
Operating Systems

Grado en Informática. Course 2019-2020

Lab Assignment 3

CONTINUE the coding of the shell started in the previous lab assigment. In
this lab assignment we’ll add to the shell the capability to execute external
programs both in foreground and background and without creating process
(replacing the shell code). The shell will keep track (using a list) of the
processes created to execute programs in background.

priority [pid] [value]. If both arguments (pid and value) are specified, the
priority of process pid is changed to value. If only pid is specified, the
shell will show the priority of process pid.

fork The shell creates a child process with fork (this child process executes
the same code as the shell) and waits (with one of the wait system
calls) for it to end.

exec prog arg1 arg2 . . . Executes, without creating a process (REPLACING
the shell’s code) the program prog with its arguments. prog is a file-
name that represents an external program and arg1, arg2 . . . represent
the program’s command line arguments (they can be more than two).

exec @pri prog arg1 arg2. . . Does the same as the previous exec com-
mand, but before executing prog it changes the priority of the proccess
to pri

pplano prog arg1 arg2. . . The shell creates a process that executes in fore-
ground (waits for it to exit) the program prog with its arguments.
prog is a filename that represents an external program and arg1, arg2
. . . represent the program’s command line arguments (they can be more
than two).

pplano @pri prog arg1 arg2. . . Does the same as the previous command,
but before executing prog it changes the priority of the proccess that
executes prog to pri

splano prog arg1 arg2. . . The shell creates a process tha executes in back-
ground the program prog with its arguments. prog is a filename that
represents an external program and arg1, arg2 . . . represent the pro-
gram’s command line arguments (they can be more than two). The
process that executes prog is added to the list the shell keeps of the
background processes. The command listarprocs shows this list.

splano @pri prog arg1 arg2. . . Does the same as the previous command,
but before executing prog it changes the priority of the proccess that
executes prog to pri. The process that executes prog is added to the

1

list the shell keps of the backgroud processes. The command listarprocs
shows this list.

• The following three items describe what the shell should do if we type
as input something that is not one of its predefined “commands“. The
behaviour is exactly the same as the pplano command. When sup-
plying an & as the last arg to a program, the execution must be in
background: exactly as the splano command but without passing the
& to the program being executed.

prog arg1 arg2. . . The shell creates a process tha executes in fore-
ground the program prog with its arguments. prog is a filename
that represents an external program and arg1, arg2 . . . represent
the program’s command line arguments (there can be more than
two). THIS IS EXACTLY THE SAME as doing pplano prog arg1
arg2. . .

prog arg1 arg2. . . & The shell creates a process tha executes in back-
ground the program prog with its arguments. prog is a filename
that represents an external program and arg1, arg2 . . . represent
the program’s command line arguments (there can be more than
two). The process that executes prog is added to the list the
shell keeps of the background processes. The command listarprocs
shows this list. THIS IS EXACTLY THE SAME as doing splano
prog arg1 arg2. . .

@pri prog arg1 arg2. . . [&] Does the same as the previous commands,
but before executing prog it changes the priority of the proccess
that executes prog to pri. Execution will be in foreground or
background depending on the last argument being &, so @pri
prog arg1 arg2 . . . is the same as pplano @pri prog arg1 arg2 . . . ,
and @pri prog arg1 arg2 . . .& is the same as splano @pri prog arg1
arg2 . . .

Examples

#) pplano ls -l /usr

#) plano @15 du -a /

#) ls -lisa /home

#) @12 du -a /usr

#) splano xterm -e bash

#) splano @10 xterm -bg yellow

#) xclock &

#) @12 xclock -update 1

listarprocs Shows the list of background processes of the shell. For each process it
must show (IN A SINGLE LINE):

2

– The process pid

– The process priority

– The command line the process is executing (executable and argu-
ments)

– The time it started

– The process state (Running, Stopped, Terminated Normally or
Terminated By Signal).

– For processes that have terminated normally the value returned,
for processes stopped or terminated by a signal, the name of the
signal.

This command USES THE LIST OF BACKGROUND PRO-
CESSES of the shell, it DOES NOTHAVE TOGO THROUGH
THE /proc FILESYSTEM

proc [-fg] id Shows information on process pid (provided pid represents a back-
ground process from the shell). If pid is not given or if pid is not a
background process from the shell, this comand does exactly the same
as the comand listarprocs. If we supply the argument -fg process with
pid pid is brought to the foreground (the shell waits for it to end), and
once the program has ended the shell will inform of how it has ended
and remove it form the list

borrarprocs -term Removes from the list the processes that have exited normally.

borrarprocs -sig Removes from the list the processes that have been terminated by
a signal.

Information on the system calls and library functions needed to
code this program is available through man: (setpriority, getpriority,
fork, exec, waitpid . . .).

• Work must be done in pairs.

• The source code will be submitted to the subversion repository under
a directory named P3

• A Makefile must be supplied so that the program can be compiled
with just make. The executable produced must be named shell

• Only one of the members of the workgroup will submit the source code.
The names and logins of all the members of the group should be in the
source code of the main program (at the top of the file)

• For the list of background processes implementation:

– groups that used one of the array implementations (array or array
of pointers) for the previous lab assignments, must now use one

3

of the linked list implementations (either with or without header
node).

– groups that used one of the linked list implementations (with or
without header nodearray or array of pinters) for the previous
lab assignments, must now use one of the array implementations
(array or array of pointers).

DEADLINE: December Friday 13, 2019, 23:00

Assesment: During lab hours

CLUES

The difference between executing in foreground and background is that in
foreground the parent process waits for the child process to end using one of
the wait system calls, whereas in background the parent process continues to
execute concurrently with the child process.

Executing in background should not be tried with programs that read from
the standard input in the same session. xterm and xclock are good candi-
dates to try background execution.

To create processes we use the fork() system call. fork() creates a processes
that is a clone of the calling process, the only difference is the value returned
by fork (0 to the child process and the child’s pid to the parent process).

The waitpid system call allows a process to wait for a child process to end.

The following code creates a child process that executes funcion2 while the
parent executes funcion1. When the child has ended, the parent process
executes funcion3

.......

if ((pid=fork())==0) {

funcion2();

exit(0);

}

else {

funcion1();

waitpid(pid,NULL,0);

funcion3();

}

As exit() ends a program, we could rewrite it like this (without the else

.......

4

if ((pid=fork())==0) {

funcion2();

exit(0);

}

funcion1();

waitpid(pid,NULL,0);

funcion3();

In this code both the parent process and the child process execute funcion3()

.......

if ((pid=fork())==0)

funcion2();

else

funcion1();

funcion3();

For a process to execute a program WE MUST USE the execvp() system
call. execvp searches the executables in the directories specified in the PATH
environment variable. execvp() only returns a value in case of error, otherwise
it replaces the calling process’s code. Here you have an example using execl.

......

execl("/bin/ls","ls","-l","/usr",NULL);

funcion(); /*no se ejecuta a no ser que execl falle*/

execvp operates the exactly the same but with two small differences

• it searches for executables in the PATH so, instead of specifying ’’/bin/ls‘‘

it would suffice to pass just ’’ls‘‘

• we pass a NULL terminated array of pointers, instead of a variable
number of pointers to the arguments

To check a process state we can use waitpid() with the following flags.

waitpid(pid, &estado, WNOHANG |WUNTRACED |WCONTINUED) will give us
information about the state of process pid in the variable estado ONLY
WHEN THE RETURNED VALUE IS pid. Such information can be
evaluated with the macros descibed in man waitpid (WIFEXITED, WIFSIG-
NALED . . .)

The following functions allow us to obtain the signal name from the signal
number and viceversa. (in systems where we do not have sig2str or str2sig)

5

#include <signal.h>

/******************************SENALES **/

struct SEN{

char *nombre;

int senal;

};

static struct SEN sigstrnum[]={

"HUP", SIGHUP,

"INT", SIGINT,

"QUIT", SIGQUIT,

"ILL", SIGILL,

"TRAP", SIGTRAP,

"ABRT", SIGABRT,

"IOT", SIGIOT,

"BUS", SIGBUS,

"FPE", SIGFPE,

"KILL", SIGKILL,

"USR1", SIGUSR1,

"SEGV", SIGSEGV,

"USR2", SIGUSR2,

"PIPE", SIGPIPE,

"ALRM", SIGALRM,

"TERM", SIGTERM,

"CHLD", SIGCHLD,

"CONT", SIGCONT,

"STOP", SIGSTOP,

"TSTP", SIGTSTP,

"TTIN", SIGTTIN,

"TTOU", SIGTTOU,

"URG", SIGURG,

"XCPU", SIGXCPU,

"XFSZ", SIGXFSZ,

"VTALRM", SIGVTALRM,

"PROF", SIGPROF,

"WINCH", SIGWINCH,

"IO", SIGIO,

"SYS", SIGSYS,

/*senales que no hay en todas partes*/

#ifdef SIGPOLL

"POLL", SIGPOLL,

#endif

#ifdef SIGPWR

"PWR", SIGPWR,

6

#endif

#ifdef SIGEMT

"EMT", SIGEMT,

#endif

#ifdef SIGINFO

"INFO", SIGINFO,

#endif

#ifdef SIGSTKFLT

"STKFLT", SIGSTKFLT,

#endif

#ifdef SIGCLD

"CLD", SIGCLD,

#endif

#ifdef SIGLOST

"LOST", SIGLOST,

#endif

#ifdef SIGCANCEL

"CANCEL", SIGCANCEL,

#endif

#ifdef SIGTHAW

"THAW", SIGTHAW,

#endif

#ifdef SIGFREEZE

"FREEZE", SIGFREEZE,

#endif

#ifdef SIGLWP

"LWP", SIGLWP,

#endif

#ifdef SIGWAITING

"WAITING", SIGWAITING,

#endif

NULL,-1,

}; /*fin array sigstrnum */

int Senal(char * sen) /*devuel el numero de senial a partir del nombre*/

{

int i;

for (i=0; sigstrnum[i].nombre!=NULL; i++)

if (!strcmp(sen, sigstrnum[i].nombre))

return sigstrnum[i].senal;

return -1;

}

7

char *NombreSenal(int sen) /*devuelve el nombre senal a partir de la senal*/

{ /* para sitios donde no hay sig2str*/

int i;

for (i=0; sigstrnum[i].nombre!=NULL; i++)

if (sen==sigstrnum[i].senal)

return sigstrnum[i].nombre;

return ("SIGUNKNOWN");

}

8

