
Operating Systems

Grado en Informática 2022/2023

Lab Assignment 2: Memory

We continue to code the shell we started in the first lab assignment. We'll add the following
commands. Check the supplied shell to check the workings and sintax for the commands. You can use
the help command, "command -?" or "command -help" to get help):

allocate allocates a block of memory and adds it to the list of memory blocs
deallocate deallocates a block of memory a removes it from the list of memory blocks
i-o performs input output from disk to memory and viceversa
memdump dumps the contents of memory to the screen
memfill fills the memory with one character
memory shows information on the memory of the process
recurse executes a recursive function

IMPORTANT:

We have to implement (same list type as we used before) a list of memory blocks. For each
block we must store

• Its memory address
• Its size
• Time of allocation
• Type of allocation (malloc memory, shared memory, mapped file)
• Other info: key for shared memory blocks, name of file and file descriptor for mapped files.

The shell commands allocate and deallocate, allocate and deallocate memory blocks and add
(or remove) them from the list. We'll use allocate -malloc and deallocate -malloc to deal with malloc
memory, allocate -shared and deallocate -shared to deal with shared memory and so on. Our list must
be of the same type as the one we have used before and we'll store in it information about three
different kinds of memory blocks

• malloc memory. this is the most common memory we use, we allocate it with the library
function malloc and deallocate it with the library function free

• shared memory. this is memory that can be shared among several processes. The memory is
identified by a number (called key) so that two processes using the same key get to the same
block of memory. We use the system call shmget to obtain the memory and shmat and shmdt to
place it in (or detatch it from) the process address space. shmget needs the key, the size and the
flags. We'll use flags=IPC_CREAT | IPC_EXCL| permisions to create a new one (gives error if
it already exists) and flags=permisions to use an already created one. To delete a key we'll use
deallocate -delkey command. Status of the shared memory in the system can be checked via

the command line with the ipc command. An additional C file (ayudaP2.c) is provided with
some useful functions

• mapped files. We can also map files in memory so that they apperar in the address space of a
process. System calls mmap and munmap do the trick. Again, the additional C file (ayudaP2.c)
is provided with some useful functions

The contents of our list must be compatible with what the system shows with the pmap
command (procstat vm, vmmap ...depending on the platform)

The recursive function has a static and a dynamic array for the same size (2048 bytes) and prints
their addresses together with the parameter address and value

Although NO RUNTIME ERROR WILL BE ALLOWED (segmentation, bus error . . .) and
programs with runtime errors will yield no score, this program can legitimately produce segmentation
fault errors in scenarios shuch as these:

• memdump or memfill try to access an invalid address supplied through the command line
• memfill or io-read corrupt the user stack or the heap

REMEMBER:

• Information on the system calls and library functions needed to code these programs is available
through man: (shmget, shmat, malloc, free, mmap, munmap, shmctl, open, read, write,
close . . .)

• A reference shell is provided (for various platforms) for students to check how the shell should
perform. Ths program should be checked to find out the syntax and behaviour of the various
commands. PLEASE DOWNLOAD THE LATEST VERSION

• The program should compile cleanly (produce no warnings even when compiling with gcc -
Wall)

• These programs can have no memory leaks (you can use valgrind to check)
• When the program cannot perform its task (for whatever reason, for example, lack of privileges)

it should inform the user (See errors section)
• All input and output is done through the standard input and output
• Errors should be trated as in the previous lab assignment

WORK SUBMISSION

• Work must be done in pairs.
• Moodle will be used to submit the source code: a zipfile containing a directory named P2

where all the source files of the lab assignment reside
• The name of the main program will be p2.c, Program must be able to be compiled with gcc

p2.c, Optionally a Makefile can be supplied so that all of the source code can be compiled with
just make. Should that be the case, the compiled program should be called p2

• ONLY ONE OF THE MEMBERS OF THE GROUP will submit the source code. The names
and logins of all the members of the group should appear in the source code of the main
programs (at the top of the file)

• Works submited not conforming to these rules will be disregarded.
• DEADLINE: 23:00, Friday Novemberthe 18th, 2022

