
 

 

Unix File System 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

2 

 

 
1. Introduction to the UNIX File System: logical vision 

 

 

 
 

Logical structure in each FS (System V): 

BOOT SUPERBLOCK INODE LIST DATA AREA 

 

Silberschatz, Galvin and Gagne ©2005 
Operating System Concepts – 7th Edition, 
Feb 6, 2005 

 

Related commands: du, 
df, mount, umount, mkfs 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

3 

 
Typical directory structure in an UNIX platform. 

Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7th Edition, Feb 6, 2005 

 

 

 

 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

4 

 
2. Introduction to the UNIX File System: physical vision of disk 

partitions 

 

 

 
 

 
Partitions of the disk in a PC 

 

 

 
 

 
Master Boot Record structure 

 

 

 
 

 
Information in each partition 

 

 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

5 

 

 
The widespread MBR partitioning scheme, dating from the early 1980s, imposed limitations 

which affected the use of modern hardware. Intel therefore developed a new partition-table 

format in the late 1990s, GPT, which most current OSs support. 

 

 
 

http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Intel


UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

6 

2.1 System V vs. BSD (Fast File System)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BSD: Blocks and fragments. BSD uses blocks and a possible last “fragment” to assign 
data space for a file in the data area. 
 
Example: 

All the blocks of a file are of a large block size (such as 8K), except the last. 

The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill out the 

file. 

Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment (which 

would not be filled completely). 

Logical structure in each FS (System V): 

BOOT SUPERBLOCK INODE LIST DATA AREA 

 

Logical structure in each FS (BSD): 

BOOT SUPERBLOCK 
CILINDER 

GROUP 0 

CILINDER 

GROUP1 

……… CILINDER 

GROUP N 

                                                                                         
                                                                                       CG i 

 
SUPERBLOCK 

(replicated) 
CILINDER GROUP i HEAD 

INODE LIST of  

CILINDER GROUP i 

DATA AREA of 

CILINDER GROUP i 

 

Organization of the disk in cylinder 

groups [Márquez, 2004] 

 
Examples of assignments in each type of partition 

 

 

 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

7 

3. Internal representation of files 

 

 

 
3.1 Inodes 

 The operating system associates an inode to each file.  

 We have to differentiate between: 

o Inodes in disk, in the Inode List. 

o In memory, in the Inode Table, with a 

similar structure to the Buffer Cache. 

 
 

 

Inode in disk 

OWNER 

GROUP 

FILE TYPE 

ACCESS PERMISSIONS 

FILE DATES: access, data 

modification, inode 

modification 

Number of LINKS 

SIZE 

DISK ADDRESSES 

  
3.2 Structure of the block layout in the disk 

 A file has associated: 

o An inode of the Inode List. 

o Blocks of the data area. These blocks of the file are information contained in 

the inode file, with the following scheme:  

 

 

 
Details: 

 Using blocks of 1K and addresses of 4 bytes, the maximum size is: 10K + 256K + 

64M + 16G 

 Slower access to larger files. 

 
 

 
Disk addresses of the inode 

[Tanenbaum, 2003] 

 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

8 

3.3 File types & file permissions 

Related command (and system call) to the file mode: chmod 
Related command (and system call) to the file owner chown 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

9 

 

System V directory entry: 
 

 

 

 

 

 

BSD directory entry: 

 

 

Inode number 

 (2 bytes) 
Name  (14 bytes) 

Inode number 

 (4 bytes) 

Length of the 

entry 

(2 bytes) 

Length of the file 

name (2 bytes) 
Name  ( '\0'-ended until a length multiple of  

4) (variable) 

 
4. Directories 

 A directory is a file whose content is interpreted as “directory entries”. 

 Directory entry format: 

 
 

 
Example of the necessary steps in the search of the inode of the file /usr/ast/correo 

[Tanenbaum, 2003] 

 
 

Related system calls: opendir, readdir, closedir (defined in <dirent.h>)  
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

10 

5. Brief description of the kernel structures related to the file 

system 

 
The buffering mechanism of 

the Buffer Cache regulates 

data flow between secondary 

storage block devices and the 

kernel, decreasing the number 

of accesses to the disk. There 

is a similar mechanism 

associated to virtual memory 

with a Page Cache. 

 
 

 
Block diagram of the 

system kernel. 

 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

11 

Scheme of the main kernel structures related to the file system 

(Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7th Edition, Feb 6, 2005) 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

12 

6. System calls for the file system 

 

 

 

Example of openings from two processes: 

Proc A: 

fd1=open(“/etc/passwd”, O_RDONLY); 

fd2=open(“local”, O_RDWR); 

fd3=open(“/etc/passwd”, O_WRONLY); 

 

 

int open (char *name, int mode, int permissions); 

open mode: 

 mode 0: read 
 mode 1: write 
 mode 2: read-write 

Or using the constatnts defined in the header <fcntl.h> 

 O_RDONLY only read 
 O_RDWR read-write 
 O_WRONLY only write 
 O_APPEND append 
 O_CREAT create 
  ... 

 
 

int read (int df, char *buff, int n); 

 df – file descriptor open returns 
 buff – address, in the user space, 

          where the data are transferred 
 n – number of bytes to be read 
 
int write (int df, char *buff, int n); 

 

 

 

Proc B: 

fd1=open(“/etc/passwd”, O_RDONLY); 

fd2=open(“private”, O_RDONLY); 

 

 

Data structures after the openings of Proc A 

 

 Data structures after the two processes opened the files 

 

 

 [Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986. 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

13 

int newfd= dup (int df); 

 df – file descriptor of an open file 
 newfd – new file descriptor that 
                         references the same file 
 
dup2(fd, newfd); 

 

 

Data structures after dup 

 

 

Example: 

fd1=open(“/etc/passwd”, O_RDONLY); 

fd2=open(“local”, O_RDWR); 

fd3=open(“/etc/passwd”, O_WRONLY); 

dup(fd3);  

 

It returns the first free 

file descriptor, number 6 

in this case 

 

 [Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986. 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

14 

7. SETUID executables 

 

The kernel associates two user IDs to a UNIX process: 

1. The real user ID: user who runs the process. 

2. The effective user ID: used to check file access permissions, to assign ownership of 

newly created files and to check permission to send signals. 

 

The kernel allows a process to change its effective used ID when it execs a “setuid program” or 

when it invokes the setuid() system call explicitly. 

A SETUID program is an executable file that has the SETUID bit set in its permission model 

field. When a setuid program is executed, the kernel sets the effective user ID to the 

owner of the executable file.  

 

Example of application: command passwd 

Files in /etc: 

rw- r-- r--  root    root      passwd   users defined in the system 

 

 

rw- r-- ---  root    shadow   shadow encrypted passwords 

rw- r-- r--  root    root       group   groups defined and their users 

 

Permissions of the executable command: 

 

/usr/bin/passwd  root  rws r-x r-x

It means that the SETUID bit is ON 

The effective user ID is set to the 
owner of the executable file: root 

Consequently 

The passwd process can access the 
passwd file to change (“w” permission) 
the encrypted password 

Currently in file shadow 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

15 

Notes: 

In addition to the classic Data Encryption Standard (DES), there is an advanced symmetric-key 

encryption algorithm AES (Advanced Encryption Standard). The AES-128, AES-192 and AES-256 use 

a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively 

Most linux systems use Hash Functions for authentication: Common message-digest functions include 

MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash. 

 

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Key_%28cryptography%29


UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

16 

 

SETUID system call 

 

Syntax: setuid (uid) 

 

uid is the new user ID. Its result depends on the current value of the effective used ID 

 

The system call succeeds in the following cases: 

 

1. If the effective user ID of the calling process is the superuser (root), the kernel sets as 

real and effective user ID the input parameter uid. 

2. If the effective user ID of the calling process is not the superuser: 

2.1 If uid = real user ID, the effective user ID is set to uid (success). 

2.2 Else if uid = saved effective user ID, the effective user ID is set to uid (success). 

2.3 Else return error. 

 

 

Example of case 1: login process 

 

 

       process getty                                    process login

login: filemon 

password: *****  

 

If authentication 

succeeds 

 
setuid (ID of filemon); 

exec (bash, …..); 

 

bash shell  

 
AS the user ID of the calling 

process (login) is root, then the 

launched shell has as real and 

effective user IDs those of the user 

who logs in the system. 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

17 

Example of case 2:

[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986. 

 

 

 

When “mjb” executes the file: 

uid 5088 euid 8319 

fdmjb -1 fdmaury 3 

after setuid(5088): uid 5088 euid 5088 

fdmjb 4 fdmaury -1  

after setuid(8319): uid 5088 euid 8319 

 

When “maury” executes the file: 

uid 8319 euid 8319 

fdmjb -1 fdmaury 3 

after setuid(8319): uid 5088 euid 8319 

fdmjb -1 fdmaury 4  

after setuid(8319): uid 8319 euid 8319 

Users: maury (ID 8319) 

  mjb (ID 5088) 

 

 

Files: maury maury r-- --- --- 

  Mjb mjb  r-- --- --- 

  a.out maury  rws –x --x 

 

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

18 

8. The Linux Ext2fs File System 

 Ext2fs uses a mechanism similar to that of BSD Fast File System (ffs) for locating data 

blocks belonging to a specific file 

 The main differences between ext2fs and ffs concern their disk allocation policies. 

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being subdivided into 

fragments of 1Kb to store small files or partially filled blocks at the end of a file. 

 Ext2fs does not use fragments; it performs its allocations in smaller units:  

The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks are also 

supported. 

 Ext2fs uses allocation policies designed to place logically adjacent blocks of a file 

into physically adjacent blocks on disk, so that it can submit an I/O request for 

several disk blocks as a single operation. 

 

Silberschatz, Galvin and Gagne ©2005 
Operating System Concepts – 7th Edition, 
Feb 6, 2005 

 

Ext2fs Block-Allocation Policies 
 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

19 

9. Journaling File Systems 

 
 The system maintains a catching of file data and metadata (Buffer Cache). 

 There can be inconsistencies in the file system due to a system crash of electric outage 

before the modified data in the cache (dirty buffers) have been written to disk. 

Related command: fsck (file system check) 

 

 A journaling file system is a fault-resilient file system in which data integrity is ensured 

because updates to files' metadata are written to a serial log on disk before the original 

disk blocks are updated. The file system will write the actual data to the disk only after 

the write of the metadata to the log is complete. When a system crash occurs, the 

system recovery code will analyze the metadata log and try to clean up only those 

inconsistent files by replaying the log file. 

 Linux file systems with journal: ext3, ext4, ReiserFS, XFS from SGI, JFS from IBM. 

  

  

 



UNIX FILE SYSTEM                                                                                                                                               J. Santos 

 

 

20 

Bibliography: 
 
[Batch, 1986] Bach, M.J., The Design of the UNIX Operating System, Prentice-Hall, 1986. 

[Carretero y col., 2001] Carretero Pérez, J., de Miguel Anasagasti, P., García Carballeira, F., 

Pérez Costoya, F., Sistemas Operativos: Una Visión Aplicada, McGraw-Hill, 2001. 

[Márquez, 2004] Márquez, F.M., UNIX. Programación Avanzada, Ra-Ma, 2004. 

[Sánchez Prieto, 2005] Sánchez Prieto, S., Sistemas Operativos, Servicio Public. Univ. Alcalá, 

2005. 

[Silberschatz y col. 2005] Silberschatz, A., Galvin, P. and Gagne, G., Operating System 

Concepts – 7th Edition, Feb 6, 2005. 

[Stallings 2005] Stallings, W. Operating Systems (5th Edition), Prentice-Hall, 2005. 

[Tanenbaum 2003] Tanenmaum, A., Sistemas Operativos Modernos, Prentice-Hall, 2003. 

 

 


