
800 # 15
800 # 16
800 # 17
800 # 18
800 # 19
600 # 20
600 # 21
600 # 22
600 # 23
600 # 24
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System V R4 scheduling: real time class. RT class scheduling table

600 # 26
600 # 27
600 # 28
600 # 29
400 # 30
400 # 31
400 # 32
400 # 33
400 # 34
400 # 35
400 # 36
400 # 37
400 # 38
400 # 39
200 # 40
200 # 41
200 # 42
200 # 43
200 # 44
200 # 45
200 # 46
200 # 47
200 # 48
200 # 49
100 # 50
100 # 51
100 # 52
100 # 53
100 # 54
100 # 55
100 # 56
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System V R4 scheduling: system class

I Not accesible in all installations
I Used for special system processes such as pageout, sched or

fsflush
I Fixed priorities
I In the 60-99 range

bash-2.05$ ps -lp 0,1,2
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
19 T 0 0 0 0 0 SY ? 0 ? 0:01 sched
8 S 0 1 0 0 41 20 ? 98 ? ? 0:00 init
19 S 0 2 0 0 0 SY ? 0 ? ? 0:00 pageout
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Linux scheduling

I Linux distinguishes between two types of processes
I Real time processes: Fixed static priority between 1 y 99. Its

priority doesn’t change and the higher priority runnable process
gets the CPU. Two kinds of real time processes; RR and FIFO

I Normal processes: correspond to a static rpiority of 0. They
execute if no real time process is ready to run. For them a
preemptive dynamic priority algorithm is used. The system
recalculates their priorities and quantums according to the values
specified by nice and/or setpriority.
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Linux scheduling

I CPU scheduling is done for time intervals called epochs
I For each epoch every process has its time slice depending on its

priority
I The system has a runqueue for each processor and each process

can only be in one runqueue at a time
I Each runqueue has two structures: the active array and the

expired array. Each array has a process queue for each priority
level

I When a process uses up all of its slice, it slice gets recalculated
and the process is moved to the expired array. When all
processes have used up all of their slices the expired array
becomes active array

I A array of bits indicates the non empty queues
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Array de colas en linux
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system calls for priority management

I In unix there exist several system calls and library functions to
control process priorities

I Not all calls are available in every system
I nice()
I setpriority() y getpriority()
I rtprio(). Specific to some BSD systems
I priocntl(). Specific to System V R4
I POSIX: sched_setscheduler(), sched_getscheduler(),. . .
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Unix scheduling: nice()

I Avalilable in all systems: nice()
#include <unistd.h>
int nice(int incr);

I Changes the niceness of the calling process. For traditional unix
systems that is the p_nice factor

I It takes the nice increment as its argument
I return the niceness minus 20. niceness is a number between 0

and 40. The call returns a number between -20 (maximun priority)
and 20
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Unix scheduling: getpriority() y setpriority()

getpriority() and setpriority()

#include <sys/resource.h>
int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int priority);

I Available in almost every system
I They change the same scheduling parameters as the nice system

call
I Better interface to priority than nice(), as a process, with the right

credentials, can check and/or modify other processes’ priorities
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Unix scheduling: rtprio

rtprio

#include <sys/types.h>
#include <sys/rtprio.h>

int rtprio(int function, pid_t pid, struct rtprio *rtp);
func:RTP_LOOKUP

RTP_SET

struct rtprio {
ushort type;
ushort prio;
}

type:RTP_PRIO_REALTIME
RTP_PRIO_NORMAL
RTP_PRIO_IDLE

prio:0..RTP_PRIO_MAX
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Unix scheduling: rtprio

rtprio
I Available in HP/UX and some BSD system (freeBSD, dragonfly ..)
I RTP_PRIO_REALTIME processes have static priorities higher

than other processes in the system
I RTP_PRIO_NORMAL processes have dynamic priorities that get

recalculated attending to the nice factor and CPU usage
I RTP_PRIO_IDLE processes have static priorities LOWER than

other processes in the system
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Unix scheduling: priocntl()

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
long priocntl(idtype_t idtype, id_t id, int cmd, /*arg */...);
/*idtype:*/
P_PID, /* A process identifier. */
P_PPID, /* A parent process identifier. */
P_PGID, /* A process group (job control group) */

/* identifier. */
P_SID, /* A session identifier. */
P_CID, /* A scheduling class identifier. */
P_UID, /* A user identifier. */
P_GID, /* A group identifier. */
P_ALL, /* All processes. */
P_LWPID /* An LWP identifier. */
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Unix scheduling: priocntl()

cmd

PC_GETCID
PC_GETCLINFO
PC_SETPARMS
PC_GETPARMS
PC_GETCID and PC_GETCLINFO parameters
typedef struct pcinfo {
id_t pc_cid; /* class id */
char pc_clname[PC_CLNMSZ]; /* class name */
int pc_clinfo[PC_CLINFOSZ]; /* class information */

} pcinfo_t;

typedef struct tsinfo {
pri_t ts_maxupri; /*configured limits of priority range*/
} tsinfo_t;
typedef struct rtinfo {
pri_t rt_maxpri; /* maximum configured rt priority */
} rtinfo_t;
typedef struct iainfo {
pri_t ia_maxupri; /* configured limits of user priority range */
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Unix scheduling: priocntl()
PC_GETPARMS and PC_SETPARMS parameters
typedef struct pcparms {
id_t pc_cid; /* process class */
int pc_clparms[PC_CLPARMSZ];/*class parameters */

} pcparms_t;

typedef struct tsparms {
pri_t ts_uprilim; /* user priority limit */
pri_t ts_upri; /* user priority */

} tsparms_t;

typedef struct rtparms {
pri_t rt_pri; /* real-time priority */
uint_t rt_tqsecs; /* seconds in time quantum */
int rt_tqnsecs;/*additional nanosecs in time quant */

} rtparms_t;
typedef struct iaparms {

pri_t ia_uprilim; /* user priority limit */
pri_t ia_upri; /* user priority */
int ia_mode; /* interactive on/off */
int ia_nice; /* present nice value */

} iaparms_t;
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Unix scheduling: POSIX calls

POSIX calls

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *p);

int sched_getscheduler(pid_t pid);

int sched_setparam(pid_t pid, const struct sched_param *p);

int sched_getparam(pid_t pid, struct sched_param *p);

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

struct sched_param {
int sched_priority;

};
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Unix scheduling: POSIX calls

I It distiguishes there scheduling policies with three different static
priorities
I SCHED_OTHER: Normal processes. They have a static priority of

0 so they only get to execute if there in no SCHED_FIFO or
SCHED_RR ready to run. They schedule using dynamic preemptive
priorities recalculated from niceness and CPU usage.

I SCHED_RR: Real time processes, static priorities, round robin
scheduling

I SCHED_FIFO: Real time processes, static priorities, FIFO
scheduling

I SCHED_BATCH: Static priority 0. Similar to SCHED_OTHER,
execpt that the system assumes they are CPU intensive

I SCHED_IDLE: Similar to the ones in BSD systems. Not available in
every installation.
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Executing in kernel mode

I These three events change the execution into kernel mode
I Device interrupt: Asynchronous to the running process. An

external device needs to communicate with the O.S. It can happen
at any time: process runing in user mode, process running in kernel
mode, even when another interrupt service routine is being run.

I Exception: Synchronous to the running process and caused by it
(division by 0, invalid addressing, illegal instruction . . . )

I System call: Synchronous to the running process. The process in
CPU explicitly ask the O.S. for something
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Executing in kernel mode

I In any of these cases, the O.S. kernel takes the control
I Saves the process context in its kernel stack
I Executes the function corresponding to the event it is dealing with
I When the routine is completed, restores the process to its previous

state (as does with the running mode)
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Executing in kernel mode: interrupt

I An interrupt can happen at any time, even if the O.S. is already
dealing with another interrupt

I Each interrupt is assigned an Interrupt Priority Level (IPL-Interrupt
Priority Level)

I When an interrupt occurs its ipl is compared with the current ipl. If
it is higher the corresponding handler is invoked, if not, execution
of its handler is postponed until ipl drops enough

I All user code and most of kernel code (except interrupt service
routines and little fragments of code in some system calls) is run
at ipl minimum

I Ipl goes from 0 to 7 in traditional unix systems and from 0 to 31 in
BSD

Processes 205 / 292



Unix Processes: Executing in kernel mode

Processes 206 / 292



Unix Processes: Executing in kernel mode

Processes 207 / 292



Unix Processes: Executing in kernel mode

Executing in kernel mode: system call

What we see is a wrapper library function (open(), read(), fork() . . . )
I library function (for example read())
I It gets its parameters in the user stack
I Pushes the service number onto the stack (or at an specific

processor register)
I It executes a special intruction (trap, chmk, int . . . ) that changes

execution into kernel mode. This instruction, besides changing
execution mode, transfers control to the system call handler
syscall()
I syscall()
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Executing in kernel mode: system call

I I syscall()
I Copies the arguments to the u_area
I Saves process context in its kernel stack
I Uses the service number as an index into an array (sysent[])

which indicates which kernel function should be called (for example
sys_read())

I function called by syscall(): f.e. sys_read()
I Is the one providing the service
I Should it have to call other functions inside the kernel, it uses the

kernel stack
I It puts the return (or error) values in the corresponding register
I Restores the process context and returns to user mode returning

control to the library function
I Returns control and values to the calling function
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System call numbers in linux

#ifndef _ASM_I386_UNISTD_H_
#define _ASM_I386_UNISTD_H_

/*
* This file contains the system call numbers.

*/

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
#define __NR_time 13
#define __NR_mknod 14
#define __NR_chmod 15
#define __NR_lchown 16
#define __NR_break 17
#define __NR_oldstat 18
#define __NR_lseek 19
#define __NR_getpid 20
#define __NR_mount 21
#define __NR_umount 22
#define __NR_setuid 23
#define __NR_getuid 24
#define __NR_stime 25
#define __NR_ptrace 26
#define __NR_alarm 27

Processes 211 / 292



Unix Processes: Executing in kernel mode

System call numbers in openBSD

/* $OpenBSD: syscall.h,v 1.53 2001/08/26 04:11:12 deraadt Exp $ */

/*
* System call numbers.

*
* DO NOT EDIT-- this file is automatically generated.

* created from; OpenBSD: syscalls.master,v 1.47 2001/06/26 19:56:52 dugsong Exp

*/
/* syscall: "syscall" ret: "int" args: "int" "..." */
#define SYS_syscall 0
/* syscall: "exit" ret: "void" args: "int" */
#define SYS_exit 1
/* syscall: "fork" ret: "int" args: */
#define SYS_fork 2
/* syscall: "read" ret: "ssize_t" args: "int" "void *" "size_t" */
#define SYS_read 3
/* syscall: "write" ret: "ssize_t" args: "int" "const void *" "size_t" */
#define SYS_write 4
/* syscall: "open" ret: "int" args: "const char *" "int" "..." */
#define SYS_open 5
/* syscall: "close" ret: "int" args: "int" */
#define SYS_close 6
/* syscall: "wait4" ret: "int" args: "int" "int *" "int" "struct rusage *" */
#define SYS_wait4 7

/* 8 is compat_43 ocreat */
/* syscall: "link" ret: "int" args: "const char *" "const char *" */
#define SYS_link 9
/* syscall: "unlink" ret: "int" args: "const char *" */
#define SYS_unlink 10

/* 11 is obsolete execv */
/* syscall: "chdir" ret: "int" args: "const char *" */
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System call numbers in solaris

/*
* Copyright (c) 1991-2001 by Sun Microsystems, Inc.

* All rights reserved.

*/
#ifndef _SYS_SYSCALL_H
#define _SYS_SYSCALL_H
#pragma ident "@(#)syscall.h 1.77 01/07/07 SMI"
#ifdef __cplusplus
extern "C" {
#endif

/*
* system call numbers

* syscall(SYS_xxxx, ...)

*/
/* syscall enumeration MUST begin with 1 */
/*
* SunOS/SPARC uses 0 for the indirect system call SYS_syscall

* but this doesn’t count because it is just another way

* to specify the real system call number.

*/
#define SYS_syscall 0
#define SYS_exit 1
#define SYS_fork 2
#define SYS_read 3
#define SYS_write 4
#define SYS_open 5
#define SYS_close 6
#define SYS_wait 7
#define SYS_creat 8
#define SYS_link 9
#define SYS_unlink 10
#define SYS_exec 11
#define SYS_chdir 12
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Executing in kernel mode: resources

I Elementary protection of kernel data: a process running in kernel
mode cannot be preempted until it returns to user mode waits or
ends

I As it can not be preempted it can manipulate kernel data without
risking to create inconsistencies

I When a process using a resource goes to sleep it must mark the
resource as busy: before using a resource a process must check
whether it is busy, it it is, it marks the resource as wanted and calls
sleep()).
I sleep() puts the process to sleep and calls swtch() to initiate the

context switch
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Executing in kernel mode: resources

I When a resource is released, it is marked as non-busy and, if it is
also maked as wanted ALL processes that are sleeping on it
(waiting for it to be marked not busy) are waken up
I wakeup() finds all processes sleeping on a resource, changes their

state to ready to run and places them in the runnable queue
I An awaken process may not be the first one to obtain the CPU, so

the first thing it has to do is to re-check if the resource is in fact
available (another process may have got it)
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Executing in kernel mode: resources

Processes 216 / 292



Unix Processes: Executing in kernel mode

Executing in kernel mode: resources

I Even though a process running in kernel mode can not be
preempted, an interrupt can occur at any time

I When accessing kernel data that might be accessed by some
interrupt service routine, that interrupt should be disabled by rising
the ipl

I Some care must be taken
I Interrupt require fast servicing: disabling time should be kept to a

minimum
I Disabling some interrupt also disables those with a lower ipl

I If we want the kernel to be fully preemptible, kernel data structures
must be protected with semaphores

I More complex mechanisms should be used in multiprocessors
systems
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Signals

I Kernel uses signals to notify processes or asynchronous events.
Examples:
I When cntrl-C is pressed, the kernel sends SIGINT
I When a communication line goes down, the kernel sends SIGHUP

I User processes can send each other signals using the kill system
call

I Processes respond to signals when they return to user mode.
Except for SIGKILL and SIGSTOP several actions are possible
I Terminate the process
I Ignore the signal: nothing is done
I User defined action: signal handler
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Signals

I Upon receiving a signal, the kernel sets a bit in the correspondent
member of the proc structure
I If the process is running in kernel mode, nothing gets done until it

returns to user mode
I If the process is blocked

I If it is an interruptible wait, the kernel interrupts the system call (which
would return -1 setting errno to EINTR), and the signal is dealt with
when the process returns to user mode

I If it is an non-interruptible wait, the signal is dealt with when the
process returns to user mode after it has completed the system call in
which it was waiting
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Signals in System V R2

I 15 available signals
I signal related system calls

I kill (pid_t pid, int sig): to send signals
I signal (int sig, void (*handler)(int)): to set a signal handler. handler

can be:
I SIG_DFL: signal default action (which is either ignore the signal or

terminate the process)
I SIG_IGN: signal is ignored (nothing is done)
I Address of the functio nwhich be called upon receiving the signal.

This function returns void , and gets an interger argument (the
number of the signal which cause its calling)

I In the process u_area there is an array, indexed by signal number,
with the signal handlers for each signal (or SIG_IGN o SIG_DFL
should the signal be ignored or at its default action)
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Signals System V R2

I Sending the signal is setting the corresponding bit in a member of
the proc structure

I When the process is about to return to user mode, if there is some
signal pending for this process, the kernel clears that bit; if the
signal si ignored nothing is done, but if there is a handler installed,
the kernel does the following :
I Creates a context layer in the user stack
I Restores the signal to its default action
I Sets PC (program counter) to the addres of the handler, so the first

thing to execute upon returning to user mode, is the signal handler,
I Signal handlers are NO PERMANENT
I If a signal arrives during the execution of its signal handler, the

current associated action is performed
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Señales en System V R2
I The following code could be interrupted by pressing Cntrl-C twice

#include <signal.h>
void manejador ()
{

printf ("Se ha pulsado control-C\n");
}
main()
{

signal (SIGINT, manejador);
while (1);

}

I To make the handler permanent we could reinstall it
#include <signal.h>
void manejador ()
{

printf ("Se ha pulsado control-C\n");
signal (SIGINT,manejador);

}
main()
{

signal (SIGINT, manejador);
while (1);

}

I The program is also terminated if we manage to press control-C
for a second time before the signal system call inside manejador
is executed
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Signals in System V R3

I System V R3 introduces reliable signals
I permanent handlers (the kernel does not restore the signal default

action once received the signal)
I the handler for a signal runs with that signal masked
I ability to mask and unmask signals
I information on signals received, masked or ignored is now in the

proc structure
I System V R3 has these new system calls

I sigset (int senal, void (*handler)(int)). Install a
handler for signal senal. This handler is permanent an cannot be
interrupted by senal

I sighold (int senal). Masks (blocks) a signal
I sigrelse (int senal). Unmasks (unblocks) a signal
I sigpause (int senal). Unmasks senal and blocks the

process until a signal is received
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Signals in BSD

I It allows to mask signals in groups (in System V R3 signals could
be masked only one at a time)

I If a system call is interrupted by a signal, it gets restarted
automatically (this behaviour is configurable with siginterrupt)

I BSD has these new system calls
I sigsetmask(int mask) Sets the set of masked signals (mask

can be manipulated with int sigmask(int signum))
I sigblock(int mask) Masks (blocks) the signals in mask
I sigpause(int mask) Sets the current signal mask and blocks

the calling process until a signal is received
I sigvec(int sig, struct sigvec *vec, struct sigvec

*ovec) Installs a handler for signal sig
I int sigstack(struct sigstack *ss, struct sigstack

*oss) Allows to specify an alternative stack for running signal
handlers.
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Signals in System V R4

I In includes previous system’s functionality
I It is standard on nowadays systems
I System calls

I int sigprocmask(int how, const sigset_t *set,
sigset_t *oldset)

I int sigaction(int signum, const struct sigaction

*act, struct sigaction *oldact)
I int sigsuspend(const sigset_t *mask)
I int sigpending(sigset_t *set)
I int sigaltstack(const stack_t *ss, stack_t *oss)
I int sigsendset(procset_t *psp, int sig)
I int sigsend(idtype_t idtype, id_t id, int sig)
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Signals in System V R4

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
I Establishes the set of a process masked (blocked) signals

depending on how
I SIG_BLOCK signals on set are added to the set of masked

(blocked) signals of the process
I SIG_UNBLOCK signals on set are removed from the set of masked

(blocked) signals of the process
I SIG_SETMASK signals on set become the set of masked (blocked)

signals of the processl
I oldset shows the previous set
I Signal sets are of type sigset_t and can be manipulated with

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signum);
int sigdelset(sigset_t *set, int signum);
int sigismember(const sigset_t *set, int signum)
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Signals in System V R4

int sigsuspend(const sigset_t *mask)
I Sets the mask of blocked signals and blocks the process until a

signal (neither blocked nor ignored) is received.
int sigpending(sigset_t *set)
I Checks whether a signal has been received

sigaltstack(const stack_t *ss, stack_t *oss)
I Allows to specify an alternate stack for the execution of handlers

int sigsendset(procset_t *psp, int sig)
int sigsend(idtype_t idtype, id_t id, int sig)
I More shophisticated than kill calls to send signals
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Signals in System V R4

int sigaction(int signum, const struct sigaction *act, struct
sigaction *oldact)
I Installs a handler for signal sig
I struct sigaction has the following members

I sa_handler SIG_DFL, SIG_IGN or the address of the signal
handler

I sa_mask signals to block DURING execution of the handler
I sd_flags tunes the handler behaviour. Bitwise OR of the following

I SA_ONSTACK handler runs on alternate stack
I SA_RESETHAND non permanet handler (signal returns to its default

action once handler is called)
I SA_NODEFER signal is not blocked during execution of its handler
I SA_RESTART if signal interrupts a system call, it is restarted

automatically
I other flags: SA_SIGINFO, SA_NOCLDWAIT, SA_NOCLDSTOP,

SA_WAITSIG
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SIgnals in System V R4
This is an infinite loop if cntrl-C is pressed within 5 seconds
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
void manejador (int s)
{

static int veces=0;
printf ("Se ha recibido la SIGINT (%d veces) en %p\n",++veces,&s);
kill (getpid(),s);

}
int InstalarManejador (int sig, int flags, void (*man)(int))
{

struct sigaction s;
sigemptyset(&s.sa_mask);
s.sa_flags=flags;
s.sa_handler=man;
return (sigaction(sig,&s,NULL));

}
main()
{

InstalarManejador (SIGINT,0, manejador);
sleep(5);

}
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Señales en System V R4
This produces a stack overflow if cntrl-C is pressed within 5 seconds
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
void manejador (int s)
{

static int veces=0;
printf ("Se ha recibido la SIGINT (%d veces) en %p\n",++veces,&s);
kill (getpid(),s);

}
int InstalarManejador (int sig, int flags, void (*man)(int))
{

struct sigaction s;
sigemptyset(&s.sa_mask);
s.sa_flags=flags;
s.sa_handler=man;
return (sigaction(sig,&s,NULL));

}
main()
{

InstalarManejador (SIGINT,SA_NODEFER, manejador);
sleep(5);

}
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Signals in System V R4: implementation

I In the u_area
I u_signal[] array of handlers
I u_sigmask[] signal mask for each handler
I u_sigaltstack alternate stack
I u_sigonstack signals that run on alternate stack
I u_oldsig[] signals with ’old’ (System V R2) behaviour
I form system V R4 u_area:

.....
k_sigset_t u_signodefer; /* signals defered when caught */
k_sigset_t u_sigonstack; /* signals taken on alternate stack */
k_sigset_t u_sigresethand; /* signals reset when caught */
k_sigset_t u_sigrestart; /* signals that restart system calls */
k_sigset_t u_sigmask[MAXSIG]; /* signals held while in catcher */
void (*u_signal[MAXSIG])(); /* Disposition of signals */
.........

Processes 233 / 292



Unix processes: Signals System V R4 signals: implementation

Signals System V R4: implementation

I In struct proc
I p_cursig signal being handled
I p_sig pending signals
I p_hold blocked signals
I p_ignore ignored signals
I from proc structure in SunOs 4.1

....
char p_cursig;
int p_sig; /* signals pending to this process */
int p_sigmask; /* current signal mask */
int p_sigignore; /* signals being ignored */
int p_sigcatch; /* signals being caught by user */
........
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Interprocess Communication

The main mechanisms to intercommunicate processes in unix are
I pipes
I shared memory
I semaphores
I message queues

Processes 236 / 292



Unix processes: Inter Process Communication pipes

Inter Process Communication: pipes

I They are temporary files created with the pipe() system call
#include <unistd.h>
int pipe(int fildes[2]);

I This call returns two file descriptors (fildes[0] and fildes[1])
I On some systems they can be both used with read and write

system calls
I On other systems however, fildes[0] is for reading and fildes[1] for

writing (historical standard)
I When the pipe is empty, read() blocks and when the pipe is full

write() blocks
I Data in the pipe are discarded as they are being read
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Inter Process Communication: shared memory

As IPC resources are shared by several processes, it becomes
necessary that different processes can refer to the same resource:
Every IPC resource in the system is identified by a number (its key).

1 First it is necessary to get a memory block (creating it or using
one already created)
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

I key: number identifying the resource on the system
I size: size of the shared memory region (some systems impose a

minimum)
I shmflg: Bitwise OR of the permissions and one or more flags
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flags on IPC resources get system calls

I Available flags are:
I IPC_CREAT
I IPC_EXCL

I Used as follows
I 0 If the resource already exists it returns an identifier, otherwise

error is returned.
I IPC_CREAT If the resource already exists it returns an identifier,

otherwise it is created and an identifier for the created resource is
returned.

I IPC_CREAT | IPC_EXCL If the resource already exists an error is
returned, otherwise it is created and an identifier for the created
resource is returned.
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Inter Process Communication: shared memory

2 Once created, to be accessible, shared memory must be placed in
the process’s address space.
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int flg);

I shmid: id returned by shmget()
I shmaddr: virtual address to place the shared memory segment

onto (NULL to get it assigned by the system)
I flg: SHM_RND, IPC_RDONLY, SHM_SHARE_MMU (Solaris)

SHM_REMAP (linux)

shmat() returns the virtual address where the shared memory can
be accessed
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Inter Process Communication: shared memory

3 when it is no longer needed shared memory can be detached
from the process address space
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(char *shmaddr);

4 There also exist a control system call, that allows, among other
things, to remove a shared memory region from the system
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
I shmid: id returned by shmget()
I cmd: action to perform: IPC_RMID, SHM_LOCK, SHM_UNLOCK,

IPC_STAT, IPC_SET . . .
I buf: information
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Inter Process Communication: shared memory

I The following function obtains a shared memory address from the
key and the size (NULL in case of some error). If the option to
create is specified the memory will be created unless it already
exists, in which case in returns an error

void * ObtenerMemoria (key_t clave, off_t tam, int crear)
{
int id;
void * p;
int flags=0666;

if (crear)
flags=flags | IPC_CREAT | IPC_EXCL;

if ((id=shmget(clave, tam, flags))==-1)
return (NULL);

if ((p=shmat(id,NULL,0))==(void*) -1){
if (crear)

shmctl(id,IPC_RMID,NULL);
return (NULL);
}

return (p);
}
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Inter Process Communication: semaphores

Semaphores are useful to sync up processes. System V IPC’s
interface provides arrays of semaphores

1 As with the shared memory, the first step is to get the resource
(either creating it or using one already created)
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

I key: number identifying the resource on the system
I nsems: number of semaphores in the array
I semflg: as the previously described shmflag
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Inter Process Communication: semaphores

2 Once created, operations can be performed on one (or more than
one) semaphores in the semaphore array
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);
I semid: id obtained with semget()
I sops: pointer to a (or some) struct sembuf, each of which

describes an operation to be performed on the array
struct sembuf {

ushort_t sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

}; /* SEM_UNDO, IPC_NOWAIT*/
I nsops: number of operations to perform
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Inter Process Communication: semaphores

3 There also exists a control system call, that allows, among other
things, to remove the resource, initialize the semaphores . . .
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);
I shmid: identifier returned by semget()
I semnum: semaphore number onto which operation is to be

performed
I cmd: action to perform : IPC_RMID, IPC_STAT, IPC_SET,

GETALL, SETALL, GETVAL, SETVAL . . .
I fourth argument: information

union semun {
int val;
struct semid_ds *buf;
ushort_t *array;
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Inter Process Communication: message queues

A message queue allows the passing of messages among processes
(much more sophisticated than a pipe)
A message is any piece of information sent together. It does not have
a predefined format.
Its first 32 bits define the type of message. The system call to receive
messages can specify the type of the message to receive.

1 As in ther IPC resources, it is first necessary to get the resouce
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

I key: number that identifies the resource on the system
I msgflg: as shmflag seen before
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Inter Process Communication: message queues

2 Once created the queue, messages can be sent and received
#include <sys/msg.h>
int msgsnd(int msqid, const void *msgp,

size_t msgsz, int msgflg);
int msgrcv(int msqid, void *msgp, size_t msgsz,

long msgtyp, int msgflg);

I msqid: id returned by msgget()
I msgp: pointer to message
I msgsz: message size (msgsnd()) or maximun number of bytes to

transfer (msgrcv())
I msgtyp: type of message to get

0 first in the queue
-n first of type less or equal than n
n first of type n

I msgflg:IPC_NOWAIT, MSG_EXCEPT (linux), MSG_NOERROR (linux)
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Inter Process Communication: message queues

3 There also exists a control system call, that allows, among other
things, to remove the resource, get information on the queue . . .
#include <sys/msg.h>

int msgctl(int msqid, int cmd,struct msqid_ds *buf);

I msqid: id returned by msgget()
I cmd: action to perform: IPC_RMID, IPC_STAT, IPC_SET
I buf: information
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Example: printer spooler

I Spool: Simultaneous Peripheral Operations On-Line. The printer
daemon consults the spooler and prints the jobs.

I out = next to print; in = next free slot. .

I Lets think of two processes A y B which try to print
simoultaneously
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Example: printer spooler

I The folloing scenario is possible:

time Process A Process B
0 regA:=in (regA=7)
1 regB:=in (regB=7)
2 spooler[regB]:=

“fileB.txt”
3 in:=regB+1 (in=8)
4 spooler[regA]:=

“fileA.txt”
5 in:=regA+1 (in=8)

I Error: printing “fileB.txt” is not happening. Printer daemon is
only finding “fileA.txt” in the spooler[7].
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Race conditions

I There’s some inconsistency in the shared values. A does not
know that B changed in := 8 and still thinks regA = 7 = in (wrong)

I This is called a race condition: its result depends on the order of
interleaving of processes’ instructions.

I They happen with shared resources (variables in, out and
spooler ).

I Complex to debug. Errors can be infrequent, but possible
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Critical section

I How do we avoid race conditions??

I Finding critical sections: parts of a process code that manipulate
shared resources (in such a way that could produce race
conditions).

I The solution must provide:
I Mutual exclusion: at most one process is executing its critical

section

I Independence of the speed or number of processors

I Progress: A process which is not executing its critical section must
not prevent other processes from doing so

I Limited wait: A process can not wait forever to enter its critical
section
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Atomicity

I There exist many solutions

I Most of them make use of atomicity. A secuence of operations is
said to be atomic if the O.S. guarantees no context switch will
occur during its execution. Its execution is indivisible.

I Examples of solutions with atomicity: semaphores (Dijkstra 1965),
monitors (Hansen 1973, Hoare 1974)

I The most spread solution in UNIX, is the use of semaphores.
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Semaphores
I A semaphore is an integer variable sem which, appart from its

initialization, can only be accesesed with two operations:
1. P(sem) o Wait(sem). Which executes atomically:

wait until sem>0;
sem--;

2. V (sem) o Signal(sem). Executes atomically:
sem++;

I A process blocked at wait until sem>0 does not use CPU
(blocked state)

I When other process executes Signal(sem), the O.S. takes one of
the ones waitting on sem and wakes it up. This is done atomically.

I The process waked form Wait(sem) decrements the counter
atomically.

I A binary semaphore can only have the values {0,1}.
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Solution to the Spooler problem

I We use a binary semaphore mutex . Its initial value mutex = 1.

I Each time a process prints

void printFile(char *fname) {
wait(mutex);
load shared var "in" into reg;
spooler[reg]=fname;
write reg+1 in shared var "in";
signal(mutex);

}

I To print, the printer daemon also has to access the spooler using
mutex
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Sample struct proc in SCO system V R3

typedef struct proc {
char p_stat; /* status of process */
char p_pri; /* priority */
char p_cpu; /* cpu usage for scheduling */
char p_nice; /* nice for cpu usage */
uint p_flag; /* flags defined below */
ushort p_uid; /* real user id */
ushort p_suid; /* saved (effective) uid from exec */
pid_t p_sid; /* POSIX session id number */
short p_pgrp; /* name of process group leader */
short p_pid; /* unique process id*/
short p_ppid; /* process id of parent*/
ushort p_sgid; /* saved (effective) gid from exec */
sigset_t p_sig; /* signals pending to this process */
struct proc *p_flink; /* forward link */
struct proc *p_blink; /* backward link */
union { /* wait addr for sleeping processes */

caddr_t p_cad; /* Union is for XENIX compatibility */
int p_int;

} p_unw;
/* current signal */
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Sample struct proc in SCO system V R3

#define p_wchan p_unw.p_cad /* Map MP name to old UNIX name */
#define p_arg p_unw.p_int /* Map MP name to old UNIX name */

struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
int p_clktim; /* time to alarm clock signal */
uint p_size; /* size of swappable image in pages */
time_t p_utime; /* user time, this process */
time_t p_stime; /* system time, this process */
struct proc *p_mlink; /* linked list of processes sleeping

* on memwant or swapwant

*/
ushort p_usize; /* size of u-block (*4096 bytes) */
ushort p_res1; /* Pad because p_usize is replacing

* a paddr_t (i.e., long) field, and

* it is only a short.

*/

caddr_t p_ldt; /* address of ldt */
long p_res2; /* Pad because a ’pde_t *’ field was

* removed here. Its function is

* replaced by p_ubptbl[MAXUSIZE].

*/

preg_t *p_region; /* process regions */
ushort p_mpgneed; /* number of memory pages needed in

* memwant.

*/
char p_time; /* resident time for scheduling */
unchar p_cursig;
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Sample struct proc in SCO system V R3

short p_epid; /* effective pid; normally same as

* p_pid; for servers, the system that

* sent the msg

*/
sysid_t p_sysid; /* normally same as sysid; for servers,

* the system that sent the msg

*/
struct rcvd *p_minwd; /* server msg arrived on this queue */
struct proc *p_rlink; /* linked list for server */
int p_trlock;
struct inode *p_trace; /* pointer to /proc inode */
long p_sigmask; /* tracing signal mask for /proc */
sigset_t p_hold; /* hold signal bit mask */
sigset_t p_chold; /* deferred signal bit mask; sigset(2)

* turns these bits on while signal(2)

* does not.

*/
short p_xstat; /* exit status for wait */
short p_slot; /* proc slot we’re occupying */
struct v86dat *p_v86; /* pointer to v86 structure */
dbd_t p_ubdbd; /* DBD for ublock when swapped out */
ushort p_whystop; /* Reason for process stop */
ushort p_whatstop; /* More detailed reason */
pde_t p_ubptbl[MAXUSIZE]; /* u-block page table entries */
struct sd *p_sdp; /* pointer to XENIX shared data */
int p_sigflags[MAXSIG]; /* modify signal behavior (POSIX) */

} proc_t;
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Sample struct proc in SunOs 4.1

struct proc {
struct proc *p_link; /* linked list of running processes */
struct proc *p_rlink;
struct proc *p_nxt; /* linked list of allocated proc slots */
struct proc **p_prev; /* also zombies, and free procs */
struct as *p_as; /* address space description */
struct seguser *p_segu; /* "u" segment */
/*
* The next 2 fields are derivable from p_segu, but are

* useful for fast access to these places.

* In the LWP future, there will be multiple p_stack’s.

*/
caddr_t p_stack; /* kernel stack top for this process */
struct user *p_uarea; /* u area for this process */
char p_usrpri; /* user-priority based on p_cpu and p_nice */
char p_pri; /* priority */
char p_cpu; /* (decayed) cpu usage solely for scheduling */
char p_stat;
char p_time; /* seconds resident (for scheduling) */
char p_nice; /* nice for cpu usage */
char p_slptime; /* seconds since last block (sleep) */

Processes 261 / 292



Apéndices Appendix II: Sample BSD proc structure

Sample struct proc in SunOs 4.1

char p_cursig;
int p_sig; /* signals pending to this process */
int p_sigmask; /* current signal mask */
int p_sigignore; /* signals being ignored */
int p_sigcatch; /* signals being caught by user */
int p_flag;
uid_t p_uid; /* user id, used to direct tty signals */
uid_t p_suid; /* saved (effective) user id from exec */
gid_t p_sgid; /* saved (effective) group id from exec */
short p_pgrp; /* name of process group leader */
short p_pid; /* unique process id */
short p_ppid; /* process id of parent */
u_short p_xstat; /* Exit status for wait */
short p_cpticks; /* ticks of cpu time, used for p_pctcpu */
struct ucred *p_cred; /* Process credentials */
struct rusage *p_ru; /* mbuf holding exit information */
int p_tsize; /* size of text (clicks) */
int p_dsize; /* size of data space (clicks) */
int p_ssize; /* copy of stack size (clicks) */
int p_rssize; /* current resident set size in clicks */
int p_maxrss; /* copy of u.u_limit[MAXRSS] */
int p_swrss; /* resident set size before last swap */
caddr_t p_wchan; /* event process is awaiting */
long p_pctcpu; /* (decayed) %cpu for this process */
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Sample struct proc in SunOs 4.1

struct proc *p_pptr; /* pointer to process structure of parent */
struct proc *p_cptr; /* pointer to youngest living child */
struct proc *p_osptr; /* pointer to older sibling processes */
struct proc *p_ysptr; /* pointer to younger siblings */
struct proc *p_tptr; /* pointer to process structure of tracer */
struct itimerval p_realtimer;
struct sess *p_sessp; /* pointer to session info */
struct proc *p_pglnk; /* list of pgrps in same hash bucket */
short p_idhash; /* hashed based on p_pid for kill+exit+... */
short p_swlocks; /* number of swap vnode locks held */
struct aiodone *p_aio_forw; /* (front)list of completed asynch IO’s */
struct aiodone *p_aio_back; /* (rear)list of completed asynch IO’s */
int p_aio_count; /* number of pending asynch IO’s */
int p_threadcnt; /* ref count of number of threads using proc */

#ifdef sun386
struct v86dat *p_v86; /* pointer to v86 structure */

#endif sun386
#ifdef sparc
/*
* Actually, these are only used for MULTIPROCESSOR

* systems, but we want the proc structure to be the

* same size on all 4.1.1psrA SPARC systems.

*/
int p_cpuid; /* processor this process is running on */
int p_pam; /* processor affinity mask */

#endif sparc
};
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Sample struct proc in System V R4

typedef struct proc {
/*
* Fields requiring no explicit locking

*/
clock_t p_lbolt; /* Time of last tick processing */
id_t p_cid; /* scheduling class id */
struct vnode *p_exec; /* pointer to a.out vnode */
struct as *p_as; /* process address space pointer */
#ifdef XENIX_MERGE
struct sd *p_sdp; /* pointer to XENIX shared data */
#endif
o_uid_t p_uid; /* for binary compat. - real user id */
kmutex_t p_lock; /* proc struct’s mutex lock */
kmutex_t p_crlock; /* lock for p_cred */
struct cred *p_cred; /* process credentials */
/*
* Fields protected by pidlock

*/
int p_swapcnt; /* number of swapped out lwps */
char p_stat; /* status of process */
char p_wcode; /* current wait code */
int p_wdata; /* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_next; /* active chain link */
struct proc *p_nextofkin; /* gets accounting info at exit */

Processes 264 / 292



Apéndices Appendix III: Sample System V R4 proc structure

Sample struct proc in System V R4

struct proc *p_orphan;
struct proc *p_nextorph;
struct proc *p_pglink; /* process group hash chain link */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock

*/
char p_cpu; /* cpu usage for scheduling */
char p_brkflag; /* serialize brk(2) */
kcondvar_t p_brkflag_cv;
kcondvar_t p_cv; /* proc struct’s condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some lwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */
/* to to be held. */
u_int p_flag; /* protected while set. */
/* flags defined below */
clock_t p_utime; /* user time, this process */
clock_t p_stime; /* system time, this process */
clock_t p_cutime; /* sum of children’s user time */
clock_t p_cstime; /* sum of children’s system time */
caddr_t *p_segacct; /* segment accounting info */
caddr_t p_brkbase; /* base address of heap */
u_int p_brksize; /* heap size in bytes */
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Sample struct proc in System V R4

/*
* Per process signal stuff.

*/
k_sigset_t p_sig; /* signals pending to this process */
k_sigset_t p_ignore; /* ignore when generated */
k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */
struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */
u_char p_stopsig; /* jobcontrol stop signal */
/*
* Per process lwp and kernel thread stuff

*/
int p_lwptotal; /* total number of lwps created */
int p_lwpcnt; /* number of lwps in this process */
int p_lwprcnt; /* number of not stopped lwps */
int p_lwpblocked; /* number of blocked lwps. kept */
/* consistent by sched_lock() */
int p_zombcnt; /* number of zombie LWPs */
kthread_t *p_tlist; /* circular list of threads */
kthread_t *p_zomblist; /* circular list of zombie LWPs */
/*
* XXX Not sure what locks are needed here.

*/
k_sigset_t p_sigmask; /* mask of traced signals (/proc) */
k_fltset_t p_fltmask; /* mask of traced faults (/proc) */
struct vnode *p_trace; /* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */
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Sample struct proc in System V R4

struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;
int p_pri; /* process priority */
u_int p_stksize; /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling

*/
hrtime_t p_mstart; /* hi-res process start time */
hrtime_t p_mterm; /* hi-res process termination time */
hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */
struct lrusage p_ru; /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
int p_rprof_timerid; /* interval timer’s timeout id */
u_int p_defunct; /* number of defunct lwps */
/*
* profiling. A lock is used in the event of multiple lwp’s

* using the same profiling base/size.

*/
kmutex_t p_pflock; /* protects user pr_base in lwp */

/*
* The user structure

*/
struct user p_user; /* (see sys/user.h) */

/*
* C2 Security (C2_AUDIT)

*/
caddr_t p_audit_data; /* per process audit structure */
} proc_t;

Processes 267 / 292



Apéndices Appendix IV: Sample System V R3 u_area

Sample u_area in SCO unix System V R3

typedef struct user
{
char u_stack[KSTKSZ]; /* kernel stack */

union u_fps u_fps;

long u_weitek_reg[WTK_SAVE]; /* bits needed to save weitek state */
/* NOTE: If the WEITEK is actually */
/* present, only 32 longs will be */
/* used, but if it is not, the */
/* emulator will need 33. */

struct tss386 *u_tss; /* pointer to user TSS */
ushort u_sztss; /* size of tss (including bit map) */
char u_sigfault; /* catch general protection violations

caused by user modifying his stack
where the old state info is kept */

char u_usigfailed; /* allows the user to know that he caused
a general protection violation by
modifying his register save area used
when the user was allowed to do his own
signal processing */

ulong u_sub; /* stack upper bound.
The address of the first byte of
the first page of user stack
allocated so far */

char u_filler1[40]; /* DON’T TOUCH--this is used by

* conditionally-compiled code in iget.c

* which checks consistency of inode locking

* and unlocking. Name change to follow in

* a later release.
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Sample u_area in SCO unix System V R3

int u_caddrflt; /* Ptr to function to handle */
/* user space external memory */
/* faults encountered in the */
/* kernel. */
char u_nshmseg; /* Nbr of shared memory */
/* currently attached to the */
/* process. */

struct rem_ids { /* for exec’ing REMOTE text */
ushort ux_uid; /* uid of exec’d file */
ushort ux_gid; /* group of exec’d file */
ushort ux_mode; /* file mode (set uid, etc. */
} u_exfile;

char *u_comp; /* pointer to current component */
char *u_nextcp; /* pointer to beginning of next */
/* following for Distributed UNIX */
ushort u_rflags; /* flags for distripution */
int u_sysabort; /* Debugging: if set, abort syscall */
int u_systrap; /* Are any syscall mask bits set? */
int u_syscall; /* system call number */
int u_mntindx; /* mount index from sysid */
struct sndd *u_gift; /* gift from message */
long u_rcstat; /* Client cache status flags */
ulong u_userstack;
struct response *u_copymsg; /* copyout unfinished business */
struct msgb *u_copybp; /* copyin premeditated send */
char *u_msgend; /* last byte of copymsg + 1 */
/* end of Distributed UNIX */
long u_bsize; /* block size of device */
char u_psargs[PSARGSZ]; /* arguments from exec */
int u_pgproc; /* use by the MAU driver */
time_t u_ageinterval; /* pageing ageing countdown counter */
label_t u_qsav; /* label variable for quits and */
/* interrupts */
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Sample u_area in SCO unix System V R3

char u_segflg; /* IO flag: 0:user D; 1:system; */
/* 2:user I */
unchar u_error; /* return error code */
ushort u_uid; /* effective user id */
ushort u_gid; /* effective group id */
ushort u_ruid; /* real user id */
ushort u_rgid; /* real group id */
struct lockb u_cilock; /* MPX process u-area synchronization */
struct proc *u_procp; /* pointer to proc structure */
int *u_ap; /* pointer to arglist */
union { /* syscall return values */
struct {
int r_val1;
int r_val2;
}r_reg;
off_t r_off;
time_t r_time;
} u_r;
caddr_t u_base; /* base address for IO */
unsigned u_count; /* bytes remaining for IO */
off_t u_offset; /* offset in file for IO */
short u_fmode; /* file mode for IO */
ushort u_pbsize; /* Bytes in block for IO */
ushort u_pboff; /* offset in block for IO */
dev_t u_pbdev; /* real device for IO */
daddr_t u_rablock; /* read ahead block address */
short u_errcnt; /* syscall error count */
struct inode *u_cdir; /* current directory */
struct inode *u_rdir; /* root directory */
caddr_t u_dirp; /* pathname pointer */
struct direct u_dent; /* current directory entry */
struct inode *u_pdir; /* inode of parent directory */
/* of dirp */
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Sample u_area in SCO unix System V R3

char *u_pofile; /* Ptr to open file flag array. */
struct inode *u_ttyip; /* inode of controlling tty (streams) */
int u_arg[6]; /* arguments to current system call */
unsigned u_tsize; /* text size (clicks) */
unsigned u_dsize; /* data size (clicks) */
unsigned u_ssize; /* stack size (clicks) */
void (*u_signal[MAXSIG])(); /* disposition of signals */
void (*u_sigreturn)(); /* for cleanup */
time_t u_utime; /* this process user time */
time_t u_stime; /* this process system time */
time_t u_cutime; /* sum of childs’ utimes */
time_t u_cstime; /* sum of childs’ stimes */
int *u_ar0; /* address of users saved R0 */

/* The offsets of these elements must be reflected in ttrap.s and misc.s*/
struct { /* profile arguments */
short *pr_base; /* buffer base */
unsigned pr_size; /* buffer size */
unsigned pr_off; /* pc offset */
unsigned pr_scale; /* pc scaling */
} u_prof;

short *u_ttyp; /* pointer to pgrp in "tty" struct */
dev_t u_ttyd; /* controlling tty dev */

ulong u_renv; /* runtime environment. */
/* for meaning of bits: */
/* 0-15 see x_renv (x.out.h) */
/* 16-23 see x_cpu (x.out.h) */
/* 24-31 see below */
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Sample u_area in SCO unix System V R3

/*
* Executable file info.

*/
struct exdata {
struct inode *ip;
long ux_tsize; /* text size */
long ux_dsize; /* data size */
long ux_bsize; /* bss size */
long ux_lsize; /* lib size */
long ux_nshlibs; /* number of shared libs needed */
short ux_mag; /* magic number MUST be here */
long ux_toffset; /* file offset to raw text */
long ux_doffset; /* file offset to raw data */
long ux_loffset; /* file offset to lib sctn */
long ux_txtorg; /* start addr. of text in mem */
long ux_datorg; /* start addr. of data in mem */
long ux_entloc; /* entry location */
ulong ux_renv; /* runtime environment */
} u_exdata;
long u_execsz;
char u_comm[PSCOMSIZ];
time_t u_start;
time_t u_ticks;
long u_mem;
long u_ior;
long u_iow;
long u_iosw;
long u_ioch;
char u_acflag;
short u_cmask; /* mask for file creation */
daddr_t u_limit; /* maximum write address */
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Sample u_area in SCO unix System V R3

short u_lock; /* process/text locking flags */
/* floating point support variables */
char u_fpvalid; /* flag if saved state is valid */
char u_weitek; /* flag if process uses weitek chip */
int u_fpintgate[2]; /* fp intr gate descriptor image */
/* i286 emulation variables */
int *u_callgatep; /* pointer to call gate in gdt */
int u_callgate[2]; /* call gate descriptor image */
int u_ldtmodified; /* if set, LDT was modified */
ushort u_ldtlimit; /* current size (index) of ldt */
/* Flag single-step of lcall for a system call. */
/* The signal is delivered after the system call*/
char u_debugpend; /* SIGTRAP pending for this proc */
/* debug registers, accessible by ptrace(2) but monitored by kernel */
char u_debugon; /* Debug registers in use, set by kernel */
int u_debugreg[8];
long u_entrymask[SYSMASKLEN]; /* syscall stop-on-entry mask */
long u_exitmask[SYSMASKLEN]; /* syscall stop-on-exit mask */

/* New for POSIX*/
sigset_t u_sigmask[MAXSIG]; /* signals to be blocked */
sigset_t u_oldmask; /* mask saved before sigsuspend() */
gid_t *u_groups; /* Ptr to 0 terminated */
/* supplementary group array */
struct file *u_ofile[1]; /* Start of array of pointers */
/* to file table entries for */
/* open files. */
/* NOTHING CAN GO BELOW HERE!!!!*/
} user_t;
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struct user {
struct pcb u_pcb;
struct proc *u_procp; /* pointer to proc structure */
int *u_ar0; /* address of users saved R0 */
char u_comm[MAXCOMLEN + 1];
/* syscall parameters, results and catches */
int u_arg[8]; /* arguments to current system call */
int *u_ap; /* pointer to arglist */
label_t u_qsave; /* for non-local gotos on interrupts */
union { /* syscall return values */
struct {
int R_val1;
int R_val2;
} u_rv;
off_t r_off;
time_t r_time;
} u_r;
char u_error; /* return error code */
char u_eosys; /* special action on end of syscall */
label_t u_ssave; /* label for swapping/forking */
/* 1.3 - signal management */
void (*u_signal[NSIG])(); /* disposition of signals */
int u_sigmask[NSIG]; /* signals to be blocked */
int u_sigonstack; /* signals to take on sigstack */
int u_sigintr; /* signals that interrupt syscalls */
int u_sigreset; /* signals that reset the handler when taken */
int u_oldmask; /* saved mask from before sigpause */
int u_code; /* ‘‘code’’ to trap */
char *u_addr; /* ‘‘addr’’ to trap */
struct sigstack u_sigstack; /* sp & on stack state variable */
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/* 1.4 - descriptor management */
/*
* As long as the highest numbered descriptor that the process

* has ever used is < NOFILE_IN_U, the u_ofile and u_pofile arrays

* are stored locally in the u_ofile_arr and u_pofile_arr fields.

* Once this threshold is exceeded, the arrays are kept in dynamically

* allocated space. By comparing u_ofile to u_ofile_arr, one can

* tell which situation currently obtains. Note that u_lastfile

* does _not_ convey this information, as it can drop back down

* when files are closed.

*/
struct file **u_ofile; /* file structures for open files */
char *u_pofile; /* per-process flags of open files */
struct file *u_ofile_arr[NOFILE_IN_U];
char u_pofile_arr[NOFILE_IN_U];
int u_lastfile; /* high-water mark of u_ofile */
struct ucwd *u_cwd; /* ascii current directory */
struct vnode *u_cdir; /* current directory */
struct vnode *u_rdir; /* root directory of current process */
short u_cmask; /* mask for file creation */

* 1.5 - timing and statistics */
struct rusage u_ru; /* stats for this proc */
struct rusage u_cru; /* sum of stats for reaped children */
struct itimerval u_timer[3];
int u_XXX[3];
long u_ioch; /* characters read/written */
struct timeval u_start;
short u_acflag;
struct uprof { /* profile arguments */
short *pr_base; /* buffer base */
u_int pr_size; /* buffer size */
u_int pr_off; /* pc offset */
u_int pr_scale; /* pc scaling */
} u_prof;
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/* 1.6 - resource controls */
struct rlimit u_rlimit[RLIM_NLIMITS];

/* BEGIN TRASH */
union {
struct exec Ux_A; /* header of executable file */
char ux_shell[SHSIZE]; /* #! and name of interpreter */
#ifdef sun386
struct exec UX_C; /* COFF file header */
#endif
} u_exdata;
#ifdef sun386
/*
* The virtual address of the text and data is needed to exec

* coff files. Unfortunately, they won’t fit into Ux_A above.

*/
u_int u_textvaddr; /* virtual address of text segment */
u_int u_datavaddr; /* virtual address of data segment */
u_int u_bssvaddr; /* virtual address of bss segment */

int u_lofault; /* catch faults in locore.s */
#endif sun
/* END TRASH */
};
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typedef struct user {
/* Fields that require no explicit locking*/

int u_execid;
long u_execsz;
uint u_tsize; /* text size (clicks) */
uint u_dsize; /* data size (clicks) */
time_t u_start;
clock_t u_ticks;
kcondvar_t u_cv; /* user structure’s condition var */
/* Executable file info.*/

struct exdata u_exdata;
auxv_t u_auxv[NUM_AUX_VECTORS]; /* aux vector from exec */
char u_psargs[PSARGSZ]; /* arguments from exec */
char u_comm[MAXCOMLEN + 1];
/*
* Initial values of arguments to main(), for /proc

*/
int u_argc;
char **u_argv;
char **u_envp;
/*
* Updates to these fields are atomic

*/
struct vnode *u_cdir; /* current directory */
struct vnode *u_rdir; /* root directory */
struct vnode *u_ttyvp; /* vnode of controlling tty */
mode_t u_cmask; /* mask for file creation */
long u_mem;
char u_systrap; /* /proc: any syscall mask bits set? */
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/*
* Flag to indicate there is a signal or event pending to

* the current process. Used to make a quick check just

* prior to return from kernel to user mode.

*/
char u_sigevpend;

/*
* WARNING: the definitions for u_ttyp and

* u_ttyd will be deleted at the next major

* release following SVR4.

*/

o_pid_t *u_ttyp; /* for binary compatibility only ! */
o_dev_t u_ttyd; /*
* for binary compatibility only -

* NODEV will be assigned for large

* controlling terminal devices.

*/
/*
* Protected by pidlock

*/
k_sysset_t u_entrymask; /* /proc syscall stop-on-entry mask */
k_sysset_t u_exitmask; /* /proc syscall stop-on-exit mask */
k_sigset_t u_signodefer; /* signals defered when caught */
k_sigset_t u_sigonstack; /* signals taken on alternate stack */
k_sigset_t u_sigresethand; /* signals reset when caught */
k_sigset_t u_sigrestart; /* signals that restart system calls */
k_sigset_t u_sigmask[MAXSIG]; /* signals held while in catcher */
void (*u_signal[MAXSIG])(); /* Disposition of signals */
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/*
* protected by u.u_procp->p_lock

*/
char u_nshmseg; /* # shm segments currently attached */
char u_acflag; /* accounting flag */
short u_lock; /* process/text locking flags */

/*
* Updates to individual fields in u_rlimit are atomic but to

* ensure a meaningful set of numbers, p_lock is used whenever

* more than 1 field in u_rlimit is read/modified such as

* getrlimit() or setrlimit()

*/
struct rlimit u_rlimit[RLIM_NLIMITS]; /* resource usage limits */

kmutex_t u_flock; /* lock for u_nofiles and u_flist */
int u_nofiles; /* number of open file slots */
struct ufchunk u_flist; /* open file list */
} user_t;
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struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;

int lock_depth; /* BKL lock depth */

#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW

int oncpu;
#endif
#endif

int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;

#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;

#endif

/*
* fpu_counter contains the number of consecutive context switches
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* that the FPU is used. If this is over a threshold, the lazy fpu

* saving becomes unlazy to save the trap. This is an unsigned char

* so that after 256 times the counter wraps and the behavior turns

* lazy again; this to deal with bursty apps that only use FPU for

* a short time

*/
unsigned char fpu_counter;

#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;

#endif

unsigned int policy;
cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
char rcu_read_unlock_special;
struct list_head rcu_node_entry;

#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST

struct rt_mutex *rcu_boost_mutex;
#endif /* #ifdef CONFIG_RCU_BOOST */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;
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#endif

struct list_head tasks;
#ifdef CONFIG_SMP

struct plist_node pushable_tasks;
#endif

struct mm_struct *mm, *active_mm;
#ifdef CONFIG_COMPAT_BRK

unsigned brk_randomized:1;
#endif
#if defined(SPLIT_RSS_COUNTING)

struct task_rss_stat rss_stat;
#endif
/* task state */

int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned int personality;
unsigned did_exec:1;
unsigned in_execve:1; /* Tell the LSMs that the process is doing an

* execve */
unsigned in_iowait:1;

/* Revert to default priority/policy when forking */
unsigned sched_reset_on_fork:1;
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pid_t pid;
pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;

#endif

/*
* pointers to (original) parent process, youngest child, younger sibling,

* older sibling, respectively. (p->father can be replaced with

* p->real_parent->pid)

*/
struct task_struct *real_parent; /* real parent process */
struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
/*
* children/sibling forms the list of my natural children

*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent’s children list */
struct task_struct *group_leader; /* threadgroup leader */

/*
* ptraced is the list of tasks this task is using ptrace on.

* This includes both natural children and PTRACE_ATTACH targets.

* p->ptrace_entry is p’s link on the p->parent->ptraced list.

*/
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struct list_head ptraced;
struct list_head ptrace_entry;

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;

struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */

cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;

#ifndef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t prev_utime, prev_stime;

#endif
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time; /* monotonic time */
struct timespec real_start_time; /* boot based time */

/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt;

struct task_cputime cputime_expires;
struct list_head cpu_timers[3];

/* process credentials */
const struct cred __rcu *real_cred; /* objective and real subjective task

* credentials (COW) */
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const struct cred __rcu *cred; /* effective (overridable) subjective task

* credentials (COW) */
struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())

- initialized normally by setup_new_exec */
/* file system info */

int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */

struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */

unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */

struct thread_struct thread;
/* filesystem information */

struct fs_struct *fs;
/* open file information */

struct files_struct *files;
/* namespaces */

struct nsproxy *nsproxy;
/* signal handlers */

struct signal_struct *signal;

Processes 285 / 292



Apéndices Appendix VII: Linux 2.6 task_struct

Sample linux 2.6 task_struct VII

struct sighand_struct *sighand;

sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;

unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
struct audit_context *audit_context;

#ifdef CONFIG_AUDITSYSCALL
uid_t loginuid;
unsigned int sessionid;

#endif
seccomp_t seccomp;

/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,

* mempolicy */
spinlock_t alloc_lock;

#ifdef CONFIG_GENERIC_HARDIRQS
/* IRQ handler threads */
struct irqaction *irqaction;
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#endif

/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task */
struct plist_head pi_waiters;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;

#endif

#ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;

#endif
#ifdef CONFIG_TRACE_IRQFLAGS

unsigned int irq_events;
unsigned long hardirq_enable_ip;
unsigned long hardirq_disable_ip;
unsigned int hardirq_enable_event;
unsigned int hardirq_disable_event;
int hardirqs_enabled;
int hardirq_context;
unsigned long softirq_disable_ip;
unsigned long softirq_enable_ip;
unsigned int softirq_disable_event;
unsigned int softirq_enable_event;
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int softirqs_enabled;
int softirq_context;

#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL

u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
gfp_t lockdep_reclaim_gfp;

#endif

/* journalling filesystem info */
void *journal_info;

/* stacked block device info */
struct bio_list *bio_list;

/* VM state */
struct reclaim_state *reclaim_state;

struct backing_dev_info *backing_dev_info;

struct io_context *io_context;

unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
struct task_io_accounting ioac;
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#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_timexpd; /* stime + utime since last update */

#endif
#ifdef CONFIG_CPUSETS

nodemask_t mems_allowed; /* Protected by alloc_lock */
int mems_allowed_change_disable;
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;

#endif
#ifdef CONFIG_CGROUPS

/* Control Group info protected by css_set_lock */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;

#endif
#ifdef CONFIG_FUTEX

struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT

struct compat_robust_list_head __user *compat_robust_list;
#endif

struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;

#endif
#ifdef CONFIG_PERF_EVENTS

struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
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struct list_head perf_event_list;
#endif
#ifdef CONFIG_NUMA

struct mempolicy *mempolicy; /* Protected by alloc_lock */
short il_next;

#endif
atomic_t fs_excl; /* holding fs exclusive resources */
struct rcu_head rcu;

/*
* cache last used pipe for splice

*/
struct pipe_inode_info *splice_pipe;

#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;

#endif
#ifdef CONFIG_FAULT_INJECTION

int make_it_fail;
#endif

struct prop_local_single dirties;
#ifdef CONFIG_LATENCYTOP

int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];

#endif
/*
* time slack values; these are used to round up poll() and

* select() etc timeout values. These are in nanoseconds.

*/
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unsigned long timer_slack_ns;
unsigned long default_timer_slack_ns;

struct list_head *scm_work_list;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER

/* Index of current stored address in ret_stack */
int curr_ret_stack;
/* Stack of return addresses for return function tracing */
struct ftrace_ret_stack *ret_stack;
/* time stamp for last schedule */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven’t been traced

* because of depth overrun.

*/
atomic_t trace_overrun;
/* Pause for the tracing */
atomic_t tracing_graph_pause;

#endif
#ifdef CONFIG_TRACING

/* state flags for use by tracers */
unsigned long trace;
/* bitmask of trace recursion */
unsigned long trace_recursion;

#endif /* CONFIG_TRACING */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */

struct memcg_batch_info {
int do_batch; /* incremented when batch uncharge started */
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struct mem_cgroup *memcg; /* target memcg of uncharge */
unsigned long bytes; /* uncharged usage */
unsigned long memsw_bytes; /* uncharged mem+swap usage */

} memcg_batch;
#endif
};
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